Character-Aware Neural Language Models

Yoon Kim Yacine Jernite David Sontag Alexander Rush

Harvard SEAS

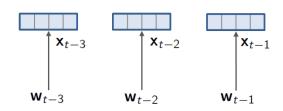
New York University

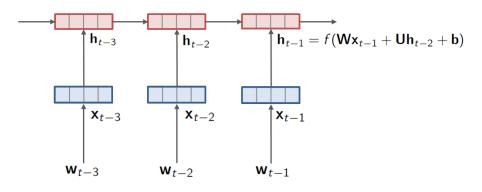
Code: https://github.com/yoonkim/lstm-char-cnn

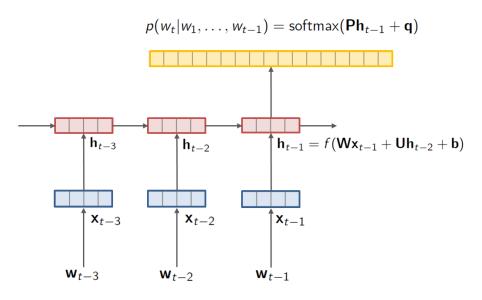
 \mathbf{W}_{t-3}

 \mathbf{w}_{t-2}

 \mathbf{w}_{t-1}







RNN-LM Performance (on Penn Treebank)

Difficult/expensive to train, but performs well.

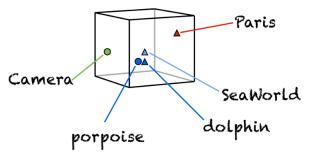
Language Model	Perplexity
5-gram count-based (Mikolov and Zweig 2012)	141.2
RNN (Mikolov and Zweig 2012)	124.7
Deep RNN (Pascanu et al. 2013)	107.5
LSTM (Zaremba, Sutskever, and Vinyals 2014)	78.4

Renewed interest in language modeling.

Word Embeddings (Collobert et al. 2011; Mikolov et al. 2012)

Key ingredient in Neural Language Models.

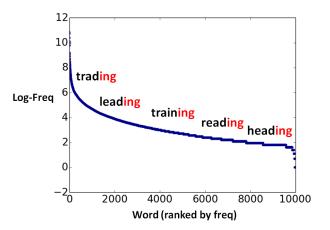
After training, similar words are close in the vector space.



(Not unique to NLMs)

NLM Issue

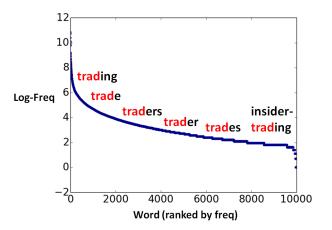
Issue: The fundamental unit of information is still the word



Separate embeddings for "trading", "leading", "training", etc.

NLM Issue

Issue: The fundamental unit of information is still the word



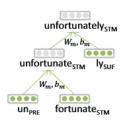
Separate embeddings for "trading", "trade", "trades", etc.

Previous (NLM-based) Work

Use morphological segmenter as a preprocessing step

$$\mathsf{unfortunately} \Rightarrow \mathsf{un}_{\mathsf{PRE}} - \mathsf{fortunate}_{\mathsf{STM}} - \mathsf{ly}_{\mathsf{SUF}}$$

 Luong, Socher, and Manning 2013: Recursive Neural Network over morpheme embeddings



• Botha and Blunsom 2014: Sum over word/morpheme embeddings

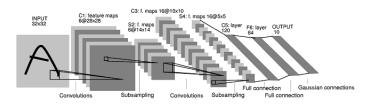
This Work

Main Idea: No morphology, use characters directly.

This Work

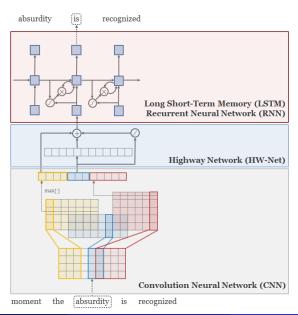
Main Idea: No morphology, use characters directly.

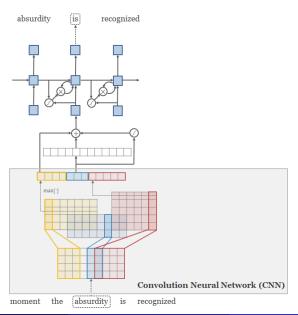
Convolutional Neural Networks (CNN) (LeCun et al. 1989)



- Central to deep learning systems in vision.
- Shown to be effective for NLP tasks (Collobert et al. 2011).
- CNNs in NLP typically involve temporal (rather than spatial) convolutions over words.

Network Architecture: Overview





 $\mathbf{C} \in \mathbb{R}^{d \times l}$: Matrix representation of word (of length l)

 $\mathbf{H} \in \mathbb{R}^{d \times w}$: Convolutional filter matrix

d: Dimensionality of character embeddings (e.g. 15)

w: Width of convolution filter (e.g. 1–7)

1. Apply a convolution between ${\bf C}$ and ${\bf H}$ to obtain a vector ${\bf f} \in \mathbb{R}^{l-w+1}$

$$\mathbf{f}[i] = \langle \mathbf{C}[*, i: i+w-1], \mathbf{H} \rangle$$

where $\langle \mathbf{A}, \mathbf{B} \rangle = \text{Tr}(\mathbf{A}\mathbf{B}^T)$ is the Frobenius inner product.

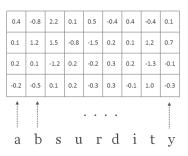
2. Take the max-over-time (with bias and nonlinearity)

$$y = \tanh(\max_{i} \{\mathbf{f}[i]\} + b)$$

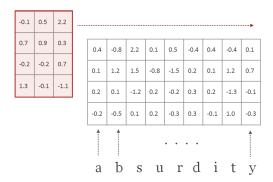
as the feature corresponding to the filter **H** (for a particular word).

a b s u r d i t y

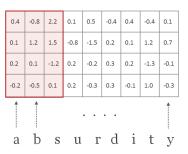
 $\mathbf{C} \in \mathbb{R}^{d \times l}$: Representation of *absurdity*

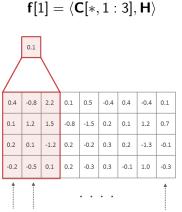


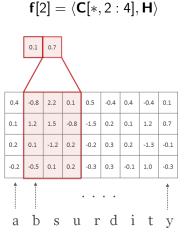
 $\mathbf{H} \in \mathbb{R}^{d \times w}$: Convolutional filter matrix of width w = 3

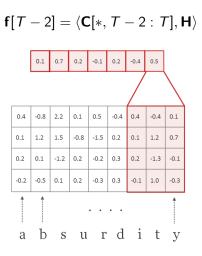


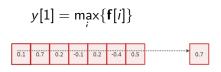
$$\textbf{f}[1] = \langle \textbf{C}[*,1:3], \textbf{H} \rangle$$

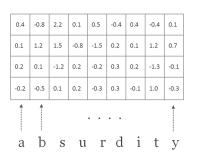




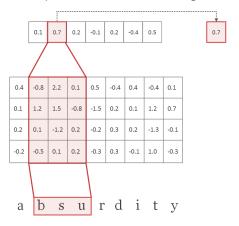


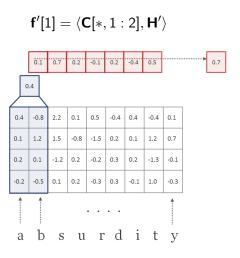


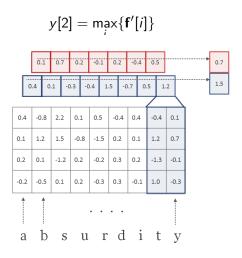


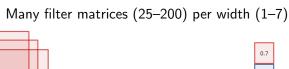


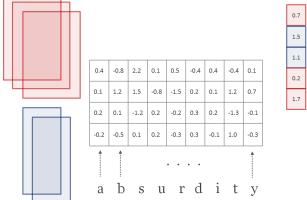
Each filter picks out a character *n*-gram











Add bias, apply nonlinearity

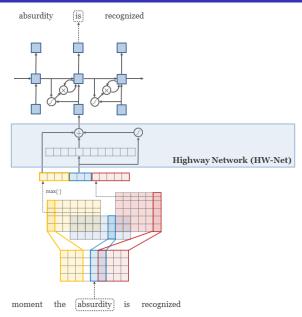
Before Now

Word embedding Output from CharCNN

PTB Perplexity: 85.4 PTB Perplexity: 84.6

CharCNN is slower, but convolution operations on GPU have been very optimized.

Can we model more complex interactions between character n-grams picked up by the filters?



y : output from CharCNN

Multilayer Perceptron

$$z = g(Wy + b)$$

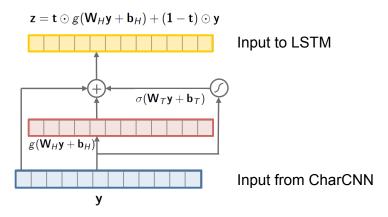
Highway Network

(Srivastava, Greff, and Schmidhuber 2015)

$$\mathbf{z} = \mathbf{t} \odot g(\mathbf{W}_H \mathbf{y} + \mathbf{b}_H) + (\mathbf{1} - \mathbf{t}) \odot \mathbf{y}$$

 $\mathbf{W}_H, \mathbf{b}_H$: Affine transformation $\mathbf{t} = \sigma(\mathbf{W}_T\mathbf{y} + \mathbf{b}_T)$: transform gate $\mathbf{1} - \mathbf{t}$: carry gate

Hierarchical, adaptive composition of character *n*-grams.



Model	Perplexity		
Word Model	85.4		
No Highway Layers	84.6		
One MLP Layer	92.6		
One Highway Layer	79.7		
Two Highway Layers	78.9		

No more gains with 2+ layers.

Results: English Penn Treebank

	PPL	Size
KN-5 (Mikolov et al. 2012)	141.2	2 m
RNN (Mikolov et al. 2012)	124.7	6 m
Deep RNN (Pascanu et al. 2013)	107.5	6 m
Sum-Prod Net (Cheng et al. 2014)	100.0	5 m
LSTM-Medium (Zaremba, Sutskever, and Vinyals 2014)	82.7	20 m
LSTM-Huge (Zaremba, Sutskever, and Vinyals 2014)	78.4	52 m
LSTM-Word-Small	97.6	5 m
LSTM-Char-Small	92.3	5 m
LSTM-Word-Large	85.4	20 m
LSTM-Char-Large	78.9	19 m

Data

	Data-s		Data-l			
	$ \mathcal{V} $	$ \mathcal{C} $	T	$ \mathcal{V} $	$ \mathcal{C} $	T
English (En)	10 k	51	1 m	60 k	197	20 m
Czech (Cs)	46 k	101	1 m	206 k	195	17 m
German (DE)	37 k	74	1 m	339 k	260	51 m
Spanish (Es)	27 k	72	1 m	152 k	222	56 m
French (FR)	25 k	76	1 m	137 k	225	57 m
Russian $(R U)$	62 k	62	1 m	497 k	111	25 m

 $|\mathcal{V}| = \mathsf{Word}\ \mathsf{vocab}\ \mathsf{Size}$

 $|\mathcal{C}| = \mathsf{Character} \; \mathsf{vocab} \; \mathsf{size}$

T = number of tokens in training set.

Data

	Data-s		Data-l			
	$ \mathcal{V} $	$ \mathcal{C} $	T	$ \mathcal{V} $	$ \mathcal{C} $	T
English (E_N)	10 k	51	1 m	60 k	197	20 m
Czech (Cs)	46 k	101	1 m	206 k	195	17 m
German (DE)	37 k	74	1 m	339 k	260	51 m
Spanish (Es)	27 k	72	1 m	152 k	222	56 m
French (FR)	25 k	76	1 m	137 k	225	57 m
Russian (Ru)	62 k	62	1 m	497 k	111	25 m

 $\left|\mathcal{V}\right|$ varies quite a bit by language.

(effectively use the full vocabulary)

Baselines

Kneser-Ney LM: Count-based baseline

Word LSTM: Word embeddings as input

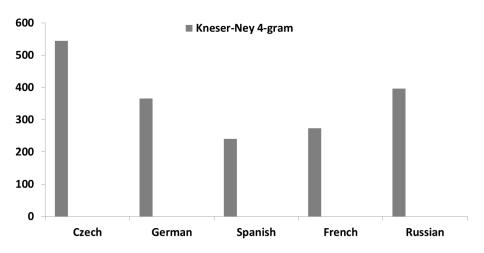
Morpheme LBL (Botha and Blunsom 2014)

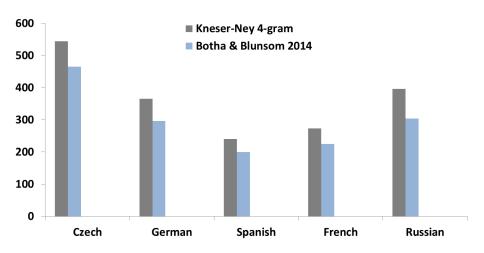
Input for word k is

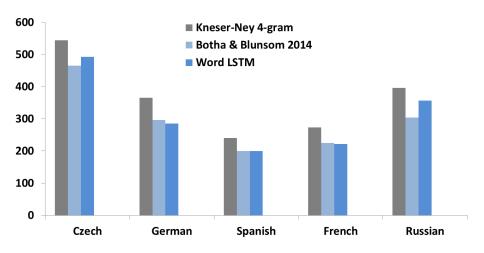
$$\underbrace{\mathbf{x}^k}_{\text{word embedding}} + \underbrace{\sum_{j \in \mathcal{M}_k} \mathbf{m}^j}_{\text{morpheme embeddings}}$$

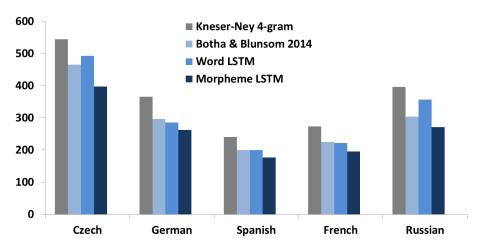
Morpheme LSTM: Same input as above, but with LSTM architecture

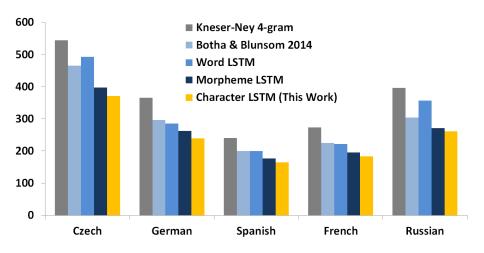
Morphemes obtained from running an unsupervised morphological tagger Morfessor Cat-MAP (Creutz and Lagus 2007).

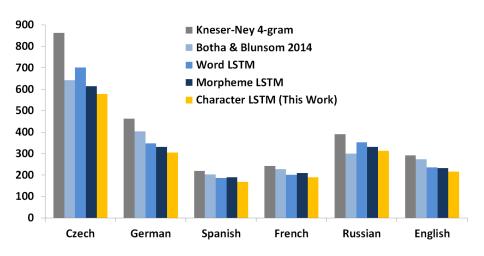




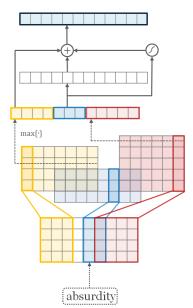




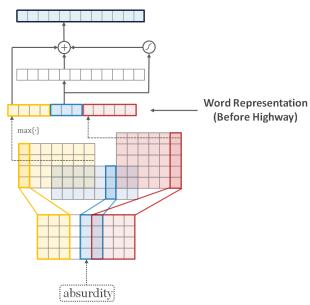




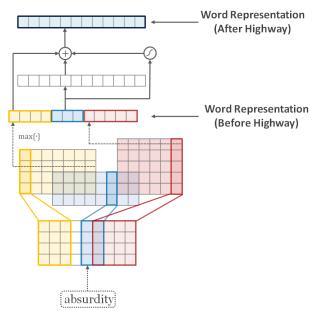
Learned Word Representations



Learned Word Representations



Learned Word Representations



		In Vocabulary				
	while	his	you	richard	trading	
Word	although letting	your her	conservatives we	jonathan robert	advertised advertising	
Embedding	though	my	guys	neil	turnover	
	minute	their	i	nancy	turnover	

	In Vocabulary				
	while	his	you	richard	trading
Word Embedding	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover
Characters (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading

	In Vocabulary				
	while	his	you	richard	trading
Word Embedding	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover
Characters (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading
Characters (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader

	In Vocabulary				
	while	his	you	richard	trading
Word Embedding	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover
Characters (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading
Characters (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader

	In Vocabulary				
	while	his	you	richard	trading
Word Embedding	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover
Characters (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading
Characters (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader

	In Vocabulary				
	while	his	you	richard	trading
Word Embedding	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover
Characters (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading
Characters (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader

	In Vocabulary				
	while	his	you	richard	trading
Word Embedding	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover
Characters (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading
Characters (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader

Learned Word Representations (OOV)

	Out-of-Vocabulary			
	computer-aided	misinformed	looooook	
	computer-guided	informed	look	
Characters	computerized	performed	cook	
(before highway)	disk-drive	transformed	looks	
	computer	inform	shook	
	computer-guided	informed	look	
Characters	computer-driven	performed	looks	
(after highway)	computerized	outperformed	looked	
	computer	transformed	looking	

Learned Word Representations (OOV)

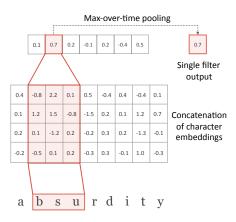
	Out-o	of-Vocabulary misinformed	looooook
Characters (before highway)	computer-guided computerized disk-drive computer	informed performed transformed inform	look cook looks shook
Characters (after highway)	computer-guided computer-driven computerized computer	informed performed outperformed transformed	look looks looked looking

Learned Word Representations (OOV)

	Out-o	of-Vocabulary misinformed	looooook
Characters (before highway)	computer-aided computerized disk-drive computer	informed performed transformed inform	look cook looks shook
Characters (after highway)	computer-guided computer-driven computerized computer	informed performed outperformed transformed	look looks looked looking

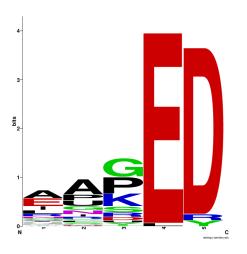
Convolutional Layer

Does each filter truly pick out a character *n*-gram?



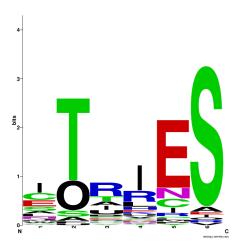
Convolutional Filters

For each filter, visualize 100 substrings with the highest filter response

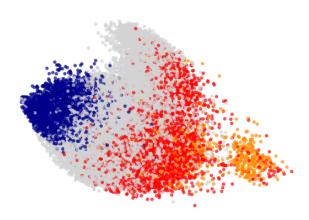


Convolutional Filters

For each filter, visualize 100 substrings with the highest filter response



Character *N*-gram Representations



Prefixes, Suffixes, Hyphenated, Others

Prefixes: character n-grams that start with 'start-of-word' character, such as $\{un, \{mis. \text{ Suffixes defined similarly.}\}$

Performance vs Corpus/Vocab Size

How does relative performance vary as corpus/vocabulary sizes vary?

- Use the first *T* tokens of the training set.
- Take the most frequent K words as the vocabulary and replace rest with <unk>
- Compare % perplexity reduction going from word to character LSTM.

		Vocabulary Size			
		10 k	25 k	50 k	100 k
	1 m	17	16	21	_
Training	5 m	8	14	16	21
Size	10 m	9	9	12	15
	25 m	9	8	9	10

Google recently scaled this to billion word corpus ("Exploring the Limits of Language Modeling", Jozefowicz et al. 2016, arXiv)

Conclusion

A **character-aware** language model that relies only on character-level inputs: CNN over characters + LSTM.

Outperforms strong word/morpheme LSTM baselines.

Much recent work on character inputs:

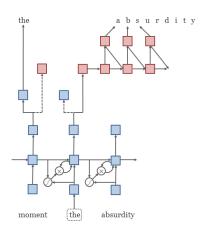
- Santos and Zadrozny 2014: CNN over characters concatenated with word embeddings into CRF.
- Zhang and LeCun 2015: Deep CNN over characters for document classification.
- Ballesteros, Dyer, and Smith 2015: LSTM over characters for parsing.
- Ling et al. 2015: LSTM over characters into another LSTM for language modeling/POS-tagging.

Future Work

Subword information on the output.

As an encoder/decoder in neural machine translation.

CharCNN + Highway layers for representation learning (e.g. as input into word2vec)



Appendix: Hyperparameters

		Small	Large
CNN	d w h f	15 $[1, 2, 3, 4, 5, 6]$ $[25 \cdot w]$ tanh	15 $[1, 2, 3, 4, 5, 6, 7]$ $[\min\{200, 50 \cdot w\}]$ tanh
HW-Net	l	1	2
	g	ReLU	ReLU
LSTM	l	2	2
	m	300	650

Appendix: Results on Data-S

		Cs	DE	Es	FR	Ru
B&B	KN-4	545	366	241	274	396
	MLBL	465	296	200	225	304
Small	Word	503	305	212	229	352
	Morph	414	278	197	216	290
	Char	401	260	182	189	278
Large	Word	493	286	200	222	357
	Morph	398	263	177	196	271
	Char	371	239	165	184	261

Appendix: Results on Data-L

		Cs	DE	Es	FR	Ru	En
В&В	KN-4 MLBL	862 643	463 404	219 203	243 227	390 300	291 273
Small	Word Morph Char	615	331	189	209	331	233

Appendix: Effect of Highway Layers (PTB)

	Small Model	Large Model
No Highway Layers	100.3	84.6
One Highway Layer	92.3	79.7
Two Highway Layers	90.1	78.9
Multilayer Perceptron	111.2	92.6

Appendix: LSTM (Hochreiter and Schmidhuber 1997)

Long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997): Augment RNN with (latent) cell vectors to allow for learning of long-range dependencies.

$$\begin{split} \mathbf{i}_t &= \sigma(\mathbf{W}^i \mathbf{x}_t + \mathbf{U}^i \mathbf{h}_{t-1} + \mathbf{b}^i) \\ \mathbf{f}_t &= \sigma(\mathbf{W}^f \mathbf{x}_t + \mathbf{U}^f \mathbf{h}_{t-1} + \mathbf{b}^f) \\ \mathbf{o}_t &= \sigma(\mathbf{W}^o \mathbf{x}_t + \mathbf{U}^o \mathbf{h}_{t-1} + \mathbf{b}^o) \\ \mathbf{g}_t &= \tanh(\mathbf{W}^g \mathbf{x}_t + \mathbf{U}^g \mathbf{h}_{t-1} + \mathbf{b}^g) \\ \mathbf{c}_t &= \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \mathbf{g}_t \\ \mathbf{h}_t &= \mathbf{o}_t \odot \tanh(\mathbf{c}_t) \end{split}$$

References I

- Bengio, Yoshua, Rejean Ducharme, and Pascal Vincent (2003). "A Neural Probabilistic Language Model". In: *Journal of Machine Learning Research* 3, pp. 1137–1155.
- Mikolov, Tomas et al. (2011). "Empirical Evaluation and Combination of Advanced Language Modeling Techniques". In: *Proceedings of INTERSPEECH*.
- Collobert, Ronan et al. (2011). "Natural Language Processing (almost) from Scratch". In: *Journal of Machine Learning Research* 12, pp. 2493–2537.
- Mikolov, Tomas et al. (2012). "Subword Language Modeling with Neural Networks". In: preprint: www.fit.vutbr.cz/imikolov/rnnlm/char.pdf.
- Mikolov, Tomas and Geoffrey Zweig (2012). "Context Dependent Recurrent Neural Network Language Model". In: *Proceedings of SLT*.
- Pascanu, Razvan et al. (2013). "How to Construct Deep Neural Networks". In: arXiv:1312.6026.

References II

- Zaremba, Wojciech, Ilya Sutskever, and Oriol Vinyals (2014). "Recurrent Neural Network Regularization". In: arXiv:1409.2329.
- Luong, Minh-Thang, Richard Socher, and Chris Manning (2013). "Better Word Representations with Recursive Neural Networks for Morphology". In: *Proceedings of CoNLL*.
- Botha, Jan and Phil Blunsom (2014). "Compositional Morphology for Word Representations and Language Modelling". In: *Proceedings of ICML*.
- LeCun, Yann et al. (1989). "Handwritten Digit Recognition with a Backpropagation Network". In: *Proceedings of NIPS*.
- Srivastava, Rupesh Kumar, Klaus Greff, and Jurgen Schmidhuber (2015). "Training Very Deep Networks". In: arXiv:1507.06228.
- Creutz, Mathias and Krista Lagus (2007). "Unsupervised Models for Morpheme Segmentation and Morphology Learning". In: *Proceedings of the ACM Transations on Speech and Language Processing.*

References III

- Cheng, Wei Chen et al. (2014). "Language Modeling with Sum-Product Networks". In: *Proceedings of INTERSPEECH*.
- Santos, Cicero Nogueira dos and Bianca Zadrozny (2014). "Learning Character-level Representations for Part-of-Speech Tagging". In: *Proceedings of ICML*.
- Zhang, Xiang and Yann LeCun (2015). "Text Understanding From Scratch". In: arXiv:1502.01710.
- Ballesteros, Miguel, Chris Dyer, and Noah A. Smith (2015). "Improved Transition-Based Parsing by Modeling Characters instead of Words with LSTMs". In: *Proceedings of EMNLP 2015*.
- Ling, Wang et al. (2015). "Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation". In: *Proceedings of EMNLP*.
- Hochreiter, Sepp and J[']urgen Schmidhuber (1997). "Long Short-Term Memory". In: *Neural Computation* 9, pp. 1735–1780.