
CS 6840: Natural Language Processing

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

http://ace.cs.ohio.edu/~razvan

bunescu@ohio.edu

Gradient Descent Algorithms

1

http://ace.cs.ohio.edu/~razvan

Machine Learning is Optimization

• Parametric ML involves minimizing an objective function
J(w):
– Also called cost function, loss function, or error function.
– Want to find !𝐰 = argmin

𝐰
𝐽(𝐰)

2

Example: Convex Objective, 2 Params

3

w0

w1

Machine Learning is Optimization

• Parametric ML involves minimizing an objective function
J(w):
– Also called cost function, loss function, or error function.
– Want to find !𝐰 = argmin

𝐰
𝐽(𝐰)

• Numerical optimization procedure:
1. Start with some guess for w0, set 𝜏 = 0.
2. Update w𝜏 to w𝜏+1 such that J(w𝜏+1) ≤ J(w𝜏).
3. Increment 𝜏 = 𝜏 + 1.
4. Repeat from 2 until J cannot be improved anymore.

4

Gradient Descent Algorithm

• Want to minimize a function J : Rn ® R.
– J is differentiable and convex.
– compute gradient of J i.e. direction of steepest increase:

1. Set learning rate 𝜂 = 0.001 (or other small value).
2. Start with some guess for w0, set 𝜏 = 0.
3. Repeat for epochs E or until J does not improve:
4. 𝜏 = 𝜏 + 1.
5. 𝐰/01 =𝐰/ − 𝜂𝛻𝐽 𝐰/

5

𝛻𝐽 𝐰 =
𝜕𝐽
𝜕𝑤1

,
𝜕𝐽
𝜕𝑤7

, … ,
𝜕𝐽
𝜕𝑤9

Convex Multivariate Objective

6

w0

w1

Gradient Step and Contour Lines

7

w0

w1

Variants of Gradient Descent

𝐰/01 =𝐰/ − 𝜂 𝛻𝐽 𝐰/

• Depending on how much data is used to compute the
gradient at each step:
– Batch gradient descent:

• Use all the training examples.
– Stochastic gradient descent (SGD).

• Use one training example, update after each.
– Minibatch gradient descent.

• Use a constant number of training examples (minibatch).

8

Batch Gradient Descent

• Sum-of-squares error:

9

𝐽 𝐰 =
1
2𝑁

=
9>1

?

ℎ𝐰(𝐱(9)) − 𝑡𝑛
7

𝐰/01 =𝐰/ − 𝜂 𝛻𝐽 𝐰/

𝐰/01 =𝐰/ − 𝜂
1
𝑁
=
9>1

?

ℎ𝐰(𝐱(9)) − 𝑡𝑛 𝐱(9)

Stochastic Gradient Descent

• Sum-of-squares error:

• Update parameters w after each example, sequentially:
=> the least-mean-square (LMS) algorithm.

10

𝐽 𝐰 =
1
2𝑁

=
9>1

?

ℎ𝐰(𝐱(9)) − 𝑡𝑛
7
=

1
2𝑁

=
9>1

?

𝐽 𝐰/, 𝐱(9)

𝐰/01 =𝐰/ − 𝜂 𝛻𝐽 𝐰/, 𝐱(9)

𝐰/01 =𝐰/ − 𝜂 ℎ𝐰(𝐱(9)) − 𝑡𝑛 𝐱(9)

Batch GD vs. Stochastic GD

• Accuracy:

• Time complexity:

• Memory complexity:

• Online learning:

11

Batch GD vs. Stochastic GD

12

Gradient Descent vs. Normal Equations

• Gradient Descent:
– Need to select learning rate 𝜂.
– May need many iterations:

• Can do Early Stopping on validation data for regularization.
– Scalable when number of training examples N is large.

• Normal Equations:
– No iterations => easy to code.
– Computing (XEX)-1 has cubic time complexity => slow for large N.
– XEX may be singular:

1. Redundant (linearly dependent) features.
2. #features > #examples => do feature selection or regularization.

13

Pre-processing Features

• Features may have very different scales, e.g. x1 = rooms
vs. x2 = size in sq ft.
– Right (different scales): GD goes first towards the bottom of the

bowl, then slowly along an almost flat valley.
– Left (scaled features): GD goes straight towards the minimum.

14

Feature Scaling

• Scaling between [0, 1] or [−1, +1]:
– For each feature xj, compute minj and maxj over the training

examples.
– Scale x(n)

j as follows:

• Scaling to standard normal distribution:
– For each feature xj, compute sample 𝜇j and sample 𝜎j over the

training examples.
– Scale x(n)

j as follows:

15

16

The Learning Rate

1. Set learning rate 𝜂 = 0.001 (or other small value).
2. Start with some guess for w0, set 𝜏 = 0.
3. Repeat for epochs E or until J does not improve:
4. 𝜏 = 𝜏 + 1.
5. 𝐰/01 =𝐰/ − 𝜂𝛻𝐽 𝐰/

§ How big should the learning rate be?
o If learning rate too small => slow convergence.
o If learning rate too big => oscillating behavior => may not even

converge.

17

Gradient Descent: Small Updates

18https://www.safaribooksonline.com/library/view/hands-on-machine-learning

Learning Rate too Small

19

Gradient Descent: Large Updates

20

Learning Rate too Large

21

Learning Rates vs. GD Behavior

22

http://scs.ryerson.ca/~aharley/neural-networks/

The Learning Rate

• How big should the learning rate be?
– If learning rate too big => oscillating behavior.
– If learning rate too small => hinders convergence.

o Use line search (backtracking line search, conjugate gradient, …).
o Use second order methods (Newton’s method, L-BFGS, ...).

• Requires computing or estimating the Hessian.
o Use a simple learning rate annealing schedule:

– Start with a relatively large value for the learning rate.
– Decrease the learning rate as a function of the number of epochs or

as a function of the improvement in the objective.
o Use adaptive learning rates:

• Adagrad, Adadelta, RMSProp, Adam.
23

Gradient Descent Optimization Algorithms

• Momentum.
• Nesterov Accelerated Gradient (NAG).
• Adaptive learning rates methods:

– Idea is to perform larger updates for infrequent params and smaller
updates for frequent params, by accumulating previous gradient
values for each parameter.

• Adagrad:
– Divide update by sqrt of sum of squares of past gradients.

• Adadelta: use exponential decay for past gradients.

• RMSProp.
• Adaptive Moment Estimation (Adam)

24

AdaGrad

• Optimized for problems with sparse features.

• Per-parameter learning rate: make smaller updates for
params that are updated more frequently:

• Require less tuning of the learning rate compared with
SGD.

25

𝑤I = 𝑤I − 𝜂
JK,L
M0NK,L

where 𝐺P,I = ∑/>1P 𝑔/,I

𝑔P,I =
𝜕𝐽(𝐰)
𝜕𝑤I

Gradient Descent: Nonconvex Objective

26

Saddle point

Convex Multivariate Objective

27

w0

w1

Gradient Step and Contour Lines

28

w0

w1

Gradient Descent: Nonconvex Objectives

29

Gradient Descent & Plateaus

30

Gradient Descent & Saddle Points

31

Gradient Descent & Ravines

32

Gradient Descent & Ravines

• Ravines are areas where the surface curves much more
steeply in one dimension than another.
– Common around local optima.
– GD oscillates across the slopes of the ravines, making slow progress

towards the local optimum along the bottom.

• Use momentum to help accelerate GD in the relevant
directions and dampen oscillations:
– Add a fraction of the past update vector to the current update vector.

• The momentum term increases for dimensions whose previous
gradients point in the same direction.

• It reduces updates for dimensions whose gradients change sign.
• Also reduces the risk of getting stuck in local minima.

33

Gradient Descent & Momentum

34

Vanilla Gradient Descent:

𝐯/01 = 𝜂𝛻𝐽(𝐰/)

𝐰/01 =𝐰/ − 𝐯/01

Gradient Descent w/ Momentum:

𝐯/01 = 𝛾𝐯/ + 𝜂𝛻𝐽(𝐰/)

𝐰/01 =𝐰/ − 𝐯/01

𝛾 is usually set to 0.9 or similar.

Momentum & Nesterov Accelerated Gradient

35

GD with Momentum:

𝐯/01 = 𝛾𝐯/ + 𝜂𝛻𝐽(𝐰/)

𝐰/01 =𝐰/ − 𝐯/01

Nesterov Accelerated Gradient:

𝐯/01 = 𝛾𝐯/ + 𝜂𝛻𝐽(𝐰/− 𝛾𝐯/)

𝐰/01 =𝐰/ − 𝐯/01

By making an anticipatory update, NAGs prevents GD from going too fast
=> significant improvements when training RNNs.

RMSProp

• Element-wise gradient: 𝑔IP= 𝛻VL𝐽(𝐰P)
• Gradient is 𝐠P = [𝑔1P, 𝑔7P , …, 𝑔YP]
• Element-wise square gradient: 𝐠P7 = 𝐠P ∘ 𝐠P

RMSProp:

EP 𝐠7 = 𝛾EP\1 𝐠7 + (1 − 𝛾) 𝐠P7

𝐰P01 =𝐰P −
]

^K 𝐠_ 0M
𝐠P

𝛾 is usually set to 0.9, 𝜂 is set to 0.001

36

Adam: Adaptive Moment Estimation

• Maintain an exponentially decaying average of past
gradients (1st m.) and past squared gradients (2nd m.):
1) 𝐦P = 𝛽1 𝐦P\1 + (1 − 𝛽1) 𝐠P
2) 𝐯P = 𝛽1 𝐯P\1 + (1 − 𝛽1) 𝐠P7

• Biased towards 0 during initial steps, use bias-corrected
first and second order estimates:

1) !𝐦P =
𝐦K
1\bcK

2) d𝐯P =
𝐯K

1\b_K

37

Adam: Adaptive Moment Estimation

• First and second moment:
𝐦P = 𝛽1 𝐦P\1 + (1 − 𝛽1) 𝐠P
𝐯P = 𝛽1 𝐯P\1 + (1 − 𝛽1) 𝐠P7

• Bias-correction:

!𝐦P =
𝐦K
1\bcK

and d𝐯P =
𝐯K

1\b_K

Adam:

𝐰P01 =𝐰P −
]
d𝐯K0M

!𝐦P

38

Visualization

• Adagrad, RMSprop, Adadelta, and Adam are very similar
algorithms that do well in similar circumstances.
– Insofar, Adam might be the best overall choice.

39

Implementation: Gradient Checking

• Want to minimize J(θ), where θ is a scalar.

• Mathematical definition of derivative:

• Numerical approximation of derivative:

d
dθ

J(θ) = lim
ε→∞

J(θ +ε)− J(θ −ε)
2ε

d
dθ

J(θ) ≈ J(θ +ε)− J(θ −ε)
2ε

where ε = 0.0001

40

Implementation: Gradient Checking

• If θ is a vector of parameters θi,
– Compute numerical derivative with respect to each θi.
– Aggregate all derivatives into numerical gradient Gnum(θ).

• Compare numerical gradient Gnum(θ) with implementation
of gradient Gimp(θ):

Gnum (θ)−Gimp(θ)
Gnum (θ)+Gimp(θ)

≤10−6

41

