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Binary Classification: Sentiment Analysis

Movie reviews:
Positive: This was a great movie, which I thoroughly enjoyed.

Negative: 1 was very disappointed in this movie, it was a waste of time.

» Lexical features, e.g. presence of words such as great or disappointed, can be used to
determine the sentiment orientation.

— Can you think of examples where the same word may be used for both types of sentiment? How
would you fix that?

* Represent each review as a bag-of-words feature vector:
— High dimensional, sparse feature vector => use sparse representations that map features to indeces.
— Feature value 1s 1 if word is present, 0 otherwise:
 Can use more sophisticated word weighting schemes from IR, such as tf.idf.

e (Can use stems instead of tokens.




Sentiment Analysis

=

Movie reviews:
Positive: This was a great movie, which I thoroughly enjoyed.
Positive: Despite the bad reviews I read online, I liked this move.

Negative: The movie was not as good as I expected.

It appears that the bag-of-words approach 1s not sufficient.

Can try to address negation:
— Use bigram NOT X for all words X following the negation [Pang et al. EMNLP’02].

Model sentiment compositionality:

— Train recursive deep models over sentiment treebanks [Socher et al., EMNLP’13]

* Apply more sophisticated classifiers:
— Convolutional Neural Networks (CNNs) [Kim, 2014]




Sentiment Analysis

More examples showing the limitations of bag-of-words models [Eisenstein, 2019]:

@ n T

That’s not bad for the first day.
This is not the worst thing that can happen.
It would be nice if you acted like you understood.

There is no reason at all to believe that the polluters are suddenly going to
become reasonable. (Wilson et al., 2005)

This film should be brilliant. The actors are first grade. Stallone plays a
happy, wonderful man. His sweet wife is beautiful and adores him. He has
a fascinating gift for living life fully. It sounds like a great plot, however, the
film is a failure. (Pang et al., 2002)




Classification Algorithms

» Train a classification algorithm on the labeled feature vectors, 1.e. training examples.

« Use trained model to determine the sentiment orientation of new, unseen reviews.

* (Generalized) Linear models:
— Perceptron
— Support Vector Machines
— Logistic Regression




[inear Discriminant Functions

* Use a linear function of the input vector:

h(x) = wlo(x) + w, |

73 £y

weight vector bias = — threshold |

* Decision:
x € C;if h(x) >0, otherwise x € C,.

= decision boundary is hyperplane /(x) = 0.

* Properties:
— w 1s orthogonal to vectors lying within the decision surface.
— w, controls the location of the decision hyperplane.




Geometric Interpretation

h >0 T
h =0




The Perceptron Algorithm: Two Classes ¢, € {+1, —1}

1. initialize parameters w = 0
2% fogn.= 1 "#°N 3
2 v, =sgn(w'x,) Repeat:
4 e — a) until convergence.
In b b) for a number of epochs E.
5 W=W+t¢{X, |

Theorem [Rosenblatt, 1962]:

If the training dataset 1s linearly separable, the perceptron learning algorithm 1s
guaranteed to find a solution in a finite number of steps.

* see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].




Perceptron as Stochastic Gradient Descent

=

* Perceptron Criterion:
— Set labels to be +1 or — 1. Want w'x, >0 for ¢, = 1, and w'x, < 0 for ¢, = — 1.
= would like to have w'x,z, > 0 for all patterns.

— want to minimize —w'x, ¢, for all missclassified patterns M.

T

minimize E,(W) = — Y,ey W Xpty

« Update parameters w sequentially after each mistake:
w = w® _pVE (W™ x )

=w® + nx,t,

« The magnitude of w is inconsequential => set 7= 1.

w(T+1) = w(T) -|_ Xntn




Linear Classifiers & Margin

 Perceptron solution depends on 1nitial values of w and b and order of processing of
data points.

« Which classifier has the smallest generalization error?
— The one that maximizes the margin [Computational Learning Theory]

* margin = the distance between the decision boundary and the closest sample.




Maximum Margin Classifiers

margin

_Ly(x,) _t,(Wo(x,)+b)
Wl W]




Maximum Margin Classifiers

« Margin = the distance between hyperplane y(x)=0 and closest sample:

mm{rxw%o(xmb)}

" wi

* Find parameters w and b that maximize the margin:

argmax{ Hmm[t (W o(x, )+b)]}

« Rescaling w and b does not change distances to the hyperplane:
— for the closest point(s), set Z,(W' ¢(x,)+b) =1

= t(Wokx)+b)=1, Vnefl,..., N}




Max-Margin: Quadratic Optimization

* Constrained optimization problem:

minimize:
1
J(w,b) =
subject to:

t (Wwo(x)+b)21, Vnell,.. N}

« But most real data is not linearly separable => allow for some slack in the constraints.




Max-Margin: Non-Separable Case




Max-Margin: Non-Separable Case

* Optimization problem:

minimize:
1 N
Jow) =Sl + €3¢,
N n=1
subject to:

t (Wo(x)+b)21-¢, Vnefl,...,N)}
& =20

» Tipically solved using the technique of Lagrange Multipliers, which enables the use
of non-linear kernels.

« Here we will solve the linear SVM using gradient descent.




Linear SVM: The (Sub)Gradient

B mire! The two constraints can be written as:
N _— —
J(W’ b) 2 %“WUZ +£Z é:n En = maX(O, 1 tnh(Xn))
N . : :
subject to: 1 Thl.S 1§ad§ to the equivalent unconstrained
optimization problem:
t (Wokx)+b)21-&, Vnell,..., N} " C N
£ >0 min = [[w]| + —z O
= wb 2 N ]
n—=

* To compute the gradient VJ we need to compute the gradient of each slack term &, :

Ln _ 0if £,=0 Ln — ¢ x, ifE>0

ow

ow




Linear SVM: The (Sub)Gradient Descent Algorithm

N
1 C
i [ (w, b) = =\llw]|2+ —Z max(0,1 — t,h(x,))
w,b 2 N i
n=

N N
1 1
NZ( Iwil? + max(0,1 = tah(xa)) _NZ( IWil? + &) where A= 1/C
. Gradients are: 22 = 0if &,=0 06 -
radients are: =" =01 = —I = —tyXp it £,>0

« Stochastic gradient Descent update is:
= wt —n(Awt — t,x,,) ift,h(x,) <1

= w! —niwt otherwise

W

wt+1

— In the Pegasos algorithm the learning rate is set at n =

1
At




Logistic Regression for Binary Classification

10(1) of : activation

- function
X1 @—__ >

o Y o{ o)
12 . w Z_EWZXl 1 hw(x) a0 1 T
. f(z)= 1+exp(-w'x)
1+exp(-z)

X3

 Used for binary classification of examples x = [1, x, x,, ..., x;]'

Labels T = {C,, C,} = {1, 0}
Output C, if and only if A(x) = o(w'x) > 0.5

* Training set 1s (X;,t;), (X5,t5), ... (Xpt,).




Logistic Regression for Binary Classification

* Model output can be interpreted as posterior class probabilities:

1
1+exp(-w' X))

p(C Ix)=0(w'x)=

p(C,1X)=1-0(W'x) = exp(-w'X)

1+exp(-w'x)

 Inference:
— Output Cif p(C,[x) > 0.5, else output C,.

— Show that it corresponds to a linear decision boundary.

e Training:
— What error/cost/loss function to minimize?

19
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Logistic Regression: Training

e Tramning setisD={x,, %) |?,€ {0,1},n e l...N}

* Training = finding the “right” parameters w™ = [wy, w;, ..., w; ]
— Find w that minimizes an error function E(w) which measures the misfit between 4(x,,w) and #,.

— Expect that 4(x,w) performing well on training examples x, = A(x,w) will perform well on
arbitrary test examples x € X.

Maximum Likelihood (ML) principle: find parameters that maximize the likelihood of
the labels.

N
e The likelihood function is; p(tlw,X) = np(tnlw, Xn)

n=1

N
* The negative log-likelihood (cross entropy): —Inp(tjlw) = — z Inp(t,|x;,)
n=1




Logistic Regression: Training

e The Maximum Likelihood solution is:

-1 .convex in w

Wi = argmaxp(t | W) = arg mlnE(w) = -

 Maximum Likelihood solution is given by VE(w) = 0

— Cannot solve analytically => solve numerically with gradient based methods:
(stochastic) gradient descent, conjugate gradient, L-BFGS, etc.

N _| What does this represent
— Gradient is (prove it): VE(W) = El(hn —t )X, fT for binary features?
n=l

where h, = o(W'x )




Regularized Logistic Regression

e Maximum a Posteriori solution:

N
a
W, =argminE,(w)+ E, (W) = argmin — Z In p(ty ) + 5 Iwil?

n=1

 MAP solution 1s given by VE(w) = VE(w) + VE (w) = 0.

— Cannot solve analytically => solve numerically using (stochastic) gradient
descent, conjugate gradient, L-BFGS, ...

N
— Gradient is (prove it): VE(w) = E(hn —1 )X, +aw'

n=1

where i =o(w'x )




Logistic Regression for Multiclass Classification

Multiclass classification:
T={C;,Cop.., Cx} =141, 2, ..., K}.

Training set 1s (x,t;), (X5,15), ... (X,,t,).
X [l ... Xl
tl) tz, tn = {1, 2, coey K}

exp(W, X))

K weight vectors, one per class: p(C, 1x)=

Ejexp(wJT.X)

One weight vector:




Logistic Regression (K > 2)

e Inference:

C, =arg max p(C, |x)

71 Z(X) is the partition function

T
= arg max SR X)

G |y exp(Wix)

P
-
-
-
-
-
-
-
-
-
-
-
-
-
-
R
2

= arg max exp(W, X)
Ck

T
= argmax w, X
Ck

e Training using:
—  Maximum Likelithood (ML)

—  Maximum A Posteriori (MAP) with a Gaussian prior on w.




Logistic Regression (K > 2)

* The negative log-likelihood error function is:

convex in w

o ey CXD(W, B . [ e :
E (w)=-——In t Ix)=— dlIn 2~
b gpu ) NE 25
e The ML solution 1s:
w,, =argminE, (w)
* The gradient is (prove it):
1 N
V, E, (W)= -yE@w - p(C1x,))X,
n=1

B =1

where o, (x)= 1s the Kronecker delta function.
0 x=#t¢ 25 |




L, Regularized Logistic Regression (K > 2)

e The new cost function is:

exp(W] x,) «a

1 N
E(W) = E,(W)+E, (W)= ==} In i -

Iwl|?

n=1

* The new gradient is (prove it):

1 N
V, E(w)= —Ng(ék(tn)— p(C, 1x,))x. +aw,




Logistic Regression (K > 2)

e ML solution 1s given by VE(w) =0 .

— Cannot solve analytically.

— Solve numerically, by pluging [cost, gradient] = [E(w), VE(w)] values into general convex solvers:

e L-BFGS
 Newton methods

e conjugate gradient

* (stochastic / minibatch) gradient-based methods.

— gradient descent (with / without momentum).
— AdaGrad, AdaDelta

— RMSProp
— ADAM, ...




Logistic Regression

« Stochastic gradient update for binary case:

— No regularization:

t+1

witlt =wt —n(h, — t,)x, where h,, = a(w'x,,)

— With L2 regularization:
wirt = wt — U(CZWt + (hn B tn)xn)

 Stochastic gradient update for multiclass case:

— No regularization:

WI€+1 = Wy, — N(P(CxlxXpn) — 8 (tn))Xn  where P(Cy|Xy) = softmax(WiXp)

— With L2 regularization:
witlh = wt — U(“Wﬁ + (P(Cklxn) - 5k(tn))xn)
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SVMs for multiclass classification




