
CS 6840: Natural Language Processing

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

ML Algorithms for Classification 



Movie reviews:
Positive:    This was a great movie, which I thoroughly enjoyed.
Negative:   I was very disappointed in this movie, it was a waste of time.

• Lexical features, e.g. presence of words such as great or disappointed, can be used to 
determine the sentiment orientation.
– Can you think of examples where the same word may be used for both types of sentiment? How 

would you fix that?

• Represent each review as a bag-of-words feature vector:
– High dimensional, sparse feature vector => use sparse representations that map features to indeces.
– Feature value is 1 if word is present, 0 otherwise:

• Can use more sophisticated word weighting schemes from IR, such as tf.idf.
• Can use stems instead of tokens.

2

Binary Classification: Sentiment Analysis



Movie reviews:
Positive:    This was a great movie, which I thoroughly enjoyed.
Positive:    Despite the bad reviews I read online, I liked this move.
Negative:   The movie was not as good as I expected.

• It appears that the bag-of-words approach is not sufficient.
• Can try to address negation:

– Use bigram NOT_X for all words X following the negation [Pang et al. EMNLP’02].

• Model sentiment compositionality:
– Train recursive deep models over sentiment treebanks [Socher et al., EMNLP’13]

• Apply more sophisticated classifiers:
– Convolutional Neural Networks (CNNs) [Kim, 2014]

3

Sentiment Analysis



4

Sentiment Analysis

More examples showing the limitations of bag-of-words models [Eisenstein, 2019]: 



• Train a classification algorithm on the labeled feature vectors, i.e. training examples.

• Use trained model to determine the sentiment orientation of new, unseen reviews.

• (Generalized) Linear models:
– Perceptron
– Support Vector Machines
– Logistic Regression

5

Classification Algorithms



• Use a linear function of the input vector:

• Decision:
x Î C1 if  h(x) ³ 0, otherwise x Î C2.
Þ decision boundary is hyperplane h(x) = 0.

• Properties:
– w is orthogonal to vectors lying within the decision surface.
– w0 controls the location of the decision hyperplane.

6

Linear Discriminant Functions

weight vector bias = - threshold

ℎ 𝐱 = 𝐰%𝜑 𝐱 + 𝑤)



Geometric Interpretation

7

h
h

hhh

hh



The Perceptron Algorithm: Two Classes tn ∊ {+1, −1}

1. initialize parameters w = 0
2. for n = 1 … N
3. yn = sgn(wTxn)
4. if yn ¹ tn then
5. w = w + tnxn

Repeat:
a) until convergence.
b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning algorithm is 
guaranteed to find a solution in a finite number of steps.
• see Theorem 1 (Block, Novikoff)  in [Freund & Schapire, 1999].

8



• Perceptron Criterion:
– Set labels to be +1 or − 1. Want wTxn > 0 for tn = 1, and wTxn < 0 for tn = − 1.

Þ would like to have wTxntn > 0 for all patterns.
Þ want to minimize −wTxntn for all missclassified patterns M.

• Update parameters w sequentially after each mistake:

• The magnitude of w is inconsequential => set h = 1.

9

Perceptron as Stochastic Gradient Descent

minimize 𝐸, 𝐰 = −∑/∈1𝐰%𝐱/𝑡/

w(τ+1) =w(τ ) −η∇EP (w
(τ ),xn )

= 𝐰(4) + 𝜂𝐱/𝑡/

𝐰(478) = 𝐰(4) + 𝐱/𝑡/



• Perceptron solution depends on initial values of w and b and order of processing of 
data points.

• Which classifier has the smallest generalization error?
– The one that maximizes the margin [Computational Learning Theory]

• margin = the distance between the decision boundary and the closest sample.
10

Linear Classifiers & Margin



Maximum Margin Classifiers

• The distance between xn and hyperplane y(x) = 0 is 

11

w
xw

w
x

w
x ))(()()( btyty n

T
nnnn +

==
j



• Margin = the distance between hyperplane y(x)=0 and closest sample:

• Find parameters w and b that maximize the margin:

• Rescaling w and b does not change distances to the hyperplane:

Þ for the closest point(s), set 

Þ

12

Maximum Margin Classifiers

ú
û

ù
ê
ë

é +
w
xw ))((min bt n

T
n

n

j

[ ]
þ
ý
ü

î
í
ì

+ ))((min1maxarg
,

bt n
T

nnb
xw

ww
j

1))(( =+ bt n
T

n xw j

},,1{     ,1))(( Nnbt n
T

n !Î"³+xw j



Max-Margin: Quadratic Optimization

• Constrained optimization problem:

• But most real data is not linearly separable => allow for some slack in the constraints.

13

2

2
1),( ww =bJ

},,1{     ,1))(( Nnbt n
T

n !Î"³+xw j

minimize:

subject to:



14

Max-Margin: Non-Separable Case



Max-Margin: Non-Separable Case

• Optimization problem:

• Tipically solved using the technique of Lagrange Multipliers, which enables the use 
of non-linear kernels.

• Here we will solve the linear SVM using gradient descent.

15

å
=

+=
N

n
nCbJ

1

2

2
1),( xww

},,1{     ,1))(( Nnbt nn
T

n !Î"-³+ xj xw

minimize:

subject to:

0³nx

N



• To compute the gradient ÑJ we need to compute the gradient of each slack term xn :

16

Linear SVM: The (Sub)Gradient

å
=

+=
N

n
nCbJ

1

2

2
1),( xww

},,1{     ,1))(( Nnbt nn
T

n !Î"-³+ xj xw

minimize:

subject to:

0³nx

The two constraints can be written as:

This leads to the equivalent unconstrained 
optimization problem:

𝜉/ = max(0, 1 − 𝑡/ℎ 𝐱/ )

min
𝐰,B

1
2
𝐰 D +

𝐶
𝑁
G
/H8

I

max(0, 1 − 𝑡/ℎ 𝑥/ )

KLM
K𝐰 = 0 if   xn = 0 KLM

K𝐰 = −𝑡/𝐱/ if xn > 0

N



• Gradients are:

• Stochastic gradient Descent update is:
𝐰N78 = 𝐰N − 𝜂 𝜆𝐰N − 𝑡/𝐱/ if 𝑡/ℎ 𝐱/ < 1
𝐰N78 = 𝐰N − 𝜂𝜆𝐰N otherwise

– In the Pegasos algorithm the learning rate is set at 𝜂 = 8
PN

17

Linear SVM: The (Sub)Gradient Descent Algorithm

min
𝐰,B

𝐽 𝐰, 𝑏 =
1
2
𝐰 D +

𝐶
𝑁
G
/H8

I

max(0, 1 − 𝑡/ℎ 𝐱/ )

=
1
𝑁
G
/H8

I
𝜆
2
𝐰 D + max(0, 1 − 𝑡/ℎ 𝐱/ ) =

1
𝑁
G
/H8

I
𝜆
2
𝐰 D + xn

KLM
K𝐰 = 0 if   xn = 0 KLM

K𝐰 = −𝑡/𝐱/ if xn > 0

where 𝜆 = 1/C



• Used for binary classification of examples x = [1, x1, x2, ..., xk]T

• Labels T = {C1, C2} = {1, 0}
• Output C1 if and only if  h(x) = σ(wTx) > 0.5

• Training set is (x1,t1), (x2,t2), … (xn,tn).

18

Logistic Regression for Binary Classification

Σ

1x0

x1

x2

x3

wixi∑ hw(x) 

activation
function f

w0

w1

w2

w3 =
1

1+ exp(−wTx)f (z) = 1
1+ exp(−z)

z﹦



Logistic Regression for Binary Classification

• Model output can be interpreted as posterior class probabilities:

• Inference:
– Output C1if p(C1|x) ≥ 0.5, else output C2.
– Show that it corresponds to a linear decision boundary.

• Training:
– What error/cost/loss function to minimize?

p(C1 | x) =σ (w
Tx) = 1

1+ exp(−wTx))

p(C2 | x) =1−σ (w
Tx) = exp(−wTx)

1+ exp(−wTx)

19



• Training set is D = {áxn, tnñ | tnÎ {0,1}, n Î 1…N}
• Training = finding the “right” parameters wT = [w0, w1, … , wk ]

– Find w that minimizes an error function  E(w) which measures the misfit between h(xn,w) and tn.
– Expect that h(x,w) performing well on training examples xn Þ h(x,w) will perform well on 

arbitrary test examples x Î X.

Maximum Likelihood (ML) principle: find parameters that maximize the likelihood of 
the labels.

• The likelihood function is:

• The negative log-likelihood (cross entropy):

20

Logistic Regression: Training

𝑝 𝐭 𝐰, X = V
/H8

I

𝑝(𝑡/|𝐰, 𝑥/)

− ln 𝑝 𝐭 𝐰 = −G
/H8

I

ln 𝑝(𝑡/|𝑥/)



• The Maximum Likelihood solution is:

• Maximum Likelihood solution is given by ÑE(w) = 0

– Cannot solve analytically => solve numerically with gradient based methods: 
(stochastic) gradient descent, conjugate gradient, L-BFGS, etc.

– Gradient is (prove it):

21

Logistic Regression: Training

wML = argmaxw p(t |w) = argmin
w
E(w)

convex in w

∇E(w) = (hn − tn )xn
T

n=1

N

∑
What does this represent 
for binary features?

where hn =σ (w
Txn )



• Maximum a Posteriori solution:

• MAP solution is given by ÑE(w) = ÑED(w) + ÑEw(w) = 0.

– Cannot solve analytically => solve numerically using (stochastic) gradient 
descent, conjugate gradient, L-BFGS, …

– Gradient is (prove it):

22

Regularized Logistic Regression

)()(minarg www ww
EEDMAP += = argmin −G

/H8

I

ln 𝑝 𝑡/ 𝑥/ +
𝛼
2
𝐰 D

= (hn − tn )xn
T +αwT

n=1

N

∑
where hn =σ (w

Txn )

ÑE(w) 



• Multiclass classification:
T = {C1, C2, ..., CK} = {1, 2, ..., K}.

• Training set is (x1,t1), (x2,t2), … (xn,tn).
x = [1, x1, x2, ..., xM]
t1, t2, … tn Î {1, 2, ..., K}

• K weight vectors, one per class:

• One weight vector:

23

Logistic Regression for Multiclass Classification

p(Ck | x) =
exp(wk

Tx))
exp(w j

Tx)
j∑



• Inference:

• Training using:
– Maximum Likelihood (ML)
– Maximum A Posteriori (MAP) with a Gaussian prior on w.

24

Logistic Regression (K ³ 2)

)|(maxarg* xkC
CpC

k

=

= argmax
Ck

exp(wk
Tx)

exp(w j
Tx)

j∑
Z(x) is the partition function

= argmax
Ck
exp(wk

Tx)

= argmax
Ck
wk

Tx



Logistic Regression (K ³ 2)

• The negative log-likelihood error function is:

• The ML solution is:

• The gradient is (prove it):

ED (w) = −
1
N
ln p(tn | xn )

n=1

N

∏
convex in w

= −
1
N

ln
exp(wtn

T xn )
Z(xn )n=1

N

∑

25

)(minarg ww
w DML E=

∇wk
ED (w) = −

1
N

δk (tn )− p(Ck | xn )( )
n=1

N

∑ xn

î
í
ì

¹
=

=
tx
tx

xt 0
1

)(dwhere                                  is the Kronecker delta function.



L2 Regularized Logistic Regression (K ³ 2)

• The new cost function is:

• The new gradient is (prove it):

E(w) = ED (w)+Ew (w)

∇wk
E(w) = − 1

N
δk (tn )− p(Ck | xn )( )xnT

n=1

N

∑ +αwk
T

26

= −
1
𝑁G
/H8

I

ln
exp 𝐰NM

% 𝐱/
𝑍 𝐱/

+
𝛼
2 𝐰 D



Logistic Regression (K ³ 2)

• ML solution is given by ÑE(w) = 0 .
– Cannot solve analytically.

– Solve numerically, by pluging [cost, gradient] = [E(w), ÑE(w)] values into general convex solvers:
• L-BFGS
• Newton methods
• conjugate gradient
• (stochastic / minibatch) gradient-based methods.

– gradient descent (with / without momentum).
– AdaGrad, AdaDelta
– RMSProp
– ADAM, ...

27



• Stochastic gradient update for binary case:

– No regularization:
𝐰N78 = 𝐰N − 𝜂 ℎ/ − 𝑡/ 𝐱/ where ℎ/ = 𝜎(𝐰N𝐱/)

– With L2 regularization:
𝐰N78 = 𝐰N − 𝜂 𝛼𝐰N + ℎ/ − 𝑡/ 𝐱/

• Stochastic gradient update for multiclass case:

– No regularization:
𝐰`N78 = 𝐰`N − 𝜂 𝑃(𝐶`|𝐱/) − 𝛿`(𝑡/) 𝐱/ where 𝑃(𝐶`|𝐱/) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐰`N𝐱/)

– With L2 regularization:
𝐰N78 = 𝐰N − 𝜂 𝛼𝐰`N + 𝑃(𝐶`|𝐱/) − 𝛿`(𝑡/) 𝐱/

28

Logistic Regression



29

SVMs for multiclass classification


