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Part of Speech (POS) Tagging

[

 Annotate each word 1n a sentence with its POS:

— noun, verb, adjective, adverb, pronoun, preposition, interjection, ...

NN
RB
VBN JJ VB
PRP VBD TO VB DT NN

She promised to back the bill




Parts of Speech

» Lexical categories that are defined based on:
— Syntactic function:
e nouns can occur with determiners: a goat.
e nouns can take possessives: IBM’s annual revenue.
e most nouns can occur in the plural: goats.
— Morphological function:

e many verbs can be composed with the prefix “un”.

* There are tendencies toward semantic coherence:
— nouns often refer to “people, places, or things”.

— adjectives often refer to properties.




POS: Closed Class vs. Open Class

Closed Class:

— relatively fixed membership.
— usually function words:

 short common words which have a structuring role in grammar.

— Prepositions: of, in, by, on, under, over, ...

— Auxiliaries: may, can, will had, been, should, ...

— Pronouns: I, you, she, mine, his, them, ...

— Determiners: a, an, the, which, that, ...

— Conjunctions: and, but, or (coord.), as, if, when, (subord.), ...
— Particles: up, down, on, off;, ...

— Numerals: one, two, three, third, ...




POS: Open Class vs. Closed Class

Open Class:
— new members are continually added.
* to fax, to google, futon, ...
— English has 4: Nouns, Verbs, Adjectives, Adverbs.
* Many languages have these 4, but not all (e.g. Korean).
— Nouns: people, places, or things
— Verbs: actions and processes
— Adjectives: properties or qualities
— Adverbs: a hodge-podge
» Unfortunately, John walked home extremely slowly yesterday.

e directional, locative, temporal, degree, manner, ...




POS: Open vs. Closed Classes

* Open Class: new members are continually added.

1is

Annie: Do you love me?

Alvy: Love is too weak a word for what I feel... I lurve you. Y'know,
[ loove you, I, I luff you. There are two f's. I have to invent... Of
course I love you. (Annie Hall)

"Twas brillig, and the slithy toves ~ "Beware the Jabberwock, my son!

Did gyre and gimble in the wabe;  The jaws that bite, the claws that catch!
All mimsy were the borogoves, Beware the Jubjub bird, and shun

And the mome raths outgrabe. The frumious Bandersnatch!"

(Jabberwocky, Lewis Caroll)




Parts of Speech: Granularity

Grammatical sketch of Greek [Dionysius Thrax, c¢. 100 B.C.]:

— 8 tags: noun, verb, pronoun, preposition, adjective, conjunction,
participle, and article.

Brown corpus [Francis, 1979]:

— &7 tags.
Penn Treebank [Marcus et al., 1993]:

— 45 tags.

British National Corpus (BNC) [Garside et al., 1997]:

— (5 tagset: 61 tags.
— (7 tagset: 146 tags.




Penn Treebank POS Tagset

Tag  Description Example Tag Description Example
CC coordin. conjunction and, but, or SYM symbol +,%, &
CD cardinal number one, two, three TO “to” to
DT determiner a, the UH iterjection ah, oops
EX existential ‘there’ there VB  verb, base form eat
FW  foreign word mea culpa VBD verb, past tense ate
IN preposition/sub-conj of, in, by VBG verb, gerund eating
1] adjective vellow VBN verb, past participle eaten
JJR  adj., comparative bigger VBP verb, non-3sg pres  eat
AN adj., superlative wildest VBZ verb, 3sg pres eats
LS list item marker 1, 2, One WDT wh-determiner which, that
MD  modal can, should WP  wh-pronoun what, who
NN  noun, sing. or mass Illama WPS  possessive wh- whose
NNS noun, plural llamas WRB wh-adverb how, where
NNP proper noun, singular /BM $ dollar sign $
NNPS proper noun, plural  Carolinas i pound sign i
PDT predeterminer all, both - left quote “or
POS  possessive ending s 7 right quote “or”
PRP  personal pronoun I, vou, he ( left parenthesis LG <
PRP$ possessive pronoun  your, one’s ) right parenthesis 1)}, >
RB adverb quickly, never , comma ,
RBR adverb, comparative faster : sentence-final punc . ! ?
RBS adverb, superlative  fastest ; mid-sentence punc  : ;... —-
RP particle up, off
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Penn Treebank POS tags

=

» Selected from the original 87 tags of the Brown corpus:

—> lost finer distinctions between lexical categories.

1) Prepositions and subordinating conjunctions:

— after/CS spending/VBG a/AT day/NN at/IN the/AT palace/NN
— after/IN a/AT wedding/NN trip/NN to/IN Hawaii/NNP ./.

2) Infinitive to and prepositional to:
—  to/TO give/VB priority/NN to/IN teachers/NNS

3) Adverbial nouns:
—  Brown: Monday/NR, home/NR, west/NR, tomorrow/NR
—  PTB: Monday/NNP, (home, tomorrow, west)/(NN, RB)




POS Tagging = POS Disambiguation

* Words often have more than one POS tag, e.g. back:
— the back/JJ door
— on my back/NN
— win the voters back/RB
— promised to back/VB the bill

* Brown corpus statistics [DeRose, 1998]:
— 11.5% ambiguous English word types.
— 40% of all word occurrences are ambiguous.
e most are easy to disambiguate

— the tags are not equaly likely, 1.e. low tag entropy: table




POS Tag Ambiguity

87-tag Original Brown 45-tag Treebank Brown

Unambiguous (1 tag) 44,019 38,857
Ambiguous (2-7 tags) 5,490 8844
Details: 2 tags 4967 6,731
3 tags 411 1621
4 tags 91 357
5 tags 17 90
6 tags 2 (well, beat) 32

7 tags 2 (still, down) 6 (well, set, round,

open, fit, down)
8 tags 4 (s, half, back, a)

9 tags

3 (that, more, in)




POS Tagging = POS Disambiguation

 Some distinctions are difficult even for humans:

— Mrs. Shaefer never got around to joining
NNP NNP RB VBD RP TO VBG

— All we gotta do is go around the corner
DT PRP VBN VBVBZVB IN DT NN

— Chateau Petrus costs around 250
NNP NNP VBZ RB CD

» Use heuristics [Santorini, 1990]:
— | She told off/RP her friends She stepped off/IN the train
— | She told her friends off/RP *She stepped the train off/IN




How Difficult is POS Tagging?

[

e Most current tagging algorithms: ~ 96% — 97% accuracy for
Penn Treebank tagsets.
— Current SofA 97.55% tagging accuracy. How good is this?

 Bidirectional LSTM-CRF Models for Sequence Tagging [Huang,
Xu, Yu, 2015].

— Human Ceiling: how well humans do?
* human annotators: about 96% — 97% [Marcus et al., 1993].
« when allowed to discuss tags, consensus i1s 100% [Voutilainen, 95]

— Most Frequent Class Baseline:

* 90% — 91% on the 87-tag Brown tagset [Charniak et al., 1993].

* 93.69% on the 45-tag Penn Treebank, with unknown word model
[Toutanova et al., 2003].




POS Tagging Methods

e Rule Based:

— Rules are designed by human experts based on linguistic knowledge.

 Machine Learning:
— Trained on data that has been manually labeled by humans.
— Rule learning:
* Transformation Based Learning (TBL).
— Sequence tagging:
 Hidden Markov Models (HMM).
« Maximum Entropy (Logistic Regression).
« Sequential Conditional Random Fields (CRF).
* Recurrent Neural Networks (RNN):

— bidirectional, with a CRF layer (BI-LSTM-CRF).

14
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POS Tagging: Rule Based

(s

1) Start with a dictionary.
2) Assign all possible tags to words from the dictionary.

3) Write rules by hand to selectively remove tags, leaving
the correct tag for each word.




POS Tagging: Rule Based

1) Start with a dictionary:

she: PRP

promised: VBN,VBD

to TO

back: VB, JJ, RB, NN
the: DT

bill: NN, VB

... for the ~100,000 words of English.




POS Tagging: Rule Based

2) Assign every possible tag:

NN
RB
VBN JJ VB
BR P VBD O VBRE DEgs NN

She promised to back the bill




[

POS Tagging: Rule Based

3) Write rules to eliminate incorrect tags.

—  Eliminate VBN if VBD is an option when VBN|VBD follows
==5> PRIES

PRP
She

VBN
VBD

promised

NN

RB

JJ VB
TOSEVBF DTiF s NN
to back the bill




POS Tagging as Sequence Labeling

[

* Sequence Labeling:
— Tokenization and Sentence Segmentation.
— Part of Speech Tagging.
— Information Extraction
« Named Entity Recognition
— Shallow Parsing.
— Semantic Role Labeling.
— DNA Analysis.

— Music Segmentation.

* Solved using ML models for classification:

— Token-level vs. Sequence-level.

19
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Sequence Labeling

[

* Sentence Segmentation:

Mr. Burns 1s Homer Simpson’s boss. He 1s very rich.

AN L

000

e Tokenization:

Mr. Burns 1s Homer Simpson’s boss. He 1s very rich.




Sequence Labeling

e Information Extraction:
— Named Entity Recognition

QO g 1 0 @ @ OF & OO0 O

Drug giant Pfizer Inc. has reached an agreement to buy the

O O O | I I
private biotechnology firm Rinat Neuroscience Corp.




Sequence Labeling

e Information Extraction:

— Text Segmentation into topical sections.

Vine covered cottage , near Contra Costa Hills . 2 bedroom house ,

modern kitchen and dishwasher . No pets allowed . $ 1050 / month
[Haghighi & Klein, NAACL “06]




Sequence Labeling

e Information Extraction:

— segmenting classifieds into topical sections.

Vine covered cottage , near Contra Costa Hills . 2 bedroom house ,

modern kitchen and dishwasher . $ 1050 / month
[Haghighi & Klein, NAACL ‘06]
— Features
— Neighborhood
— Size

— Rent




Sequence Labeling

* Semantic Role Labeling:

— For each clause, determine the semantic role played by each noun
phrase that is an argument to the verb:

John drove Mary from Athens to Columbus in his Toyota Prius.
The hammer broke the window.

* agent
e patient
e source
 destination

e Instrument




Sequence Labeling

 DNA Analysis:

— transcription factor binding sites.
— promoters.

— Introns, exons, ...

AATGCGCTAACGTTCGATACGAGATAGCCTAAGAGTCA




Sequence Labeling

* Music Analysis:

— segmentation into “musical phrases”
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Sequence Labeling as Classification

=

1) Classifiy each token individually into one of a number of
classes:
— Token represented as a vector of features extracted from context.
— To build classification model, use general ML algorithms:
 Maximum Entropy (i.e. Logistic Regression)
e Support Vector Machines (SVMys)
* Perceptrons.
* Winnow.
« Naive Bayes, Bayesian Networks.
* Decision Trees.
» k-Nearest Neighbor, ...




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’ 916]

=

* Represent each position i in text as ¢z, h;) ={ @z, h,)}:

— t1s the potential POS tag at position i.

— h; 1s the history/context of position i.

h ={w,w,

W, W L Bl

i+1°

— @ (t, h;) 1s a vector of features ¢y(¢, h;), for k=1..K.

¢k(t’hi)={

* Repregent the

1 if suffix(w,) ="ing" & ¢= VBG

0 otherwise

“unnormalized” score of a tag ¢ as:

want wy, to be large here

score(t,h,) = WT(b(Z,hi) = Ewk(/)k (z,h,)
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A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

| Condition | Features - [
w; 1s not rare | w; = X &it; =T
w; 1s rare X is prefix of w;, | X| < 4 &t; =T
X is suffix of w;, | X| < 4 &it; =T
w; contains number &t; =T
w; contains uppercase character & t; =T
w; contains hyphen &t; =T
YV w; tic1= X &t; =T
ti—oti—1 = XY Lt;, =T
Wj—1 = X & ti =T
Wi_2 =X &ti=T
Wit1 = X &t;=T
Wipe = X &t; =T

Table 1: Features on the current history h;

Word: the stories about well-heeled communities
Tag: DT  NNS IN 33 NNS cc
Position: | 1 2 3 4 5 6

and developers

NNS
7

Table 2: Sample Data




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

\

feature templates

Table 1: Features on the current history h;

Lttty |
Word: the stories; about ! well-heeled communities and developers
Tag: DT NNS | IN JJ NNS CC  NNS
Position: |1 2 i 3 4 6 7
| FS—————
Table 2: Sample Data
rCondition | Features - I w; = about & t; = IN
wi 1s not rare | w; = X X gti =T w;_1 = stories & t; = IN
w; 18 rare X is prefix of w;, | X| <4 t; =T Wi_o = the {: = IN
X is suffix of w;, [ X[< 4 &t;=T 1'-2 — well-heeled é‘z t" — IN
w; contains number &t;=T Wit1 =W ?e ) e '
w; contains uppercase character & t; =T Wiz = communities & ¢; = IN
w; contains hyphen Lt; =T t;—1 = NNS & t; = IN
vV w; tio1 =X &t; =T ti_ot;—1 = DT NNS & t; = IN
ti_oti1 = XY &Lt; =T
wi—y =X &t; =T
Wi.2 = X & t,' =T
Wip1 = X &t; =T
Wiqp2 = X & i; = T

the non-zero features for position 3




A Maximum Entropy Model for POS Tagging
[Ratnaparkhi, EMNLP’96]
e ——————— 1
Word: the stories about ;well-heeled; communities and developers
Tag: DT  NNS IN 1 JJ | NNS CC  NNS
Position: | 1 2 3 | 4 | 6 6 7
S, | |
Table 2: Sample Data
w;..1 = about &t; =737
[ Condition | Features - | Wi-2 = Storles_ ) &t =133
w; 1s not rare | w; = X Lt;=T Wit1 = communities &ty =37
w; 1S rare X is prefix of w;, | X| < 4 &t;=T Witz = and &t =133
X is suffix of w;, |[X[< 4 &, =T ti—-1 = IN &t =733
w; contains number &t; =T t;_ot;_; = NNS IN &1; =37
w; conta.?ns Eppﬁrcase character g 1; f g preﬁx(w;):n &i;=3J
T :ji Co_nt;(ms yphen & ja : 7 preﬁx(wi)zwe & t" =JJ
' t::;ti—l —<v Tl =T prefix(w;)=wel &t; =737
Wi = X i, =T prefix(w;)=well &it; =33
wi_o=X &t; =T SllfﬁX(lU{)zd & ti =JJ
Wit1 = X L, =T suffix(w;)=ed & t; =33
suffix(w;)=1ed &t; =37
Table 1: Features on the current history h; suffix(w;)=eled &t; =133
w; contains hyphen &t;=JJ
the non-zero features for position 4 x




A Maximum Entropy Model for POS Tagging

[

 How do we learn the weights w?

— Train on manually annotated data (supervised learning).

 What does 1t mean “train w on annotated corpus”?
— Probabilistic Discriminative Models:
e Maximum Entropy (Logistic Regression).[Ratnaparkhi, EMNLP’96]

— Distribution Free Methods:
* (Average) Perceptrons. [Collins, ACL 2002]

* Support Vector Machines (SVMs).




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’ 916]

[

* Probabilistic Discriminative Model:
—need to transform score(t, ;) into probability p(z |A;).

exp(w' ¢(t,h.))
> exp(w'g@', 1)
* Training using:
— Maximum Likelihood (ML).
— Maximum A Posteriori (MAP) with a Gaussian prior on w.

p(tlh)=

 Inference (1.e. Testing):

t. =argmax p(t, | h) = argmax exp(w' ¢(t,,h.)) =argmax w' ¢(t,,h,)

t,el t,eT t,eT




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

 Inference, need to do Forward traversal of input sequence:

[Animation by Ray Mooney, UT Austin] .

John saw the saw and decided to take it to the table.

L/

class1ﬁer

NNP




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

 Inference, need to do Forward traversal of input sequence:
[Animation by Ray Mooney, UT Austin]

saw the saw and decided to take 1t to the table.

#

class1ﬁer

VBD




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

 Inference, need to do Forward traversal of input sequence:

[Animation by Ray Mooney, UT Austin]
NNP VBD

Johi\ saWy the saw and decided to take it to the table.

L/

classifier

l

DT




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

 Inference, need to do Forward traversal of input sequence:

[Animation by Ray Mooney, UT Austin]
NNP VBD DT

John sawx th saw and decided to take it to the table.

L/

013351ﬁer




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

 Inference, need to do Forward traversal of input sequence:

[ Animation by Ray Mooney, UT Austin]
NNP VBD DT NN

John saw ths sa and decided to take it to the table.

94

cla331ﬁer

CC




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

 Inference, need to do Forward traversal of input sequence:

[Animation by Ray Mooney, UT Austin]
NNP VBD DT NN CC

John saw the sawN\and \decided to take it to the table.

§ [

classifier

l

VBD




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

 Inference, need to do Forward traversal of input sequence:

Ammatlon Ray Mooney, UT Austin]
NNP VBD DT NN C BD

John saw the saw an 3\ o take it to the table.

cla351ﬁer

TO




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

 Inference, need to do Forward traversal of input sequence:

[Animation by Ray Mooney, UT Austin]

NNP VBD DT NN CC VBD TO
John saw the saw and decided t ta\:e /it to the table.

classifier

VB




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

 Inference, need to do Forward traversal of input sequence:

[Animation b Ray Moon , UT Austin]
NNP VBD DT NN CE V

John saw the saw and demded to ta to the table.

clas51ﬁer

PRP




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

 Inference, need to do Forward traversal of input sequence:

Ammatlon Ray Moone UT Austm
NNP VBD DT NN CC BD TO
John saw the saw and decided to tak f /16 table.

clas51ﬁer




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

 Inference, need to do Forward traversal of input sequence:

[Animation by Ray Moon , UT Austin]
NNP VBD DT NN CC VBD

B PRP I
John saw the saw and demded to take 1tw tll jable

clas51ﬁer

DT




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’9I6]

 Inference, need to do Forward traversal of input sequence:

[Animation by Ray Moon , UT Austin]
NNP VBD DTNN CC VBD TO VB PRP 1

John saw the saw and demded to take it to e \ta le

la351ﬁer




A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP’ 916]

» Inference, need to do Forward traversal of input sequence:

[Animation by Ray Mooney, UT Austin]

John saw the saw and decided to take 1t to LRTby/

classifier

l

NN
* Some POS tags would be easier to disambiguate backward,

what can we do?

— Use backward traversal, with backward features ... but lose

forward info.
46




Sequence Labeling as Classification

=

1) Classifiy each token individually into one of a number of
classes.

2) Classify all tokens jointly into one of a number of classes:

N

t..t, =argmax A @(t,,....t, , Wy,..., W, )

n
ok

— Hidden Markov Models.

—  Conditional Random Fields.

—  Structural SVMs.

—  Discriminatively Trained HMMs [Collins, EMNLP’02].
—  Bi-directional RNNs / LSTM-CRFs.




Hidden Markov Models

[

Probabilistic Generative Models:

t,..t, =argmax p(t,,...,t, | W, W

n
L

)

=argmax p(W,,...,w, | t,...,t ) p(¢,....¢,)

tl 9e ..,tn [}

/

Use state emission probs

BN

Use state transition probs




Hidden Markov Models: Assumptions

[

1) A word event depends only on 1ts POS tag:

PW, e s W [ 850t = Hp(w,. £)
i=1

2) A tag event depends only on the previous tag:

plg el o)
=

— POS tagging is ¢,...f, = arg maXHp(W,- [2)p(2; |t )

tl ,...,tn i=1




Interlude

Tales of HMMs




Structured Data

« For many applications, the 1.1.d. assumption does not hold:
— pixels in images of real objects.
— hyperlinked web pages.
— cross-citations in scientific papers.
— entities in social networks.
— sequences of words/letters in text.
— successive time frames in speech.
— sequences of base pair in DNA.
— musical notes in a tonal melody.

— daily values of a particular stock.




Structured Data

« For many applications, the 1.1.d. assumption does not hold:
— pixels in images of real objects.
— hyperlinked web pages.
— cross-citations in scientific papers.
— entities in social networks.
— sequences of words/letters in text. T
— successive time frames in speech.

— sequences of base pair in DNA. — | Sequential Data
— musical notes in a tonal melody.

— daily values of a particular stock. _|




Probabilistic Graphical Models

=

 PGMs use a graph for compactly:

1. Encoding a complex distribution over a multi-dimensional space.

2. Representing a set of independencies that hold in the distribution.

— Properties 1 and 2 are. in a “deep sense’’, equivalent.
9 9

e Probabilistic Graphical Models:

—  Directed:
* 1.e. Bayesian Networks i.e. Belief Networks.

—  Undirected:
e 1.e. Markov Random Fields




Probabilistic Graphical Models

e Directed PGMs:

—  Bayesian Networks:
Dynamic Bayesian Networks:
—  State Observation Models:
»  Hidden Markov Models.

»  Linear Dynamical Systems (Kalman filters).

* Undirected PGMs:
—  Markov Random Fields (MRF).
*  Conditional Random Fields (CRF).
—  Sequential CRFs.




Bayesian Networks

=

* A Bayesian Network structure G 1s a directed acyclic
graph whose nodes X, X,, ..., X, represent random
variables and edges correspond to “direct influences™
between nodes:

— Let Pa(X,) denote the parents of X, in G;

— Let NonDescend(X;) denote the variables in the graph that are not
descendants of X..

— Then G encodes the following set of conditional independence
assumptions, called the local independencies:

For each X; 1n G: X; LNonDescend(X,) | Pa(X)




Bayesian Networks

1. Because X; LNonDescend(X;) | Pa(X,), 1t follows that:
P(X,,X,,..X,) =] | P(X; 1 Pa(X))
i=l1

2. More generally, d-separzition:

1. Two sets of nodes X and Y are conditionally independent given a
setofnodesE(X LY |E)if X and Y are d-separated by E.

(2)

3)

Figure 154  Three ways in which a path from X to ¥ can be blocked, given the evidence E. If
every path from X to ¥ is blocked. then we say that E d-separates X and Y.

56
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Sequential Data

[

Q: How can we model sequential data?

1) Ignore sequential aspects and treat the observations as
e d.

® © 6 6 e

2) Relax the 1.1.d. assumption by using a Markov model.




Markov Models

(s

e X=x,,...,xp1s a sequence of random variables.

- S={sq, ..., Sy} 1s a state space, 1.€. x, takes values from S.

1) Limited Horizon:

P(x,,, =58, |%,...x)=P(x,,=5,|x,)

2) Stationarity:

P(x,,=s,|x)=P(x,=s5,]x)

— X 1s said to be a Markov chain.




Markov Models: Parameters

e S={sy, ..., sy} are the visible states.

e [II= {m;} are the initial state probabilities.
T, = P(x, =s,)

* A ={ay;} are the state transition probabilities.
a, = P(x

Ml S ; | x, =35;)

1@ ‘@@ ‘DL D




Markov Models as DBNs

» A Markov Model 1s a Dynamic Bayesian Network:

1. By =1II1s the initial distribution over states.
‘H_.@

1. B_, = A4 is the 2-time-slice Bayesian Network (2-TBN).

— The unrolled DBN (Markov model) over T time steps:

TG e A G A




Markov Models: Inference

QIL@AA@

p(X) = p(x,..0 X))

» Exercise: compute p(t,a,p)




m'™ Order Markov Models

e First order Markov model:

PO = [T P 5)
e Second order Markov model:

PO = ()G | )T T PG 305
e m™ order Markov model:

il
p(X) = p(x)p(x, | x)..p(x, |xm—1a-~-ax1)HP(xz+1 3%, X,
t=m




Markov Models

e (Visible) Markov Models: |
— Developed by Andrei A. Markov [Markov, 1913]

* modeling the letter sequences in Pushkin’s “Eugene Onyegin”.

» Hidden Markov Models:

— The states are hidden (latent) variables.

— The states probabilistically generate surface events, or observations.

— Efficient training using Expectation Maximization (EM)
e Maximum Likelihood (ML) when tagged data is available.
— Efficient inference using the Viterbi algorithm.




Hidden Markov Models (HMMs)

[

« Probabilistic directed graphical models:

— Hidden states (shown in ).
— Visible observations (shown in ).

— Arrows model probabilistic (in)dependencies.

Q " @ e @




HMMs: Parameters

ﬁ

S={sy, ..., sy} 1s the set of states.
K=1{k, ..., ky =11, ..., M} 1s the observations alphabet.

e X=x,...,xp1s a sequence of states.

e O=o04, ...,071s a sequence of observations.




HMMs: Parameters

@4 A AG) AGH 4.
B B

o II={m},ies, are the initial state probabilities.

* A={ay} },ij€S, are the state transition probabilities.

« B={b;},ieS, keK, are the symbol emision probabilities.
b, =Plo,=k|x, =s,)




Hidden Markov Models as DBNs

[

e A Hidden Markov Model 1s a Dynamic Bayesian Network:

1. By =1II1s the initial distribution over states.
ﬁ_.@

1. B_, = A4 is the 2-time-slice Bayesian Network (2-TBN).

— The unrolled DBN (Markov model) over T time steps (prev. slide).




HMMs: Inference and Training

[

e Three fundamental questions:
1) Given a model 1= (A4, B, IT), compute the probability of a given
observation sequence i.e. p(O|w) (Forward-Backward).

2) Given a model x and an observation sequence O, compute the

most likely hidden state sequence (Viterbi).

lay

X =argmax P(X |O, u)
i
3) Given an observation sequence O, find the model = (4, B, I1)
that best explains the observed data (£M).

«  (Given observation and state sequence O, X find u (ML).




HMMs: Decoding

1) Given a model 1= (A4, B, I1), compute the probability of a
given observation sequence O =0y, ..., o7 1.€. p(O|u)




HMMs: Decoding

P(O|X,u)=b. b ..b

X101~ Xp0, """ XpOr




HMMs: Decoding

(o) (001
PO|X,u)=b_b_ .b

X101 X0, X7Or

PX|\u)=m_a__a_...a

X XXy o XpXg X7 X7




HMMs: Decoding

(o) (001
P(O\|X,1)=b, b, b

X7Or

=

PR (=" % af ¥.q

Xy XXy XXy ® X1 Xt

PO, X |n)=PO| X, )P(X | 1)




HMMs: Decoding

P(O| X,u)=b, b, .b

X7Or

PR (=" % af ¥.q

Xy XXy XXy ® X1 Xt

PO, X | )= P(O| X, t)P(X | 1)

PO| )=y P(O| X, 1)P(X | 1)

73
.




HMMs: Decoding

pO|p)= > r.b Ha By

{xX]...x7}

Time complexity?




HMMs: Forward Procedure

@ — @

 Detine:

(1) = P(0,..0,x, =i | 1)

e Then solution is:

p(OIﬂ)=Z%(T)




HMMs: Decoding

o, (t+1)| = P(0,...0,,1,%,,; = J)
= P(Ol...OtJr1 |Xt+1 = j)P(xtH o ])
~ P(Ol“'ot |xt+1 b j)P(OHl |xt+1 & j)P(le G ])

=~ P(Ol"'o X - j)P(OtH |xt+1 3 ])

2 Vt+1




HMMs: Decoding

a,;(t+1) = P(o,...0,45%,,; = J)
= P(0,...0,., | x,, = J)P(x,,, =)
w~ P(Ol“'ot | xt+1 = j)P(OHl | xt+1 & j)P(le = ])

=~ P(Ol"'o X - j)P(OtH |xt+1 3 ])

2 Vt+1




HMMs: Decoding

a,;(t+1) = P(o,...0,45%,,; = J)
3 P(OI“'OrH |'xr+l = j)P(xr+l = ])
— P(Ol"'ot |xt+1 — j)P(OtH |xt+1 = j)P(le = ])

=~ P(Ol"'o X - j)P(OtH |xt+1 3 ])

2 Vt+1




HMMs: Decoding

a,(t )= Blo;...0, %, ., = )

=Plogho: BExt = P F=Y)

= P(o,...0, | x,,, = )P0, | x,,, = J)P(x,,; = J)
= P(o,...0,,x,,, = j)P(o,, | x,,, = J)

2 Vt+1




HMMs: Decoding

aj(t_l_l) = ZP(OI 0 .Xf _lﬂxt+1 j)P(0t+l|xt+1:j)

= ZP(OI"'Ot7xt =)P(x,,,=Jj|x,=0)P(o, | X =J)

i=l1..N

2 Za(t)aU JO141

i=1..N
80




HMMs: Decoding

aj(t_l_l) EF ZP(OI 0, X, =5,%,, = )P0, | X, = J)

= ZP(ol...ot,xt =DP(x,,=j|x, =i)P(o,, |x. =])

i=l.N

2 Za(t)aU JO141

i=1..N

81
—




HMMs: Decoding

aj(t_l_l) EF ZP(OI 0, X, =5,%,, = )P0, | X, = J)

= ZP(OI"'Ot7xt =)P(x,,,=Jj|x,=0)P(o, | X =J)

i=l1..N

- Za(t)al] JOi41

=1..N

82
—




The Forward Procedure

1. Initialization

a(D)=xb , 1<i<N

0’
2. Recursion:

a,t+)= Y a@ab, , 1<jSNI<t<T

i=1..N

3. Termination:

p(OIu)=Za,-(T)




The Forward Procedure: Trellis Computation

'S,] - — .‘.. ........................ ..‘;O

1

1

l .
'.az]b

State 3

Jot+1
os3(?) /i “\ o1
‘la3jbjot+l J

SN




HMMs: Backward Procedure

e /9

 Detine:
B.(t)=P(o,,,...0r | x, =1, 1)

e Then solution is:

p(O|p) = Zmﬁxn




The Backward Procedure

1. Initialization

B(T)=1, 1<i<N

2. Recursion:

B®)= D ab, B+, 1<i<NI<t<T

j=1..N

3. Termination:

pO| )= zhb, A1)




HMMs: Decoding

N

 Forward Procedure: p(O|u)= Zal.(T)
=

N
* Backward Procedure: p(O|u)= Zﬂ'ibiol Bi(1)

i=l1

* Combination: p(O| y)ziai(t)ﬁi(t)




HMMs: Inference and Training

e Three fundamental questions:
1) Given a model 1= (4, B, IT), compute the probability of a given
observation sequence i.e. p(O|w) (Forward-Backward).

2) Given a model x and an observation sequence O, compute the

most likely hidden state sequence (Viterbi).

lay

X =arg max P(X |0, u)
3) Given an observation sequence O, find the model = (4, B, I1)
that best explains the observed data (£M).

«  (Given observation and state sequence O, X find u (ML).




Best State Sequence with Viterb1 Algorithm

4

X =argmax p(X | O, )

~ arg max p(X,0| 1) Time complexity?

=arg max p(X,,...,X;,0,,...,0 | 1)

X e s XT




The Viterb1 Algorithm

N

X =argmax p(x,,...,X;,0,,....,0; | 1)

X] ye e s X

p(X)= ){naf P(Xy5e s X7, 015,07 | 1)
* The probability of the most probable path that leads to x,= j:

0,(t)= max p(x,..x, ,0,...0,_ |, X, = j,0,)
p(X)=maxd,(T)

1<7<N
A 90




The Viterb1 Algorithm

* The probability of the most probable path that leads to x,=j:

5(0 maXp(xl X, 1,0,...0,_, X, = J,0,)

Xy

* [t can be shown that: Compare with:

O.(t+1)= max5 (t)a.b a,(t+1)= Za (Da,b,,

91




The Viterb1 Algorithm: Trellis Computation

'S,] - = ;.-‘ ....................... ..‘;O
S _~ max

7’

4

CERRI S i":‘b ;;R
33(7) A 8(t+1
BT 3/ Jot+1

State 3

SN

1 2 3 1T +1
Time, t

92




The Viterb1 Algorithm

Initialization
o,()=7,b,
l//j (1) =0

Recursion

0,(t+1) =maxo,(t)a,;b

1< <N l.] .]Ol‘+1

vilee ) sremax e, . .
i in S Time complexity?

p(X) maxo,(T)

I<j<N

x, =argmax o,(T)

I<j<N
State sequence backtracking

)%t = l//t+1 (')?:Hl)




HMMs: Inference and Training

e Three fundamental questions:

1) Given a model 1= (4, B, IT), compute the probability of a given

observation sequence i.e. p(O|w) (Forward-Backward).

2) Given a model x and an observation sequence O, compute the

most likely hidden state sequence (Viterbi).

3) Given an observation sequence O, find the model u = (4, B, IT)

that best explains the observed data (£M).

Given observation and state sequence O, X find u (ML).




Parameter Estimation with Maximum
[.ikelihood

C—

* Given observation and state sequences O, X find 1 =(A,B.II).
p=argmax p(O0, X | 1)
Y7,

aij:p(xt+1:Sj|‘xt:Si) bik:p(0t2k|xt:Si)
. C(x ,=s5,,x=5,) ~ C(o,=k,x, =5,)

d; = ! : bik — :
! C(x, =s,) C(x, =s;)

_ Exercise:
C(x, =s,) xercise |
Rewrite to use Laplace smoothing.

ﬂi:p(xlzsi) 72-1' ‘X‘




Parameter Estimation with Expectation
Maximization

Given observation sequences O find u =(A,B,I1).
fl=arg max p(O | 1)

e There 1s no known analytic method to find solution.

Locally maximize p(O|u) using iterative hill-climbing:
— the Baum-Welch or Forward-Backward algorithm:

— Given a model 1 and observation sequence, update the model
parameters to £ to better fit the observations.

— A special case of the Expectation Maximization method.




The Baum-Welch Algorithm (EM)

[E] Assume u1s known, compute “hidden” parameters &, y:

1) | &(i,j) = the probability of being in state s; at time ¢ and
state s; at time #+1.

0:1.(1‘)al.‘].bj0t+1 p,(t+1)
>.a,(0p,1)

m=1...N

&1, ]) =

T-1
Z &, (i, j) = expected number of transitions from s; to s
t=1

2) | y(i) = the probability of being in state s; at time .

¥ o (t)Bi(t)
(1) = (1, ])=
7:(t) ,125( J) S a5

r-1 m=1..N
Z 7,(i) = expected number of transitions from s,
t=1

97
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The Baum-Welch Algorithm

=

[M] Re-estimate  using expectations of &, y:

- 7=y, ()
T . .
A thl é:t(la ])
. a4y = "r
H - V()
b, = PImAY
ik T
L V(D)

» Baum has proven that | p(O| i1) =2 p(O | 1)




The Baum-Welch Algorithm

Start with some (random) model 1= (A,B.I).

[E step] Compute (i, j), 7(i) and their expectations.

[M step] Compute ML estimate f; .

Set 11 = 1 and repeat from 2. until convergence.




HMMs

Three fundamental questions:
1) Given a model 1= (4, B, IT), compute the probability of a given
observation sequence i.e. p(O|w) (Forward/Backward).

2) Given a model £ and an observation sequence O, compute the

most likely hidden state sequence (Viterbi).

3) Given an observation sequence O, find the model u = (4, B, IT)
that best explains the observed data (Baum-Welch, or EM).

«  (Given observation and state sequence O, X find u (ML).

100




Supplemental Reading

e Section 7.1, 7.2, 7.3, and 7.4 from Eisenstein.

* Chapter 8 in Jurafsky & Martin:

— https://web.stanford.edu/~jurafsky/slp3/8.pdf
* Appendix A in Jurafsky & Martin:

— https://web.stanford.edu/~jurafsky/slp3/A.pdf
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POS Disambiguation: Context

“Here's a movie where you forgive the preposterous because

it takes you to the perplexing.”
[Source Code, by Roger Ebert, March 31, 2011]

“The good, the bad, and the ugly”

“The young and the restless”

“The bold and the beautiful”
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