CS 6840: Natural Language Processing

Sequence Tagging with HMMs: Part of Speech Tagging

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Part of Speech (POS) Tagging

- Annotate each word in a sentence with its POS:
- noun, verb, adjective, adverb, pronoun, preposition, interjection, ...

NN

RB

PRP	VBD	TO	VB	DT
She	promised to back	the	bill	

Parts of Speech

- Lexical categories that are defined based on:
- Syntactic function:
- nouns can occur with determiners: a goat.
- nouns can take possessives: IBM's annual revenue.
- most nouns can occur in the plural: goats.
- Morphological function:
- many verbs can be composed with the prefix "un".
- There are tendencies toward semantic coherence:
- nouns often refer to "people, places, or things".
- adjectives often refer to properties.

POS: Closed Class vs. Open Class

- Closed Class:
- relatively fixed membership.
- usually function words:
- short common words which have a structuring role in grammar.
- Prepositions: of, in, by, on, under, over, ...
- Auxiliaries: may, can, will had, been, should, ...
- Pronouns: I, you, she, mine, his, them, ...
- Determiners: a, an, the, which, that, ...
- Conjunctions: and, but, or (coord.), as, if, when, (subord.), ...
- Particles: up, down, on, off, ...
- Numerals: one, two, three, third, ...

POS: Open Class vs. Closed Class

- Open Class:

- new members are continually added.
- to fax, to google, futon, ...
- English has 4: Nouns, Verbs, Adjectives, Adverbs.
- Many languages have these 4, but not all (e.g. Korean).
- Nouns: people, places, or things
- Verbs: actions and processes
- Adjectives: properties or qualities
- Adverlbs: a hodge-podge
- Unfortunately, John walked home extremely slowly yesterday.
- directional, locative, temporal, degree, manner, ...

POS: Open vs. Closed Classes

- Open Class: new members are continually added.

1. Annie: Do you love me?

Alvy: Love is too weak a word for what I feel... I lurve you. Y'know, I loove you, I, I luff you. There are two f's. I have to invent... Of course I love you. (Annie Hall)
2. 'Twas brillig, and the slithy toves Did gyre and gimble in the wabe; All mimsy were the borogoves, And the mome raths outgrabe.
"Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun The frumious Bandersnatch!"
(Jabberwocky, Lewis Caroll)

Parts of Speech: Granularity

- Grammatical sketch of Greek [Dionysius Thrax, c. 100 B.C.]:
- 8 tags: noun, verb, pronoun, preposition, adjective, conjunction, participle, and article.
- Brown corpus [Francis, 1979]:
- 87 tags.
- Penn Treebank [Marcus et al., 1993]:
- 45 tags.
- British National Corpus (BNC) [Garside et al., 1997]:
- C5 tagset: 61 tags.
- C7 tagset: 146 tags.

Penn Treebank POS Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3 sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	\#	pound sign	\#
PDT	predeterminer	all, both	"	left quote	' or "
POS	possessive ending	's	"	right quote	, or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, \{, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), \}, >
RB	adverb	quickly, never		comma	
RBR	adverb, comparative	faster		sentence-final punc	! ?
RBS	adverb, superlative	fastest	.	mid-sentence punc	; ... -
RP	particle	up, off			

Penn Treebank POS tags

- Selected from the original 87 tags of the Brown corpus:
\Rightarrow lost finer distinctions between lexical categories.

1) Prepositions and subordinating conjunctions:

- after/CS spending/VBG a/AT day/NN at/IN the/AT palace/NN
- after/IN a/AT wedding/NN trip/NN to/IN Hawaii/NNP ./.

2) Infinitive to and prepositional to:

- to/TO give/VB priority/NN to/IN teachers/NNS

3) Adverbial nouns:

- Brown: Monday/NR, home/NR, west/NR, tomorrow/NR
- PTB: Monday/NNP, (home, tomorrow, west)/(NN, RB)

POS Tagging \equiv POS Disambiguation

- Words often have more than one POS tag, e.g. back:
- the back/JJ door
- on my back/NN
- win the voters back/RB
- promised to back/VB the bill
- Brown corpus statistics [DeRose, 1998]:
- 11.5\% ambiguous English word types.
- 40% of all word occurrences are ambiguous.
- most are easy to disambiguate
- the tags are not equaly likely, i.e. low tag entropy: table

POS Tag Ambiguity

87-tag Original Brown
45-tag Treebank Brown

Unambiguous (1 tag)	$\mathbf{4 4 , 0 1 9}$	$\mathbf{3 8 , 8 5 7}$	
Ambiguous (2-7 tags)	$\mathbf{5 , 4 9 0}$	$\mathbf{8 8 4 4}$	
Details: 2 tags	4,967	6,731	
	3 tags	411	1621
4 tags	91	357	
5 tags	17	90	
6 tags	2 (well, beat)	32	
7 tags	2 (still, down)	6 (well, set, round,	
		open, fit, down)	
8 tags		4 ('s, half, back, a)	
9 tags		3 (that, more, in)	

POS Tagging \equiv POS Disambiguation

- Some distinctions are difficult even for humans:
- Mrs. Shaefer never got around to joining NNP NNP RB VBD RP TO VBG
- All we gotta do is go around the corner DT PRP VBN VB VBZ VB IN DT NN
- Chateau Petrus costs around 250 NNP NNP VBZ RB CD
- Use heuristics [Santorini, 1990]:
- She told off/RP her friends
- She told her friends off/RP

She stepped off/IN the train
*She stepped the train $\mathbf{o f f} / \mathbf{I N}$

How Difficult is POS Tagging?

- Most current tagging algorithms: $\sim 96 \%-97 \%$ accuracy for Penn Treebank tagsets.
- Current SofA 97.55\% tagging accuracy. How good is this?
- Bidirectional LSTM-CRF Models for Sequence Tagging [Huang, Xu, Yu, 2015].
- Human Ceiling: how well humans do?
- human annotators: about $96 \%-97 \%$ [Marcus et al., 1993].
- when allowed to discuss tags, consensus is 100% [Voutilainen, 95]
- Most Frequent Class Baseline:
- $90 \%-91 \%$ on the $87-\operatorname{tag}$ Brown tagset [Charniak et al., 1993].
- 93.69% on the $45-$ tag Penn Treebank, with unknown word model [Toutanova et al., 2003].

POS Tagging Methods

- Rule Based:
- Rules are designed by human experts based on linguistic knowledge.
- Machine Learning:
- Trained on data that has been manually labeled by humans.
- Rule learning:
- Transformation Based Learning (TBL).
- Sequence tagging:
- Hidden Markov Models (HMM).
- Maximum Entropy (Logistic Regression).
- Sequential Conditional Random Fields (CRF).
- Recurrent Neural Networks (RNN):
- bidirectional, with a CRF layer (BI-LSTM-CRF).

POS Tagging: Rule Based

1) Start with a dictionary.
2) Assign all possible tags to words from the dictionary.
3) Write rules by hand to selectively remove tags, leaving the correct tag for each word.

POS Tagging: Rule Based

1) Start with a dictionary:

she:	PRP
promised:	VBN,VBD
to	TO
back:	VB, JJ, RB, NN
the:	DT
bill:	NN, VB

... for the $\sim 100,000$ words of English.

POS Tagging: Rule Based

2) Assign every possible tag:

	NN			
	RB			
	VBN	JJ		VB
PRP	VBD	TO VB	DT	NN
She	promised to	back	the	bill

POS Tagging: Rule Based

3) Write rules to eliminate incorrect tags.

- Eliminate VBN if VBD is an option when VBN|VBD follows " $<$ S $>$ PRP"

NN
RB

	VBN	JJ		VB	
PRP	VBD	TO	VB	DT	NN
She	promised	to	back	the	bill

POS Tagging as Sequence Labeling

- Sequence Labeling:
- Tokenization and Sentence Segmentation.
- Part of Speech Tagging.
- Information Extraction
- Named Entity Recognition
- Shallow Parsing.
- Semantic Role Labeling.
- DNA Analysis.
- Music Segmentation.
- Solved using ML models for classification:
- Token-level vs. Sequence-level.

Sequence Labeling

- Sentence Segmentation:

- Tokenization:

Mr. Burns is Homer Simpson's boss. He is very rich.

Sequence Labeling

- Information Extraction:
- Named Entity Recognition

Sequence Labeling

- Information Extraction:
- Text Segmentation into topical sections.

Vine covered cottage, near Contra Costa Hills . 2 bedroom house,
modern kitchen and dishwasher . No pets allowed . \$ 1050 / month
[Haghighi \& Klein, NAACL ‘06]

Sequence Labeling

- Information Extraction:

- segmenting classifieds into topical sections.

Vine covered cottage, near Contra Costa Hills . 2 bedroom house, modern kitchen and dishwasher . No pets allowed. \$ $1050 /$ month [Haghighi \& Klein, NAACL ‘06]

- Features
- Neighborhood
- Size
- Restrictions
- Rent

Sequence Labeling

- Semantic Role Labeling:
- For each clause, determine the semantic role played by each noun phrase that is an argument to the verb:

John drove Mary from Athens to Columbus in his Toyota Prius. The hammer broke the window.

- agent
- patient
- source
- destination
- instrument

Sequence Labeling

- DNA Analysis:
- transcription factor binding sites.
- promoters.
- introns, exons, ...

AATGCGCTAACGTTCGATACGAGATAGCCTAAGAGTCA

Sequence Labeling

- Music Analysis:
- segmentation into "musical phrases"

[Romeo \& Juliet, Nino Rota]

Sequence Labeling as Classification

1) Classifiy each token individually into one of a number of classes:

- Token represented as a vector of features extracted from context.
- To build classification model, use general ML algorithms:
- Maximum Entropy (i.e. Logistic Regression)
- Support Vector Machines (SVMs)
- Perceptrons.
- Winnow.
- Naïve Bayes, Bayesian Networks.
- Decision Trees.
- k-Nearest Neighbor, ...

A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP'96]

- Represent each position i in text as $\varphi\left(t, h_{i}\right)=\left\{\varphi_{k}\left(t, h_{i}\right)\right\}$:
- t is the potential POS tag at position i.
- h_{i} is the history/context of position i.

$$
h_{i}=\left\{w_{i}, w_{i+1}, w_{i+2}, w_{i-1}, w_{i-2}, t_{i-1}, t_{i-2}\right\}
$$

- $\varphi\left(t, h_{i}\right)$ is a vector of features $\varphi_{k}\left(t, h_{i}\right)$, for $k=1 . . \mathrm{K}$.
- Represent the "unnormalized" score of a tag t as:

$$
\operatorname{score}\left(t, h_{i}\right)=\mathrm{w}^{\mathrm{T}} \phi\left(t, h_{i}\right)=\sum_{k=1}^{K} w_{k} \phi_{k}\left(t, h_{i}\right)
$$

A Maximum Entropy Model for POS Tagging

Condition		Features
w_{i} is not rare	$w_{i}=X$	$\& t_{i}=T$
	X is prefix of $w_{i},\|X\| \leq 4$	$\& t_{i}=T$
	X is suffix of $w_{i},\|X\| \leq 4$	$\& t_{i}=T$
	w_{i} contains number	$\& t_{i}=T$
	w_{i} contains uppercase character	$\& t_{i}=T$
	w_{i} contains hyphen	$\& t_{i}=T$
a	$t_{i-1}=X$	$\& t_{i}=T$
	$t_{i-2} t_{i-1}=X Y$	$\& t_{i}=T$
	$w_{i-1}=X$	$\& t_{i}=T$
	$w_{i-2}=X$	$\& t_{i}=T$
	$w_{i+1}=X$	$\& t_{i}=T$
	$w_{i+2}=X$	$\& t_{i}=T$

Table 1: Features on the current history h_{i}

Word:	the	stories	about	well-heeled	communities	and	developers
Tag:	DT	NNS	IN	JJ	NNS	CC	NNS
Position:	1	2	3	4	5	6	7

Table 2: Sample Data

A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP'96]

Word:	the	stories	about	well-heeled	communities	and	developers
Tag:	DT	NNS	IN	JJ	NNS	CC	NNS
Position:	1	2	3	4	5	6	7

Table 2: Sample Data

Condition	Features	
w_{i} is not rare	$w_{i}=X$	$\& t_{i}=T$
	X is prefix of $w_{i},\|X\| \leq 4$	$\& t_{i}=T$
	X is suffix of $w_{i},\|X\| \leq 4$	$\& t_{i}=T$
	w_{i} contains number	$\& t_{i}=T$
	w_{i} contains uppercase character	$\& t_{i}=T$
	w_{i} contains hyphen	$\& t_{i}=T$
	$t_{i-1}=X$	$\& t_{i}=T$
	$t_{i-2} t_{i-1}=X Y$	$\& t_{i}=T$
	$w_{i-1}=X$	$\& t_{i}=T$
	$w_{i-2}=X$	$\& t_{i}=T$
	$w_{i+1}=X$	$\& t_{i}=T$
	$w_{i+2}=X$	$\& t_{i}=T$

$w_{i}=$ about	$\& t_{i}=$ IN
$w_{i-1}=$ stories	$\& t_{i}=$ IN
$w_{i-2}=$ the	$\& t_{i}=$ IN
$w_{i+1}=$ well-heeled	$\& t_{i}=$ IN
$w_{i+2}=$ communities	$\& t_{i}=$ IN
$t_{i-1}=$ NNS	$\& t_{i}=$ IN
$t_{i-2} t_{i-1}=$ DT NNS	$\& t_{i}=$ IN

Table 1: Features on the current history h_{i}
the non-zero features for position 3

A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP'96]

Word:	the	stories	about	well-heeled	communities	and	developers
Tag:	DT	NNS	IN	JJ	NNS	CC	NNS
Position:	1	2	3	4	6	7	

Table 2: Sample Data

Condition	Features	
w_{i} is not rare	$w_{i}=X$	$\& t_{i}=T$
w_{i} is rare	X is prefix of $w_{i},\|X\| \leq 4$	$\& t_{i}=T$
	X is suffix of $w_{i},\|X\| \leq 4$	$\& t_{i}=T$
	w_{i} contains number	$\& t_{i}=T$
	w_{i} contains uppercase character	$\& t_{i}=T$
	w_{i} contains hyphen	$\& t_{i}=T$
$\forall w_{i}$	$t_{i-1}=X$	$\& t_{i}=T$
	$t_{i-2} t_{i-1}=X Y$	$\& t_{i}=T$
	$w_{i-1}=X$	$\& t_{i}=T$
	$w_{i-2}=X$	$\& t_{i}=T$
	$w_{i+1}=X$	$\& t_{i}=T$
	$w_{i+2}=X$	$\& t_{i}=T$

Table 1: Features on the current history h_{i}

$w_{i-1}=$ about	$\& t_{i}=\mathrm{JJ}$
$w_{i-2}=$ stories	$\& t_{i}=\mathrm{JJ}$
$w_{i+1}=$ communities	$\& t_{i}=\mathrm{JJ}$
$w_{i+2}=$ and	$\& t_{i}=\mathrm{JJ}$
$t_{i-1}=\mathrm{IN}$	$\& t_{i}=\mathrm{JJ}$
$t_{i-2} t_{i-1}=\mathrm{NNS}$ IN	$\& t_{i}=\mathrm{JJ}$
$\operatorname{prefix}\left(w_{i}\right)=\mathrm{w}$	$\& t_{i}=\mathrm{JJ}$
$\operatorname{prefix}\left(w_{i}\right)=$ we	$\& t_{i}=\mathrm{JJ}$
$\operatorname{prefix}\left(w_{i}\right)=$ wel	$\& t_{i}=\mathrm{JJ}$
$\operatorname{prefix}\left(w_{i}\right)=$ well	$\& t_{i}=\mathrm{JJ}$
$\operatorname{suffix}\left(w_{i}\right)=\mathrm{d}$	$\& t_{i}=\mathrm{JJ}$
$\operatorname{suffix}\left(w_{i}\right)=\mathrm{ed}$	$\& t_{i}=\mathrm{JJ}$
$\operatorname{suffix}\left(w_{i}\right)=l e d$	$\& t_{i}=\mathrm{JJ}$
$\operatorname{suffix}\left(w_{i}\right)=$ eled	$\& t_{i}=\mathrm{JJ}$
$w_{i} \operatorname{contains~hyphen~}$	$\& t_{i}=\mathrm{JJ}$

the non-zero features for position 4

A Maximum Entropy Model for POS Tagging

- How do we learn the weights \mathbf{w} ?
- Train on manually annotated data (supervised learning).
- What does it mean "train \mathbf{w} on annotated corpus"?
- Probabilistic Discriminative Models:
- Maximum Entropy (Logistic Regression).[Ratnaparkhi, EMNLP'96]
- Distribution Free Methods:
- (Average) Perceptrons. [Collins, ACL 2002]
- Support Vector Machines (SVMs).

A Maximum Entropy Model for POS Tagging

- Probabilistic Discriminative Model:
\Rightarrow need to transform $\operatorname{score}\left(t, h_{i}\right)$ into probability $p\left(t \mid h_{i}\right)$.

$$
p\left(t \mid h_{i}\right)=\frac{\exp \left(\mathrm{w}^{\mathrm{T}} \phi\left(t, h_{i}\right)\right)}{\sum_{t^{\prime}} \exp \left(\mathrm{w}^{\mathrm{T}} \phi\left(t^{\prime}, h_{i}\right)\right)}
$$

- Training using:
- Maximum Likelihood (ML).
- Maximum A Posteriori (MAP) with a Gaussian prior on w.
- Inference (i.e. Testing):
$\hat{t}_{i}=\arg \max p\left(t_{i} \mid h_{i}\right)=\arg \max \exp \left(w^{T} \varphi\left(t_{i}, h_{i}\right)\right)=\arg \max w^{T} \varphi\left(t_{i}, h_{i}\right)$
$t_{i} \in T$
$t_{i} \in T$
$t_{i} \in T$

A Maximum Entropy Model for POS Tagging

- Inference, need to do Forward traversal of input sequence:
[Animation by Ray Mooney, UT Austin]
John saw the saw and decided to take it to the table.
classifier

NNP

A Maximum Entropy Model for POS Tagging

- Inference, need to do Forward traversal of input sequence:
[Animation by Ray Mooney, UT Austin]

A Maximum Entropy Model for POS Tagging

- Inference, need to do Forward traversal of input sequence:

A Maximum Entropy Model for POS Tagging

- Inference, need to do Forward traversal of input sequence:

A Maximum Entropy Model for POS Tagging

- Inference, need to do Forward traversal of input sequence:

A Maximum Entropy Model for POS Tagging

[Ratnaparkhi, EMNLP'96]

- Inference, need to do Forward traversal of input sequence:

A Maximum Entropy Model for POS Tagging

- Inference, need to do Forward traversal of input sequence:
[Animation by Ray Mooney, UT Austin]
NNP VBD DT NN CC VBD
John saw the saw and deciched to take it to the table.
classifier

TO

A Maximum Entropy Model for POS Tagging

- Inference, need to do Forward traversal of input sequence:
[Animation by Ray Mooney, UT Austin]
NNP VBD DT NN CC VBD TO
John saw the saw and decided to take it to the table.

A Maximum Entropy Model for POS Tagging

- Inference, need to do Forward traversal of input sequence:
[Animation by Ray Mooney, UT Austin]
NNP VBD DT NN CC VBD TO VB
John saw the saw and decided to take jt to the table.

A Maximum Entropy Model for POS Tagging

- Inference, need to do Forward traversal of input sequence:
[Animation by Ray Mooney, UT Austin]
NNP VBD DT NN CC VBD TO VB PRP
John saw the saw and decided to take it to the table.

A Maximum Entropy Model for POS Tagging

- Inference, need to do Forward traversal of input sequence:

A Maximum Entropy Model for POS Tagging

- Inference, need to do Forward traversal of input sequence:

A Maximum Entropy Model for POS Tagging

- Inference, need to do Forward traversal of input sequence:
[Animation by Ray Mooney, UT Austin]
John saw the saw and decided to take it
- Some POS tags would be easier to disambiguate backward, what can we do?
- Use backward traversal, with backward features ... but lose forward info.

Sequence Labeling as Classification

1) Classifiy each token individually into one of a number of classes.
2) Classify all tokens jointly into one of a number of classes:

$$
\hat{t}_{1} \ldots \hat{t}_{n}=\underset{t_{1}, \ldots, t_{n}}{\arg \max } \lambda^{T} \varphi\left(t_{1}, \ldots, t_{n}, w_{1}, \ldots, w_{n}\right)
$$

- Hidden Markov Models.
- Conditional Random Fields.
- Structural SVMs.
- Discriminatively Trained HMMs [Collins, EMNLP’02].
- Bi-directional RNNs / LSTM-CRFs.

Hidden Markov Models

- Probabilistic Generative Models:
$\hat{t}_{1} \ldots \hat{t}_{n}=\underset{t_{1}, \ldots, t_{n}}{\arg \max } p\left(t_{1}, \ldots, t_{n} \mid w_{1}, \ldots, w_{n}\right)$
$=\arg \max p\left(w_{1}, \ldots, w_{n} \mid t_{1}, \ldots, t_{n}\right) p\left(t_{1}, \ldots, t_{n}\right)$

Hidden Markov Models: Assumptions

1) A word event depends only on its POS tag:

$$
p\left(w_{1}, \ldots, w_{n} \mid t_{1}, \ldots, t_{n}\right)=\prod_{i=1}^{n} p\left(w_{i} \mid t_{i}\right)
$$

2) A tag event depends only on the previous tag:

$$
p\left(t_{1}, \ldots, t_{n}\right)=\prod_{i=1}^{n} p\left(t_{i} \mid t_{i-1}\right)
$$

\Rightarrow POS tagging is $\hat{t}_{1} \ldots \hat{t}_{n}=\underset{t_{1}, \ldots, t_{n}}{\arg \max } \prod_{i=1}^{n} p\left(w_{i} \mid t_{i}\right) p\left(t_{i} \mid t_{i-1}\right)$

Interlude

Tales of HMMs

Structured Data

- For many applications, the i.i.d. assumption does not hold:
- pixels in images of real objects.
- hyperlinked web pages.
- cross-citations in scientific papers.
- entities in social networks.
- sequences of words/letters in text.
- successive time frames in speech.
- sequences of base pair in DNA.
- musical notes in a tonal melody.
- daily values of a particular stock.

Structured Data

- For many applications, the i.i.d. assumption does not hold:
- pixels in images of real objects.
- hyperlinked web pages.
- cross-citations in scientific papers.
- entities in social networks.
- sequences of words/letters in text.
- successive time frames in speech.
- sequences of base pair in DNA.
- musical notes in a tonal melody.
- daily values of a particular stock.

Probabilistic Graphical Models

- PGMs use a graph for compactly:

1. Encoding a complex distribution over a multi-dimensional space.
2. Representing a set of independencies that hold in the distribution.

- Properties 1 and 2 are, in a "deep sense", equivalent.
- Probabilistic Graphical Models:
- Directed:
- i.e. Bayesian Networks i.e. Belief Networks.
- Undirected:
- i.e. Markov Random Fields

Probabilistic Graphical Models

- Directed PGMs:
- Bayesian Networks:
- Dynamic Bayesian Networks:
- State Observation Models:
» Hidden Markov Models.
» Linear Dynamical Systems (Kalman filters).
- Undirected PGMs:
- Markov Random Fields (MRF).
- Conditional Random Fields (CRF).
- Sequential CRFs.

Bayesian Networks

- A Bayesian Network structure G is a directed acyclic graph whose nodes $X_{1}, X_{2}, \ldots, X_{n}$ represent random variables and edges correspond to "direct influences" between nodes:
- Let $\mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)$ denote the parents of X_{i} in G ;
- Let NonDescend $\left(\mathrm{X}_{\mathrm{i}}\right)$ denote the variables in the graph that are not descendants of X_{i}.
- Then G encodes the following set of conditional independence assumptions, called the local independencies:

For each X_{i} in G: $\mathrm{X}_{\mathrm{i}} \perp \operatorname{NonDescend}\left(\mathrm{X}_{\mathrm{i}}\right) \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)$

Bayesian Networks

1. Because $X_{i} \perp$ NonDescend $\left(X_{i}\right) \mid \operatorname{Pa}\left(X_{\mathrm{i}}\right)$, it follows that:

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid P a\left(X_{i}\right)\right)
$$

2. More generally, d-separation:
3. Two sets of nodes X and Y are conditionally independent given a set of nodes $\mathrm{E}(\mathrm{X} \perp \mathrm{Y} \mid \mathrm{E})$ if X and Y are d-separated by E .

Figure 15.4 Three ways in which a path from X to Y can be blocked, given the evidence E. If every path from X to Y is blocked, then we say that E d-separates X and Y.

Sequential Data

Q: How can we model sequential data?

1) Ignore sequential aspects and treat the observations as i.i.d.

2) Relax the i.i.d. assumption by using a Markov model.

Markov Models

- $X=x_{1}, \ldots, x_{T}$ is a sequence of random variables.
- $S=\left\{s_{1}, \ldots, s_{N}\right\}$ is a state space, i.e. x_{t} takes values from S.

1) Limited Horizon:

$$
P\left(x_{t+1}=s_{k} \mid x_{1}, \ldots, x_{t}\right)=P\left(x_{t+1}=s_{k} \mid x_{t}\right)
$$

2) Stationarity:

$$
P\left(x_{t+1}=s_{k} \mid x_{t}\right)=P\left(x_{2}=s_{k} \mid x_{1}\right)
$$

$\Rightarrow X$ is said to be a Markov chain .

Markov Models: Parameters

- $S=\left\{s_{1}, \ldots, s_{N}\right\}$ are the visible states.
- $\Pi=\left\{\pi_{\mathrm{i}}\right\}$ are the initial state probabilities.

$$
\pi_{i}=P\left(x_{1}=s_{i}\right)
$$

- $A=\left\{a_{i j}\right\}$ are the state transition probabilities.

$$
a_{i j}=P\left(x_{t+1}=s_{j} \mid x_{t}=s_{i}\right)
$$

Markov Models as DBNs

- A Markov Model is a Dynamic Bayesian Network:

1. $\mathrm{B}_{0}=\Pi$ is the initial distribution over states.

2. $\quad \mathrm{B}_{\rightarrow}=A$ is the 2-time-slice Bayesian Network (2-TBN).

- The unrolled DBN (Markov model) over T time steps:

Markov Models: Inference

- Exercise: compute $p(t, a, p)$

$\mathrm{m}^{\text {th }}$ Order Markov Models

- First order Markov model:

$$
p(X)=p\left(x_{1}\right) \prod_{t=1}^{T-1} P\left(x_{t+1} \mid x_{t}\right)
$$

- Second order Markov model:

$$
p(X)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \prod_{t=2}^{T-1} P\left(x_{t+1} \mid x_{t}, x_{t-1}\right)
$$

- $\mathrm{m}^{\text {th }}$ order Markov model:

$$
p(X)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \ldots p\left(x_{m} \mid x_{m-1}, \ldots, x_{1}\right) \prod_{t=m}^{T-1} P\left(x_{t+1} \mid x_{t}, \ldots, x_{t-m+1}\right)
$$

Markov Models

- (Visible) Markov Models:
- Developed by Andrei A. Markov [Markov, 1913]
- modeling the letter sequences in Pushkin's "Eugene Onyegin".
- Hidden Markov Models:
- The states are hidden (latent) variables.
- The states probabilistically generate surface events, or observations.
- Efficient training using Expectation Maximization (EM)
- Maximum Likelihood (ML) when tagged data is available.
- Efficient inference using the Viterbi algorithm.

Hidden Markov Models (HMMs)

- Probabilistic directed graphical models:
- Hidden states (shown in brown).
- Visible observations (shown in lavade).
- Arrows model probabilistic (in)dependencies.

HMMs: Parameters

- $S=\left\{s_{1}, \ldots, s_{N}\right\}$ is the set of states.
- $\mathrm{K}=\left\{k_{1}, \ldots, k_{M}\right\}=\{1, \ldots, \mathrm{M}\}$ is the observations alphabet.
- $X=x_{1}, \ldots, x_{T}$ is a sequence of states.
- $O=o_{1}, \ldots, o_{T}$ is a sequence of observations.

HMMs: Parameters

- $\Pi=\left\{\pi_{\mathrm{i}}\right\}, i \in S$, are the initial state probabilities.
- $\left.A=\left\{a_{i j}\right\}\right\}, i, j \in S$, are the state transition probabilities.
- $\mathrm{B}=\left\{b_{i k}\right\}, i \in S, k \in K$, are the symbol emision probabilities.

$$
b_{i k}=P\left(o_{t}=k \mid x_{t}=s_{i}\right)
$$

Hidden Markov Models as DBNs

- A Hidden Markov Model is a Dynamic Bayesian Network:

1. $\mathrm{B}_{0}=\Pi$ is the initial distribution over states.

2. $\quad \mathrm{B}_{\rightarrow}=A$ is the 2-time-slice Bayesian Network (2-TBN).

- The unrolled DBN (Markov model) over T time steps (prev. slide).

HMMs: Inference and Training

- Three fundamental questions:

1) Given a model $\mu=(A, B, \Pi)$, compute the probability of a given observation sequence i.e. $p(\mathrm{O} \mid \mu)$ (Forward-Backward).
2) Given a model μ and an observation sequence O, compute the most likely hidden state sequence (Viterbi).

$$
\hat{X}=\arg \max _{X} P(X \mid O, \mu)
$$

3) Given an observation sequence O, find the model $\mu=(A, B, \Pi)$ that best explains the observed data (EM).

- Given observation and state sequence O, X find $\mu(M L)$.

HMMs: Decoding

1) Given a model $\mu=(A, B, \Pi)$, compute the probability of a given observation sequence $O=o_{1}, \ldots, o_{T}$ i.e. $p(\mathrm{O} \mid \mu)$

HMMs: Decoding

$P(O \mid X, \mu)=b_{x_{1} O_{1}} b_{x_{2} o_{2}} \ldots b_{x_{T} o_{T}}$

HMMs: Decoding

$P(O \mid X, \mu)=b_{x_{1} O_{1}} b_{x_{2} o_{2}} \ldots b_{x_{T} o_{T}}$

$$
P(X \mid \mu)=\pi_{x_{1}} a_{x_{1} x_{2}} a_{x_{2} x_{3}} \ldots a_{x_{T-1} x_{7}}
$$

HMMs: Decoding

$P(O \mid X, \mu)=b_{x_{0_{1}}} b_{x_{2} o_{2}} \ldots b_{x_{T} o_{T}}$
$P(X \mid \mu)=\pi_{x_{1}} a_{x_{1} x_{2}} a_{x_{2} x_{3}} \ldots a_{x_{T-1} x_{T}}$
$P(O, X \mid \mu)=P(O \mid X, \mu) P(X \mid \mu)$

HMMs: Decoding

HMMs: Decoding

$$
p(O \mid \mu)=\sum_{\left\{x_{1} \ldots x_{T}\right\}} \pi_{x_{1}} b_{x_{1} o_{1}} \prod_{t=1}^{T-1} a_{x_{t} x_{t+1}} b_{x_{t+1} o_{t+1}}
$$

Time complexity?

HMMs: Forward Procedure

- Define:

$$
\alpha_{i}(t)=P\left(o_{1} \ldots o_{t}, x_{t}=i \mid \mu\right)
$$

- Then solution is:

$$
p(O \mid \mu)=\sum_{i=1}^{N} \alpha_{i}(T)
$$

HMMs: Decoding

$$
\begin{aligned}
x_{1} & \cdots \cdots \cdots
\end{aligned} \begin{aligned}
\alpha_{j}(t+1) & =P\left(o_{1} \ldots o_{t+1}, x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t} \mid x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t}, x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right)
\end{aligned}
$$

HMMs: Decoding

$$
\begin{aligned}
& x_{1} \longrightarrow \ldots \longrightarrow x_{t-1}^{x_{t}} \\
& \begin{aligned}
\alpha_{j}(t+1) & =P\left(o_{1} \ldots o_{t+1}, x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t} \mid x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t}, x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right)
\end{aligned}
\end{aligned}
$$

HMMs: Decoding

$$
\begin{aligned}
x_{1} & \cdots \cdots
\end{aligned} \begin{aligned}
\alpha_{j}(t+1) & =P\left(o_{1} \ldots o_{t+1}, x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t} \mid x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t}, x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right)
\end{aligned}
$$

HMMs: Decoding

HMMs: Decoding

$$
\alpha_{j}(t+1)=\sum_{i=1 \ldots . .} P\left(o_{1} \ldots o_{t}, x_{t}=i, x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right)
$$

$$
\begin{aligned}
& =\sum_{i=1 . . N} P\left(o_{1} \ldots o_{t}, x_{t}=i\right) P\left(x_{t+1}=j \mid x_{t}=i\right) P\left(o_{t+1} \mid x_{t+1}=j\right) \\
& =\sum_{i=1 . . . N} \alpha_{i}(t) a_{i j} b_{j o_{t+1}}
\end{aligned}
$$

HMMs: Decoding

$$
\begin{aligned}
& =\sum_{i=1 . . . N} P\left(o_{1} \ldots o_{t}, x_{t}=i\right) P\left(x_{t+1}=j \mid x_{t}=i\right) P\left(o_{t+1} \mid x_{t+1}=j\right) \\
& =\sum_{i=1 . . . N} \alpha_{i}(t) a_{i j} b_{j_{t+1}}
\end{aligned}
$$

HMMs: Decoding

$$
\begin{aligned}
& =\sum_{i=1 . . N} P\left(o_{1} \ldots o_{t}, x_{t}=i\right) P\left(x_{t+1}=j \mid x_{t}=i\right) P\left(o_{t+1} \mid x_{t+1}=j\right) \\
& =\sum_{i=1 . \ldots N} \alpha_{i}(t) a_{i j} b_{j o_{t+1}}
\end{aligned}
$$

The Forward Procedure

1. Initialization

$$
\alpha_{i}(1)=\pi_{i} b_{i_{o_{1}}}, \quad 1 \leq \mathrm{i} \leq \mathrm{N}
$$

2. Recursion:

$$
\alpha_{j}(t+1)=\sum_{i=1 \ldots N} \alpha_{i}(t) a_{i j} b_{j_{i+1}}, \quad 1 \leq \mathrm{j} \leq \mathrm{N}, 1 \leq \mathrm{t}<\mathrm{T}
$$

3. Termination:

$$
p(O \mid \mu)=\sum_{i=1}^{N} \alpha_{i}(T)
$$

The Forward Procedure: Trellis Computation

HMMs: Backward Procedure

- Define:

$$
\beta_{i}(t)=P\left(o_{t+1} \ldots o_{T} \mid x_{t}=i, \mu\right)
$$

- Then solution is:

$$
p(O \mid \mu)=\sum_{i=1}^{N} \pi_{i} b_{i o_{1}} \beta_{i}(1)
$$

The Backward Procedure

1. Initialization

$$
\beta_{i}(T)=1, \quad 1 \leq \mathrm{i} \leq \mathrm{N}
$$

2. Recursion:

$$
\beta_{i}(t)=\sum_{j=1 . . . N} a_{i j} b_{j_{o_{t+1}}} \beta_{j}(t+1), \quad 1 \leq \mathrm{i} \leq \mathrm{N}, 1 \leq \mathrm{t}<\mathrm{T}
$$

3. Termination:

$$
p(O \mid \mu)=\sum_{i=1}^{N} \pi_{i} b_{i_{1}} \beta_{i}(1)
$$

HMMs: Decoding

- Forward Procedure: $p(O \mid \mu)=\sum_{i=1}^{N} \alpha_{i}(T)$
- Backward Procedure: $p(O \mid \mu)=\sum_{i=1}^{N} \pi_{i} b_{i o_{1}} \beta_{i}(1)$
- Combination: $p(O \mid \mu)=\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t)$

HMMs: Inference and Training

- Three fundamental questions:

1) Given a model $\mu=(A, B, \Pi)$, compute the probability of a given observation sequence i.e. $p(\mathrm{O} \mid \mu)$ (Forward-Backward).
2) Given a model μ and an observation sequence O, compute the most likely hidden state sequence (Viterbi).

$$
\hat{X}=\arg \max _{X} P(X \mid O, \mu)
$$

3) Given an observation sequence O, find the model $\mu=(A, B, \Pi)$ that best explains the observed data (EM).

- Given observation and state sequence O, X find $\mu(M L)$.

Best State Sequence with Viterbi Algorithm

$\hat{X}=\arg \max _{X} p(X \mid O, \mu)$
$=\arg \max _{X} p(X, O \mid \mu)$
Time complexity?
$=\arg \max _{x_{1}, \ldots, x_{T}} p\left(x_{1}, \ldots, x_{T}, o_{1}, \ldots, o_{T} \mid \mu\right)$

The Viterbi Algorithm

$\hat{X}=\arg \max _{x_{1}, \ldots, x_{T}} p\left(x_{1}, \ldots, x_{T}, o_{1}, \ldots, o_{T} \mid \mu\right)$
$p(\hat{X})=\max _{x_{1}, \ldots, x_{T}} p\left(x_{1}, \ldots, x_{T}, o_{1}, \ldots, o_{T} \mid \mu\right)$

- The probability of the most probable path that leads to $x_{t}=j$:

$$
\begin{aligned}
& \delta_{j}(t)=\max _{x_{1} \ldots x_{t-1}} p\left(x_{1} \ldots x_{t-1}, o_{1} \ldots o_{t-1}, x_{t}=j, o_{t}\right) \\
& p(\hat{X})=\max _{1 \leq j \leq N} \delta_{j}(T)
\end{aligned}
$$

The Viterbi Algorithm

- The probability of the most probable path that leads to $x_{t}=j$:

$$
\delta_{j}(t)=\max _{x_{1} \ldots x_{t-1}} p\left(x_{1} \ldots x_{t-1}, o_{1} \ldots o_{t-1}, x_{t}=j, o_{t}\right)
$$

- It can be shown that:

$$
\delta_{j}(t+1)=\max _{1 \leq i \leq N} \delta_{i}(t) a_{i j} b_{j o_{t+1}}
$$

Compare with:

$$
\alpha_{j}(t+1)=\sum_{i=1 \ldots . . N} \alpha_{i}(t) a_{i j} b_{j o_{t+1}}
$$

The Viterbi Algorithm: Trellis Computation

The Viterbi Algorithm

1. Initialization

$$
\begin{aligned}
& \delta_{j}(1)=\pi_{j} b_{j o_{1}} \\
& \psi_{j}(1)=0
\end{aligned}
$$

2. Recursion

$$
\begin{aligned}
& \delta_{j}(t+1)=\max _{1 \leq i \leq N} \delta_{i}(t) a_{i j} b_{j o_{t+1}} \\
& \psi_{j}(t+1)=\underset{1 \leq i \leq N}{\arg \max _{1 \leq N}} \delta_{i}(t) a_{i j} b_{j o_{t+1}}
\end{aligned}
$$

3. Termination

Time complexity?

$$
\begin{aligned}
p(\hat{X}) & =\max _{1 \leq j \leq N} \delta_{j}(T) \\
\hat{x}_{T} & =\arg \max _{1 \leq j \leq N} \delta_{j}(T)
\end{aligned}
$$

4. State sequence backtracking

$$
\hat{x}_{t}=\psi_{t+1}\left(\hat{x}_{t+1}\right)
$$

HMMs: Inference and Training

- Three fundamental questions:

1) Given a model $\mu=(A, B, \Pi)$, compute the probability of a given observation sequence i.e. $p(\mathrm{O} \mid \mu)$ (Forward-Backward).
2) Given a model μ and an observation sequence O, compute the most likely hidden state sequence (Viterbi).
3) Given an observation sequence O, find the model $\mu=(A, B, \Pi)$ that best explains the observed data (EM).

- Given observation and state sequence O, X find $\mu(M L)$.

Parameter Estimation with Maximum Likelihood

- Given observation and state sequences O, X find $\mu=(\mathrm{A}, \mathrm{B}, \Pi)$.

$$
\hat{\mu}=\arg \max _{\mu} p(O, X \mid \mu)
$$

$$
\begin{aligned}
& a_{i j}=p\left(x_{t+1}=s_{j} \mid x_{t}=s_{i}\right) \\
& \hat{a}_{i j}=\frac{C\left(x_{t+1}=s_{j}, x_{t}=s_{i}\right)}{C\left(x_{t}=s_{i}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& b_{i k}=p\left(o_{t}=k \mid x_{t}=s_{i}\right) \\
& \hat{b}_{i k}=\frac{C\left(o_{t}=k, x_{t}=s_{i}\right)}{C\left(x_{t}=s_{i}\right)}
\end{aligned}
$$

$$
\pi_{i}=p\left(x_{1}=s_{i}\right) \quad \hat{\pi}_{i}=\frac{C\left(x_{1}=s_{i}\right)}{|X|}
$$

Exercise:
Rewrite to use Laplace smoothing.

Parameter Estimation with Expectation Maximization

- Given observation sequences O find $\mu=(\mathrm{A}, \mathrm{B}, П)$.

$$
\hat{\mu}=\arg \max _{\mu} p(O \mid \mu)
$$

- There is no known analytic method to find solution.
- Locally maximize $p(O \mid \mu)$ using iterative hill-climbing:
\Rightarrow the Baum-Welch or Forward-Backward algorithm:
- Given a model μ and observation sequence, update the model parameters to $\hat{\mu}$ to better fit the observations.
- A special case of the Expectation Maximization method.

The Baum-Welch Algorithm (EM)

[E] Assume μ is known, compute "hidden" parameters ξ, γ :

1) $\xi_{t}(i, j)=$ the probability of being in state s_{i} at time t and state s_{j} at time $t+1$.

$$
\xi_{t}(i, j)=\frac{\alpha_{i}(t) a_{i j} b_{j_{o_{t+1}}} \beta_{j}(t+1)}{\sum_{m=1 . . . N} \alpha_{m}(t) \beta_{m}(t)}
$$

$$
\sum_{t=1}^{T-1} \xi_{t}(i, j)=\text { expected number of transitions from } s_{i} \text { to } s_{j}
$$

2)

$\gamma_{t}(i)=$ the probability of being in state s_{i} at time t.

$$
\gamma_{i}(t)=\sum_{j=1 . . . N} \xi_{t}(i, j)=\frac{\alpha_{i}(t) \beta_{i}(t)}{\sum_{m=1 . . N} \alpha_{m}(t) \beta_{m}(t)}
$$

$\sum_{t=1}^{T-1} \gamma_{t}(i)=$ expected $\begin{gathered}m=1 . . N \\ \text { number of transitions from } s_{i}\end{gathered}$

The Baum-Welch Algorithm

[M] Re-estimate μ using expectations of ξ, γ :

$$
\hat{\mu}\left\{\begin{aligned}
\hat{\pi}_{i} & =\gamma_{\mathrm{i}}(1) \\
\hat{a}_{i j}= & \frac{\sum_{t=1}^{T} \xi_{t}(i, j)}{\sum_{t=1}^{T} \gamma_{i}(t)} \\
\hat{b}_{i k}= & \frac{\sum_{\left\{t: 0_{t}=k\right\}} \gamma_{t}(i)}{\sum_{t=1}^{T} \gamma_{i}(t)}
\end{aligned}\right.
$$

- Baum has proven that $p(O \mid \hat{\mu}) \geq p(O \mid \mu)$

The Baum-Welch Algorithm

1. Start with some (random) model $\mu=(\mathrm{A}, \mathrm{B}, \Pi)$.
2. [E step] Compute $\xi_{t}(i, j), \gamma_{t}(i)$ and their expectations.
3. $[\mathrm{M}$ step] Compute ML estimate $\hat{\mu}$.
4. Set $\mu=\hat{\mu}$ and repeat from 2. until convergence.

HMMs

- Three fundamental questions:

1) Given a model $\mu=(A, B, \Pi)$, compute the probability of a given observation sequence i.e. $p(\mathrm{O} \mid \mu)$ (Forward/Backward).
2) Given a model μ and an observation sequence O, compute the most likely hidden state sequence (Viterbi).
3) Given an observation sequence O, find the model $\mu=(A, B, \Pi)$ that best explains the observed data (Baum-Welch, or EM).

- Given observation and state sequence O, X find $\mu(M L)$.

Supplemental Reading

- Section 7.1, 7.2, 7.3, and 7.4 from Eisenstein.
- Chapter 8 in Jurafsky \& Martin:
- https://web.stanford.edu/~jurafsky/slp3/8.pdf
- Appendix A in Jurafsky \& Martin:
- https://web.stanford.edu/~jurafsky/slp3/A.pdf

POS Disambiguation: Context

"Here's a movie where you forgive the preposterous because it takes you to the perplexing."
[Source Code, by Roger Ebert, March 31, 2011]
"The good, the bad, and the ugly"
"The young and the restless"
"The bold and the beautiful"

