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Part of Speech (POS) Tagging

• Annotate each word in a sentence with its POS:
– noun, verb, adjective, adverb, pronoun, preposition, interjection, …

NN
RB

VBN JJ VB
PRP VBD TO VB      DT NN
She promised  to   back   the bill
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Parts of Speech

• Lexical categories that are defined based on:
– Syntactic function:

• nouns can occur with determiners: a goat.
• nouns can take possessives: IBM’s annual revenue.
• most nouns can occur in the plural: goats. 

– Morphological function:
• many verbs can be composed with the prefix “un”.

• There are tendencies toward semantic coherence:
– nouns often refer to “people, places, or things”.
– adjectives often refer to properties.
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POS: Closed Class vs. Open Class

• Closed Class:
– relatively fixed membership.
– usually function words:

• short common words which have a structuring role in grammar.

– Prepositions: of, in, by, on, under, over, …
– Auxiliaries: may, can, will had, been, should, …
– Pronouns: I, you, she, mine, his, them, …
– Determiners: a, an, the, which, that, …
– Conjunctions: and, but, or (coord.), as, if, when, (subord.), …
– Particles: up, down, on, off, …
– Numerals: one, two, three, third, …
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POS: Open Class vs. Closed Class

• Open Class:
– new members are continually added.

• to fax, to google, futon, …
– English has 4: Nouns, Verbs, Adjectives, Adverbs.

• Many languages have these 4, but not all (e.g. Korean).
– Nouns: people, places, or things
– Verbs: actions and processes
– Adjectives: properties or qualities
– Adverbs: a hodge-podge 

• Unfortunately, John walked home extremely slowly yesterday.
• directional, locative, temporal, degree, manner, …
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POS: Open vs. Closed Classes

• Open Class: new members are continually added.

1. Annie: Do you love me?
Alvy: Love is too weak a word for what I feel... I lurve you. Y'know, 
I loove you, I, I luff you. There are two f's. I have to invent... Of 
course I love you. (Annie Hall)

2. 'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

(Jabberwocky, Lewis Caroll)

"Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
The frumious Bandersnatch!"
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Parts of Speech: Granularity

• Grammatical sketch of Greek [Dionysius Thrax, c. 100 B.C.]:
– 8 tags: noun, verb, pronoun, preposition, adjective, conjunction, 

participle, and article.

• Brown corpus [Francis, 1979]:
– 87 tags.

• Penn Treebank [Marcus et al., 1993]:
– 45 tags.

• British National Corpus (BNC) [Garside et al., 1997]:
– C5 tagset: 61 tags.
– C7 tagset:  146 tags.

We will focus on the Penn Treebank POS tags.
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Penn Treebank POS Tagset
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Penn Treebank POS tags

• Selected from the original 87 tags of the Brown corpus:
Þ lost finer distinctions between lexical categories.

1) Prepositions and subordinating conjunctions:
– after/CS spending/VBG a/AT day/NN at/IN the/AT palace/NN
– after/IN a/AT wedding/NN trip/NN to/IN Hawaii/NNP ./.

2) Infinitive to and prepositional to:
– to/TO give/VB priority/NN to/IN teachers/NNS

3) Adverbial nouns:
– Brown: Monday/NR, home/NR, west/NR, tomorrow/NR
– PTB: Monday/NNP, (home, tomorrow, west)/(NN, RB)
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POS Tagging º POS Disambiguation

• Words often have more than one POS tag, e.g. back:
– the back/JJ door
– on my back/NN
– win the voters back/RB
– promised to back/VB the bill

• Brown corpus statistics [DeRose, 1998]:
– 11.5% ambiguous English word types.
– 40% of all word occurrences are ambiguous.

• most are easy to disambiguate
– the tags are not equaly likely, i.e. low tag entropy: table
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POS Tag Ambiguity
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POS Tagging º POS Disambiguation

• Some distinctions are difficult even for humans:
– Mrs. Shaefer never got around to joining

– All   we   gotta  do   is    go  around the  corner

– Chateau Petrus costs around 250

• Use heuristics [Santorini, 1990]:
– She told off/RP her friends               She stepped off/IN the train

– She told her friends off/RP *She stepped the train off/IN

NNP   NNP        RB  VBD    RP TO   VBG

DT  PRP  VBN   VB VBZ VB      IN DT       NN

NNP        NNP   VBZ      RB CD
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How Difficult is POS Tagging?

• Most current tagging algorithms: ~ 96% - 97%  accuracy for 
Penn Treebank tagsets. 
– Current SofA 97.55% tagging accuracy. How good is this?

• Bidirectional LSTM-CRF Models for Sequence Tagging [Huang, 
Xu, Yu, 2015].

– Human Ceiling: how well humans do?
• human annotators: about 96% - 97% [Marcus et al., 1993].
• when allowed to discuss tags, consensus is 100% [Voutilainen, 95]

– Most Frequent Class Baseline:
• 90% - 91% on the 87-tag Brown tagset [Charniak et al., 1993].
• 93.69% on the 45-tag Penn Treebank, with unknown word model 

[Toutanova et al., 2003].
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POS Tagging Methods

• Rule Based:
– Rules are designed by human experts based on linguistic knowledge.

• Machine Learning:
– Trained on data that has been manually labeled by humans.
– Rule learning:

• Transformation Based Learning (TBL).
– Sequence tagging:

• Hidden Markov Models (HMM).
• Maximum Entropy (Logistic Regression).
• Sequential Conditional Random Fields (CRF).
• Recurrent Neural Networks (RNN):

– bidirectional, with a CRF layer (BI-LSTM-CRF).
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POS Tagging: Rule Based

1) Start with a dictionary.

2) Assign all possible tags to words from the dictionary.

3) Write rules by hand to selectively remove tags, leaving 
the correct tag for each word.
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POS Tagging: Rule Based

1) Start with a dictionary:

she: PRP
promised: VBN,VBD
to TO
back: VB, JJ, RB, NN
the: DT
bill: NN, VB

… for the ~100,000 words of English.
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POS Tagging: Rule Based

2) Assign every possible tag:

NN
RB

VBN JJ VB
PRP VBD TO VB      DT NN
She promised  to   back   the bill
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POS Tagging: Rule Based

3) Write rules to eliminate incorrect tags.
– Eliminate VBN if VBD is an option when VBN|VBD follows 

“<S> PRP”

NN
RB

VBN JJ VB
PRP VBD TO VB DT NN
She promised to back the bill
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POS Tagging as Sequence Labeling

• Sequence Labeling:
– Tokenization and Sentence Segmentation.
– Part of Speech Tagging.
– Information Extraction

• Named Entity Recognition
– Shallow Parsing.
– Semantic Role Labeling.
– DNA Analysis.
– Music Segmentation.

• Solved using ML models for classification:
– Token-level vs. Sequence-level.
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Sequence Labeling

• Sentence Segmentation:

Mr. Burns  is  Homer  Simpson’s boss. He is very rich.

• Tokenization:

Mr. Burns is Homer Simpson’s boss. He is very rich.

O O O O O O O O I OO IO…    …    …    … …
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Sequence Labeling

• Information Extraction:
– Named Entity Recognition

Drug giant Pfizer Inc. has reached an agreement to buy the 

private biotechnology firm Rinat Neuroscience Corp.

O       O        I I O       O      O        O        O   O   O

O              O              O      I I I
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Sequence Labeling

• Information Extraction:
– Text Segmentation into topical sections.

Vine covered cottage , near Contra Costa Hills . 2 bedroom house , 

modern kitchen and dishwasher . No pets allowed . $ 1050 / month
[Haghighi & Klein, NAACL ‘06]
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Sequence Labeling

• Information Extraction:
– segmenting classifieds into topical sections.

Vine covered cottage , near Contra Costa Hills . 2 bedroom house ,

modern kitchen and dishwasher . No pets allowed . $ 1050 / month

– Features
– Neighborhood
– Size
– Restrictions
– Rent

[Haghighi & Klein, NAACL ‘06]
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Sequence Labeling

• Semantic Role Labeling:
– For each clause, determine the semantic role played by each noun 

phrase that is an argument to the verb:

John drove Mary from Athens to Columbus in his Toyota Prius.
The hammer broke the window.

• agent
• patient
• source
• destination
• instrument
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Sequence Labeling

• DNA Analysis:
– transcription factor binding sites.
– promoters.
– introns, exons, …

AATGCGCTAACGTTCGATACGAGATAGCCTAAGAGTCA
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Sequence Labeling

• Music Analysis:
– segmentation into “musical phrases”

[Romeo & Juliet, Nino Rota]
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Sequence Labeling as Classification

1) Classifiy each token individually into one of a number of 
classes:
– Token represented as a vector of features extracted from context.
– To build classification model, use general ML algorithms:

• Maximum Entropy (i.e. Logistic Regression)
• Support Vector Machines (SVMs)
• Perceptrons.
• Winnow.
• Naïve Bayes, Bayesian Networks.
• Decision Trees.
• k-Nearest Neighbor, …
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A Maximum Entropy Model  for POS Tagging 

• Represent each position i in text as j(t, hi) ={jk(t, hi)}:
– t is the potential POS tag at position i.
– hi is the history/context of position i.

– j (t, hi) is a vector of features jk(t, hi), for k = 1..K.

• Represent the “unnormalized” score of a tag t as:

[Ratnaparkhi, EMNLP’96]

},,,,,,{ 212121 ----++= iiiiiiii ttwwwwwh

φk (t,hi ) =
1 if suffix(wi ) = "ing" &  t = VBG
0 otherwise

⎧
⎨
⎪

⎩⎪

score(t,hi ) =w
Tφ(t,hi ) = wk

k=1

K

∑ φk (t,hi )

want wk to be large here
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A Maximum Entropy Model  for POS Tagging
[Ratnaparkhi, EMNLP’96]
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A Maximum Entropy Model  for POS Tagging
[Ratnaparkhi, EMNLP’96]

the non-zero features for position 3

feature templates
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A Maximum Entropy Model  for POS Tagging
[Ratnaparkhi, EMNLP’96]

the non-zero features for position 4
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A Maximum Entropy Model for POS Tagging

• How do we learn the weights w?
– Train on manually annotated data (supervised learning).

• What does it mean “train w on annotated corpus”?
– Probabilistic Discriminative Models:

• Maximum Entropy (Logistic Regression).
– Distribution Free Methods:

• (Average) Perceptrons.
• Support Vector Machines (SVMs).

[Collins, ACL 2002]

[Ratnaparkhi, EMNLP’96]
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A Maximum Entropy Model for POS Tagging

• Probabilistic Discriminative Model:
Þneed to transform score(t,hi) into probability p(t |hi).

• Training using:
– Maximum Likelihood (ML).
– Maximum A Posteriori (MAP) with a Gaussian prior on w.

• Inference (i.e. Testing):

[Ratnaparkhi, EMNLP’96]

p(t | hi ) =
exp(wTφ(t,hi ))
exp(wTφ(t ',hi ))t '∑

),(maxarg)),(exp(maxarg)|(maxargˆ
ii

T

Tt
ii

T
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A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NNP
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A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]
NNP
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]
NNP  VBD
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT

36



A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]
NNP VBD DT
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]
NNP VBD DT  NN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

CC
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A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]
NNP VBD DT NN  CC
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]
NNP VBD DT NN  CC    VBD
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

TO
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A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]
NNP VBD DT NN  CC    VBD   TO
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VB
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A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]
NNP VBD DT NN  CC    VBD   TO  VB
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

PRP
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A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]
NNP VBD DT NN  CC    VBD   TO  VB PRP
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

IN
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A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]
NNP VBD DT NN  CC    VBD   TO  VB PRP  IN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]
NNP VBD DT NN  CC    VBD   TO  VB PRP  IN  DT
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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A Maximum Entropy Model for POS Tagging

• Inference, need to do Forward traversal of input sequence:

• Some POS tags would be easier to disambiguate backward,           
what can we do?
– Use backward traversal, with backward features … but lose 

forward info.

[Ratnaparkhi, EMNLP’96]

[Animation by Ray Mooney, UT Austin]

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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Sequence Labeling as Classification

1) Classifiy each token individually into one of a number of 
classes.

2) Classify all tokens jointly into one of a number of classes:

– Hidden Markov Models.
– Conditional Random Fields.
– Structural SVMs.
– Discriminatively Trained HMMs [Collins, EMNLP’02].
– Bi-directional RNNs / LSTM-CRFs.

),...,,,...,(maxargˆ...ˆ 11
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Hidden Markov Models

• Probabilistic Generative Models:

),...,|,...,(maxargˆ...ˆ 11
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Use state emission probs Use state transition probs
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Hidden Markov Models: Assumptions

1) A word event depends only on its POS tag:

2) A tag event depends only on the previous tag:

Þ POS tagging is 
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Interlude

Tales of HMMs
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Structured Data

• For many applications, the i.i.d. assumption does not hold:
– pixels in images of real objects.
– hyperlinked web pages.
– cross-citations in scientific papers.
– entities in social networks.
– sequences of words/letters in text.
– successive time frames in speech.
– sequences of base pair in DNA.
– musical notes in a tonal melody.
– daily values of a particular stock.
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Structured Data

• For many applications, the i.i.d. assumption does not hold:
– pixels in images of real objects.
– hyperlinked web pages.
– cross-citations in scientific papers.
– entities in social networks.
– sequences of words/letters in text.
– successive time frames in speech.
– sequences of base pair in DNA.
– musical notes in a tonal melody.
– daily values of a particular stock.

Sequential Data
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Probabilistic Graphical Models

• PGMs use a graph for compactly:
1. Encoding a complex distribution over a multi-dimensional space.
2. Representing a set of independencies that hold in the distribution.
– Properties 1 and 2 are, in a “deep sense”, equivalent.

• Probabilistic Graphical Models:
– Directed:

• i.e. Bayesian Networks i.e. Belief Networks.
– Undirected:

• i.e. Markov Random Fields

53



Probabilistic Graphical Models

• Directed PGMs:
– Bayesian Networks:

• Dynamic Bayesian Networks:
– State Observation Models:

» Hidden Markov Models.
» Linear Dynamical Systems (Kalman filters).

• Undirected PGMs:
– Markov Random Fields (MRF).

• Conditional Random Fields (CRF).
– Sequential CRFs.
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Bayesian Networks

• A Bayesian Network structure G is a directed acyclic 
graph whose nodes X1, X2, ..., Xn represent random 
variables and edges correspond to “direct influences” 
between nodes:
– Let Pa(Xi) denote the parents of Xi in G;
– Let NonDescend(Xi) denote the variables in the graph that are not 

descendants of Xi.
– Then G encodes the following set of conditional independence 

assumptions, called the local independencies:

For each Xi in G:  Xi ⊥NonDescend(Xi) | Pa(Xi)
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Bayesian Networks

1. Because Xi ⊥NonDescend(Xi) | Pa(Xi), it follows that:

2. More generally, d-separation:
1. Two sets of nodes X and Y are conditionally independent given a 

set of nodes E (X ⊥ Y | E) if X and Y are d-separated by E.

P(X1,X2,...,Xn ) = P Xi | Pa(Xi )( )
i=1

n

∏
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Sequential Data

Q: How can we model sequential data?

1) Ignore sequential aspects and treat the observations as 
i.i.d.

2) Relax the i.i.d. assumption by using a Markov model.

x1 xt+1 xTxtxt-1… …

x1 xt+1 xTxtxt-1… …

57



Markov Models

• X = x1, …, xT is a sequence of random variables.
• S = {s1, …, sN} is a state space, i.e. xt takes values from S.

1) Limited Horizon:

2) Stationarity:

Þ X is said to be a Markov chain.

)|(),...,|( 111 tkttkt xsxPxxsxP === ++

)|()|( 121 xsxPxsxP ktkt ===+
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Markov Models: Parameters

• S = {s1, …, sN} are the visible states.

• P = {pi} are the initial state probabilities.

• A = {aij} are the state transition probabilities.

)|( 1 itjtij sxsxPa === +

)( 1 ii sxP ==p

x1 xt+1 xTxtxt-1… …A A A A AAP
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Markov Models as DBNs

• A Markov Model is a Dynamic Bayesian Network:
1. B0 = P is the initial distribution over states.

1. B→ = A is the 2-time-slice Bayesian Network (2-TBN).

– The unrolled DBN (Markov model) over T time steps:

xt+1xt
A

x1
P

x1 xt+1 xTxtxt-1… …A A A A AAP
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Markov Models: Inference
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• Exercise: compute p(t,a,p)
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mth Order Markov Models

• First order Markov model:

• Second order Markov model:

• mth order Markov model:
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Markov Models

• (Visible) Markov Models:
– Developed by Andrei A. Markov [Markov, 1913]

• modeling the letter sequences in Pushkin’s “Eugene Onyegin”.

• Hidden Markov Models:
– The states are hidden (latent) variables.
– The states probabilistically generate surface events, or observations.

– Efficient training using Expectation Maximization (EM)
• Maximum Likelihood (ML) when tagged data is available.

– Efficient inference using the Viterbi algorithm.
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Hidden Markov Models (HMMs)

• Probabilistic directed graphical models:
– Hidden states (shown in brown).

– Visible observations (shown in lavender).

– Arrows model probabilistic (in)dependencies.

x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT
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HMMs: Parameters

• S = {s1, …, sN} is the set of states.
• K = {k1, …, kM} = {1, …, M} is the observations alphabet.

• X = x1, …, xT is a sequence of states.
• O = o1, …, oT is a sequence of observations.

x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT
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HMMs: Parameters

• P = {pi}, iÎS, are the initial state probabilities.

• A = {aij} }, i,jÎS, are the state transition probabilities.

• B = {bik}, iÎS, kÎK, are the symbol emision probabilities.

x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT

A A A A AAP

B B B B B

)|( ittik sxkoPb ===
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Hidden Markov Models as DBNs

• A Hidden Markov Model is a Dynamic Bayesian Network:
1. B0 = P is the initial distribution over states.

1. B→ = A is the 2-time-slice Bayesian Network (2-TBN).

– The unrolled DBN (Markov model) over T time steps (prev. slide).

x1
P

xt+1xt
A

ot+1

B
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HMMs: Inference and Training

• Three fundamental questions:
1) Given a model µ = (A, B, P), compute the probability of a given 

observation sequence i.e. p(O|µ) (Forward-Backward).

2) Given a model µ and an observation sequence O, compute the 

most likely hidden state sequence (Viterbi).

3) Given an observation sequence O, find the model µ = (A, B, P) 

that best explains the observed data (EM).

• Given observation and state sequence O, X find µ (ML).

),|(maxargˆ µOXPX
X

=

68



HMMs: Decoding

1) Given a model µ = (A, B, P), compute the probability of a 
given observation sequence O = o1, …, oT i.e. p(O|µ)

x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT
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HMMs: Decoding

TToxoxox bbbXOP ...),|(
2211

=µ

x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT
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HMMs: Decoding

TToxoxox bbbXOP ...),|(
2211

=µ

x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT

TT xxxxxxx aaaXP
132211

...)|(
-

=pµ
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HMMs: Decoding

TToxoxox bbbXOP ...),|(
2211

=µ

x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT

TT xxxxxxx aaaXP
132211

...)|(
-

=pµ

)|(),|()|,( µµµ XPXOPXOP =
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HMMs: Decoding

TToxoxox bbbXOP ...),|(
2211

=µ

x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT

TT xxxxxxx aaaXP
132211

...)|(
-

=pµ

)|(),|()|,( µµµ XPXOPXOP =

å=
X

XPXOPOP )|(),|()|( µµµ
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HMMs: Decoding

x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT
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Time complexity?
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HMMs: Forward Procedure

• Define:

• Then solution is: 
)|,...()( 1 µa ixooPt tti ==
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1
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x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT
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HMMs: Decoding

x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT
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HMMs: Decoding
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HMMs: Decoding
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HMMs: Decoding
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HMMs: Decoding
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HMMs: Decoding
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HMMs: Decoding
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The Forward Procedure

1. Initialization

2. Recursion:

3. Termination:
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The Forward Procedure: Trellis Computation

s1
a1(t)

s2
a2(t)
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HMMs: Backward Procedure

• Define:

• Then solution is: 
),|...()( 1 µb ixooPt tTti == +
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The Backward Procedure

1. Initialization

2. Recursion:

3. Termination:
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HMMs: Decoding 

• Forward Procedure:

• Backward Procedure:

• Combination:
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HMMs: Inference and Training

• Three fundamental questions:
1) Given a model µ = (A, B, P), compute the probability of a given 

observation sequence i.e. p(O|µ) (Forward-Backward).

2) Given a model µ and an observation sequence O, compute the 

most likely hidden state sequence (Viterbi).

3) Given an observation sequence O, find the model µ = (A, B, P) 

that best explains the observed data (EM).

• Given observation and state sequence O, X find µ (ML).
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Best State Sequence with Viterbi Algorithm

x1 xt+1 xTxtxt-1… …
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The Viterbi Algorithm

x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT
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• The probability of the most probable path that leads to xt = j:

• It can be shown that:

The Viterbi Algorithm

x1 xt+1 xTxtxt-1… …

o1 ot-1 ot ot+1 oT
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The Viterbi Algorithm: Trellis Computation
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The Viterbi Algorithm

1. Initialization

2. Recursion

3. Termination

4. State sequence backtracking
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HMMs: Inference and Training

• Three fundamental questions:
1) Given a model µ = (A, B, P), compute the probability of a given 

observation sequence i.e. p(O|µ) (Forward-Backward).

2) Given a model µ and an observation sequence O, compute the 

most likely hidden state sequence (Viterbi).

3) Given an observation sequence O, find the model µ = (A, B, P) 

that best explains the observed data (EM).

• Given observation and state sequence O, X find µ (ML).
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Parameter Estimation with Maximum 
Likelihood

• Given observation and state sequences O, X find µ =(A,B,P).
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Exercise:
Rewrite to use Laplace smoothing.
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Parameter Estimation with Expectation 
Maximization

• Given observation sequences O find µ =(A,B,P).

• There is no known analytic method to find solution.

• Locally maximize p(O|µ) using iterative hill-climbing:
Þ the Baum-Welch or Forward-Backward algorithm:

- Given a model µ and observation sequence, update the model 
parameters to to better fit the observations.

- A special case of the Expectation Maximization method.

)|(maxargˆ µµ
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The Baum-Welch Algorithm (EM)

[E] Assume µ is known, compute “hidden” parameters x, g :
1) xt(i, j) = the probability of being in state si at time t and            

state sj at time t+1.

2) gt(i) = the probability of being in state si at time t.
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The Baum-Welch Algorithm

[M] Re-estimate µ using expectations of x, g :

• Baum has proven that
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The Baum-Welch Algorithm

1. Start with some (random) model µ = (A,B,P).

2. [E step]  Compute xt(i, j), gt(i) and their expectations.

3. [M step] Compute ML estimate    . 

4. Set and repeat from 2. until convergence. 

µ̂

µµ ˆ=
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HMMs

• Three fundamental questions:
1) Given a model µ = (A, B, P), compute the probability of a given 

observation sequence i.e. p(O|µ) (Forward/Backward).

2) Given a model µ and an observation sequence O, compute the 

most likely hidden state sequence (Viterbi).

3) Given an observation sequence O, find the model µ = (A, B, P) 

that best explains the observed data (Baum-Welch, or EM).

• Given observation and state sequence O, X find µ (ML).
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Supplemental Reading

• Section 7.1, 7.2, 7.3, and 7.4 from Eisenstein.
• Chapter 8 in Jurafsky & Martin:

– https://web.stanford.edu/~jurafsky/slp3/8.pdf

• Appendix A in Jurafsky & Martin:
– https://web.stanford.edu/~jurafsky/slp3/A.pdf
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POS Disambiguation: Context

“Here's a movie where you forgive the preposterous because 
it takes you to the perplexing.”

[Source Code, by Roger Ebert, March 31, 2011]

“The good, the bad, and the ugly”

“The young and the restless”

“The bold and the beautiful”
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