
CS 6840: Natural Language Processing

Razvan C. Bunescu
School of Electrical Engineering and Computer Science

http://ace.cs.ohio.edu/~razvan
bunescu@ohio.edu

Non-Linear Classifiers
Neural Networks and Deep Learning

http://ace.cs.ohio.edu/~razvan

Outline

1. Importance of (Feature) Representation.
2. Non-linear Classification using:

1. Manually engineered features.
2. Kernel Perceptrons and SVMs.
3. Neural Networks.

3. Feedforward Neural Networks:
– Fully Connected Networks.

• Forward and Backward Propagation.
4. PyTorch

2

Logistic Regression is a Linear Classifier

• Use a linear function of the input vector:

weight vector bias = - threshold

ℎ 𝐱 = 𝐰%𝜑 𝐱 + 𝑤)

Σ

1x0

x1

x2

x3

wixi∑

w0

w1

w2

w3

f
hw(x)

activation / output
function

f (z) = 1
1+ exp(−z) =

1
1+ exp(−wTx)

hw(x) Logistic sigmoid

3

Logistic Regression for Binary Classification

• Model output can be interpreted as posterior class
probabilities:

p(C1 | x) =σ (w
Tx) = 1

1+ exp(−wTx))

p(C2 | x) =1−σ (w
Tx) = exp(−wTx)

1+ exp(−wTx)

Linear decision boundary!

4

Linear vs. Non-linear Decision Boundaries

And Or Xor

?

Txx],,1[)(21=xj
Twww],,[210=w 02121],[],[)(wxxww TT +==> xw j

5

How to Find Non-linear Decision Boundaries

1) Logistic Regression with manually engineered features:
– Quadratic features.

2) Kernel methods (e.g. SVMs) with non-linear kernels:
– Quadratic kernels, Gaussian kernels.

3) Unsupervised feature learning (e.g. auto-encoders):
– Plug learned features in any linear classifier.

4) Neural Networks with one or more hidden layers:
– Automatically learned features.

6

Non-Linear Classification: XOR Dataset

x = [x1, x2]

7

1) Manually Engineered Features: Add x1x2

x = [x1, x2, x1x2]

8

Logistic Regression with Manually
Engineered Features

x = [x1, x2, x1x2]

9

Logistic Regression with Manually
Engineered Features

Project x = [x1, x2, x1x2] and decision hyperplane back to x = [x1, x2]

10

2) Kernel Methods with Non-Linear Kernels

• SVMs, Perceptrons can be ‘kernelized’:
1. Re-write the algorithm such that during training and testing

feature vectors x, y appear only in dot-products xTy.

2. Replace dot-products xTy with kernels K(x, y):

• K is a kernel if and only if ∃𝜑 such that K(x, y) = 𝜑(x)T 𝜑(y)

– 𝜑 can be in a much higher dimensional space.

» e.g. combinations of up to k original features

– 𝜑(x)T 𝜑(y) can be computed efficiently without
enumerating 𝜑(x) or 𝜑(y).

11

The Perceptron Algorithm: Two Classes

1. initialize parameters w = 0
2. for n = 1 … N
3. hn = sgn(wTxn)
4. if hn ¹ tn then
5. w = w + tnxn

Repeat:
a) until convergence.
b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning
algorithm is guaranteed to find a solution in a finite number of steps.
• see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

12

The Perceptron Algorithm: Two Classes

1. initialize parameters w = 0
2. for n = 1 … N
3. hn = sgn(wTxn)
4. if hn ¹ tn then
5. w = w + tnxn

Loop invariant: w is a weighted sum of training vectors:

Repeat:
a) until convergence.
b) for a number of epochs E.

Þ𝐰 =+
,

𝛼,𝑡,𝐱, 𝐰%𝐱 =+
,

𝛼,𝑡,𝐱,%𝐱

13

Kernel Perceptron: Two Classes

1. define

2. initialize dual parameters an = 0

3. for n = 1 … N
4. hn = sgn f(xn)
5. if hn ¹ tn then
6. an = an + 1

During testing: h(x) = sgn f(x)

𝑓 𝐱 = 𝐰%𝐱 =+
,

𝛼,𝑡,𝐱,%𝐱 =+
,

)𝛼,𝑡,𝐾(𝐱,, 𝐱

14

The Perceptron vs. Boolean Functions

And Or Xor

?

Txx],,1[)(21=xj
Twww],,[210=w 02121],[],[)(wxxww TT +==> xw j

15

Perceptron with Quadratic Kernel

• Discriminant function:

• Quadratic kernel:

Þ corresponding feature space j(x) = ?

),()()()(xxxxx åå ==
i

iii
T

i
iii Kttf ajja

2
2211

2)()(),(yxyxK T +== yxyx

conjunctions of two atomic features

16

Quadratic Features/Kernels

a b

cd

a b

d

c
1

1 1
1

2

Linear kernel Quadratic kernelyxyx TK =),(2)(),(yxyx TK =

𝜑 𝐱 = [𝑥67, 𝑥77, 2𝑥6𝑥7]x = [x1, x2]

17

Quadratic Kernels

• Circles, hyperbolas, and ellipses as separating surfaces:
)()()1(),(2 yxK TT jj=+= yxyx

Txxxxxxx],2,,2,2,1[)(2
221

2
121=j

x1

x2

18

Quadratic Kernels

)()()(),(2 yxyxyx jj TTK ==

x j(x)

19

Support Vector Machines (SVMs)
with Non-linear Kernels

• SVMs find max-margin separating hyperplane:
– Preferable to Perceptrons due to better generalization guarantees:

• Average Perceptron gets close.

• SVMs can be ‘kernelized’ too:
– Use technique of Lagrange multipliers to create equivalent, dual

optimization formulation.
– In dual formulation, feature vectors appear only in dot-products,

i.e. kernels.

20

2) Kernel Methods with Non-Linear Kernels

• SVMs can be very slow to train:
– Need to compute the kernel matrix, quadratic time complexity.

• Too many implicit features => overfitting:
– Polynomial kernels use all combinations of up to k features.

– Gaussian kernels implicitly use all combinations of features.

• Want only combinations of features that are relevant.
– Want hierarchies of features.

Use Neural Networks!

21

The Importance of Representation
http://www.deeplearningbook.org

22

From Cartesian to Polar Coordinates

• Manually engineered:
𝑟 = 𝑥7 + 𝑦7

𝜃 = tan@6 A
B

(first quadrant)

• Learned from data with Neural Networks:

…
x
y

𝑟̂
D𝜃 p(blue|x,y)

Fully connected layers: linear transformation W + element-wise nonlinearity f => f(Wx)

fixed to 1

logistic neuron

but what if origin is not in the middle?

23

Logistic Regression is a Logistic Neuron

Σ

1x0

x1

x2

x3

wixi∑

w0

w1

w2

w3

hw(x)

activation / output
function

σ

1x0

x1

x2

x3

w0

w1

w2

w3

aw(x)
Σ|σ

activation 1x0

x1

x2

x3

w0

w1

w2

w3

hw(x)
Σ|σ

output

24

Feed-Forward Neural Network Model

• Put together many neurons in layers, such that the output
of a neuron can be the input of another:

input layer output layerhidden layer

σ

σ

σ
σ

25

Feed-Forward Neural Networks

σ

σ

σ

σ

σ

σ

σ

σ

σ

26

in
pu

t f
ea

tu
re

s x

bias units

o nl =3 is the number of layers.
§ L1 is the input layer, L3 is the output layer

o (W, b) = (W(1), b(1), W(2), b(2)) are the parameters:
§ W(l)

ij is the weight of the connection between unit j in layer l and
unit i in layer l + 1.

§ b(l)
i is the bias associated unit unit i in layer l + 1.

o a(l)
i is the activation of unit i in layer l, e.g. a(1)

i = xi and a(3)
1 = hW,b(x).

f

f

f
f

27

Forward Propagation

• Forward propagation (compressed):

• Composed of two forward propagation steps:

28

Multiple Hidden Units, Multiple Outputs

• Write down the forward propagation steps for:

29

f

f

f
f

f
f

f

ReLU and Generalizations

• It has become more common to use piecewise linear
activation functions for hidden units:
– ReLU: the rectifier activation g(a) = max{0, a}.
– Absolute value ReLU: g(a) = |a|.
– Maxout: g(a1, ..., ak) = max{a1, ..., ak}.

• needs k weight vectors instead of 1.
– Leaky ReLU: g(a) = max{0, a}+ α min(0, a).

Þ the network computes a piecewise linear function (up to
the output activation function).

30

ReLU vs. Sigmoid and Tanh

• Sigmoid and Tanh saturate for values not close to 0:
– “kill” gradients, bad behavior for gradient-based learning.

• ReLU does not saturate for values > 0:
– greatly accelerates learning, fast implementation.
– fragile during training and can “die”, due to 0 gradient:

• initialize all b’s to a small, positive value, e.g. 0.1.

31

ReLU vs. Softplus

• Softplus g(a) = ln(1+ea) is a smooth version of the rectifier.
– Saturates less than ReLU, yet ReLU still does better [Glorot, 2011].

32

ReLU and Generalizations

• Leaky ReLU attempts to fix the “dying” ReLU problem.

• Maxout subsumes (leaky) ReLU, but needs more params.

33

Maxout Networks

• Maxout units can learn the activation function.

[Goodfellow et al., ICML’13]

34

Learning: Backpropagation

• Regression => loss = squared error:

• Classification => loss = negative log-likelihood:

• Need to compute the gradient of the loss with respect to
parameters W, b:

J(W,b, x, y) = 1
2
hW ,b(x)− y

2

𝐽 W, 𝑏, 𝑥, 𝑦 = − ln 𝑝 𝑦 W, 𝑏, 𝑥

∂J
∂Wij

(l) = ?
∂J
∂bi

(l) = ?

35

Univariate Chain Rule for Differentiation

• Univariate Chain Rule:

• Example:

f = f ! g !h = f (g(h(x)))
∂f
∂x

=
∂f
∂g

∂g
∂h

∂h
∂x

f (g(x)) = 2g(x)2 −3g(x)+1
g(x) = x3 + 2x

36

Multivariate Chain Rule for Differentiation

• Multivariate Chain Rule:

• Example 1:

f = f (g1(x),g2 (x),…,gn (x))

∂f
∂x

=
∂f
∂gi

∂gi
∂xi=1

n

∑

f (g1(x),g2 (x)) = 2g1(x)
2 −3g1(x)g2 (x)+1

g1(x) = 3x
g2 (x) = x

2 + 2x

37

Backpropagation: Logistic Regression

• Consider layer nl to be the input to the softmax layer i.e.
softmax output layer is nl+1.

...

𝑎6
(,L)

𝑎7
(,L)

𝑎M
(,L)

𝑎6
(,LN6)

𝑎7
(,LN6)

𝑎O
(,LN6)

𝐽(𝐚(,LN6), 𝐲)

Softmax input
Softmax output

Cross-entropy

Softmax weights 𝑊(,L)

⋮

38

Backpropagation: Softmax Regression

• Consider layer nl to be the input to the softmax layer i.e.
softmax output layer is nl+1.

• Softmax weights stored in matrix 𝑊(,L).

• K classes => 𝑊(,L) =
−𝐰6% −
−𝐰7% −

⋮
−𝐰O% −

39

Backpropagation Algorithm: Softmax (1)

1. Feedforward pass on x to compute activations 𝐚(T) for layers
l = 1, 2, …, nl.

2. Compute softmax outputs 𝐚(,LN6) and objective 𝐽(𝐚(,LN6), 𝐲).

3. Let 𝐲 = 𝛿6 𝑦 , 𝛿7 𝑦 ,… , 𝛿O 𝑦 T be the one-hot vector
representation for label y.

4. Compute gradient with respect to softmax weights:

𝜕𝐽
𝜕𝑊(,L)

= (𝐚(,LN6) − 𝐲)𝐚(,L)%

40

Backpropagation Algorithm: Softmax (2)

5. Compute gradient with respect to softmax inputs:

6. For l = nl−1, nl−2, nl−3, ..., 2 compute:

7. Compute the partial derivatives of the cost

δ (l) = W (l)()
T
δ (l+1)()• !f (z(l))

∇
W (l)J = δ (l+1) a(l)()

T

J(W,b, x, y)

∇
b(l)
J = δ (l+1)

𝛿(,L) = 𝑊 ,L %
(𝐚 ,LN6 − 𝐲) ∘ 𝑓′(𝐳 ,L)

𝜕𝐽
𝜕𝐚(,L)

41

Backpropagation Algorithm: Softmax for
Dataset of m Examples

1. For softmax layer, compute:

2. For l = nl, nl−1, nl−2, ..., 2 compute:

3. Compute the partial derivatives of the cost

δ (l) = W (l)()
T
δ (l+1)()• !f (z(l))

∇
W (l)J = δ (l+1) a(l)()

T

J(W,b, x, y)

∇
b(l)
J = δ (l+1)

𝛿(,LN6) = (𝐚 ,LN6 − 𝐲)

/m .col_avg()

ground-truth label matrix

42

Graphs of Computations

• A function J can be expressed by the composition of
computational elements from a given set:
– logic operators.
– logistic operators.
– multiplication and additions.

• The function is defined by a graph of computations:
– A directed acyclic graph, with one node per computational element.
– Depth of architecture = depth of the graph = longest path from an

input node to an output node.

43

Logistic Regression as a Computation Graph

44

Neural Network as a Computation Graph

Inference =
Forward

Propagation

Learning =
Backward

Propagation

J

45

What is PyTorch

• A wrapper of NumPy that enables the use of GPUs.
– Tensors similar to NumPy’s ndarray, but can also be used on GPU.

• A flexible deep learning platform:
– Deep Neural Networks built on a tape-based autograd system:

• Building neural networks using and replaying a tape recorder.
• Reverse-mode auto-differentiation allows changing the

network at runtime:
– The computation graph is created on the fly.
– Backpropagation is done on the dynamically built graph.

http://pytorch.org/about/

46

http://pytorch.org/about/

Automatic Differentiation

• Deep learning packages offer automatic differentiation.

• PyTorch has the autograd package:
– torch.Tensor the main class; torch.Function class also important.

• When requires_grad = True, it tracks all operations on this
tensor (e.g. the parameters).

• An acyclic graph is build dynamically that encodes the history
of computations, i.e. compositions of functions.

– TensorFlow compiles static computation graphs.
• To compute the gradient, call backward() in a scalar valued

Tensor (e.g. the loss).

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

47

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

Tensors

• PyTorch tensors support the same operations as NumPy.
– Arithmetic.
– Slicing and Indexing.
– Broadcasting.
– Reshaping.
– Sum, Max, Argmax, …

• PyTorch tensors can be converted to NumPy tensors.
• NumPy tensors can be converted to PyTorch tensors.

http://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html

48

http://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html

Autograd

• The autograd package provides automatic differentiation
for all operations on Tensors.
– It is a define-by-run framework, which means that the gradient is

defined by how your code is run:
• Every single backprop iteration can be different.

• autograd.Tensor is the central class of the package.
– Once you finish your computation you can call .backward() and

have all the gradients computed automatically.

http://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

49

http://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

Tensor and Function

• A Tensor v has three important attributes:
– v.data holds the raw tensor value.
– v.grad is another Tensor which accumulates the gradient w.r.t. v:

• The gradient of what?
– The gradient of any variable u that uses v on which we call

u.backward().
• http://pytorch.org/docs/master/autograd.html

– v.grad_fn stores the Function that has created the Tensor v:
• http://pytorch.org/docs/master/autograd.html

50

http://pytorch.org/docs/master/autograd.html
http://pytorch.org/docs/master/autograd.html

Multivariate Chain Rule for Differentiation

• Multivariate Chain Rule:

• Example 2:

f = f (g1(x),g2 (x),…,gn (x))

∂f
∂x

=
∂f
∂gi

∂gi
∂xi=1

n

∑

51

𝑙𝑜𝑠𝑠 𝑥 = (ℎ6 𝑥 − ℎ7 𝑥)7
ℎ6 𝑥 = 2𝑔6 𝑥 + 1
ℎ7 𝑥 = 2𝑔6 𝑥 + 𝑔7 𝑥
𝑔6 𝑥 = 3𝑥
𝑔7 𝑥 = 𝑥7 + 𝑥

PyTorch

• Install using Anaconda:
– conda install pytorch torchvision -c pytorch
– http://pytorch.org

• Install from sources:
– https://github.com/pytorch/pytorch#from-source

• Tutorials:
– http://pytorch.org/tutorials/
– http://pytorch.org/tutorials/beginner/pytorch_with_examples.html

52

http://pytorch.org/
https://github.com/pytorch/pytorch
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/beginner/pytorch_with_examples.html

NNs for Classification in PyTorch: Version 1

53

NNs for Classification in PyTorch: Version 1

54

NNs for Classification in PyTorch: Version 1

55

NNs for Classification in PyTorch: Version 1

56

NNs for Classification in PyTorch: Version 2

57

NNs for Classification in PyTorch: Version 2

58

NNs for Classification in PyTorch: Version 2

59

NNs for Classification in PyTorch: Version 3

60

NNs for Classification in PyTorch: Version 3

61

NNs for Classification in PyTorch: Version 3

62

63

Why Deep Learning so Successful?

• Large amounts of (labeled) data:
– Performance improves with depth.
– Deep architectures need more data.

• Faster computation:
– Originally, GPUs for parallel computation.
– Google’s specialized TPUs for TensorFlow.
– Microsoft’s generic FPGAs for CNTK.

• https://www.microsoft.com/en-us/research/blog/microsoft-
unveils-project-brainwave/

• Better algorithms and architectures.

64

A Rapidly Evolving Field

• Used to think that training deep networks requires greedy layer-wise
pretraining:
– Unsupervised learning of representations with auto-encoders (2012).

• Better random weight initialization schemes now allow training deep
networks from scratch.

• Batch normalization allows for training even deeper models (2014).
– Replaced by the simpler Layer Normalization (2016).

• Residual learning allows training arbitrarily deep networks (2015).

• Attention-based Transformers replace RNNs and CNNs in NLP (2018):
– BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

(2019).

65

Derivation of Backpropagation Algorithm

66

Learning: Backpropagation

• Regularized sum of squares error:

• Gradient:

J(W,b, x, y) = 1
2
hW ,b(x)− y

2

J(W,b) = 1
m

J(W,b, x(k), y(k))
k=1

m

∑ +
λ
2

Wij
(l)()

2

j=1

sl+1

∑
i=1

sl

∑
l=1

nl−1

∑

∂J(W,b)
∂Wij

(l) =
1
m

∂J(W,b, x(k), y(k))
∂Wij

(l)
k=1

m

∑ +λWij
(l)

∂J(W,b)
∂bi

(l) =
1
m

∂J(W,b, x(k), y(k))
∂bi

(l)
k=1

m

∑

?

+1

67

Backpropagation

• Need to compute the gradient of the squared error with
respect to a single training example (x, y):

J(W,b, x, y) = 1
2
hW ,b(x)− y

2
=
1
2
a(nl) − y

2

∂J
∂Wij

(l) = ?
∂J
∂bi

(l) = ?

68

Univariate Chain Rule for Differentiation

• Univariate Chain Rule:

• Example:

f = f ! g !h = f (g(h(x)))
∂f
∂x

=
∂f
∂g

∂g
∂h

∂h
∂x

f (g(x)) = 2g(x)2 −3g(x)+1
g(x) = x3 + 2x

69

Multivariate Chain Rule for Differentiation

• Multivariate Chain Rule:

• Example:

f = f (g1(x),g2 (x),…,gn (x))

∂f
∂x

=
∂f
∂gi

∂gi
∂xi=1

n

∑

f (g1(x),g2 (x)) = 2g1(x)
2 −3g1(x)g2 (x)+1

g1(x) = 3x
g2 (x) = x

2 + 2x

70

Backpropagation:

• J depends on Wij
(l) only through ai

(l+1), which depends on Wij
(l)

only through zi
(l+1).

Wij
(l)

...aj
(l) ai

(l+1) a1
(nl)

J(W,b, x, y) = 1
2
a(nl) − y

2
ai
(l+1) = f (zi

(l+1))

zi
(l+1) = Wij

(l)aj
(l) + bi

(l)

j=1

sl

∑

Wij
(l)

71

Backpropagation:

• J depends on bi
(l) only through ai

(l+1), which depends on bi
(l) only

through zi
(l+1).

bi
(l)

...ai
(l+1) a1

(nl)

J(W,b, x, y) = 1
2
a(nl) − y

2
ai
(l+1) = f (zi

(l+1))

zi
(l+1) = Wij

(l)aj
(l) + bi

(l)

j=1

sl

∑

bi
(l)

+1

J

72

Backpropagation: andWij
(l) bi

(l)

∂J
∂Wij

(l) =
∂J

∂ai
(l+1) ×

∂ai
(l+1)

∂zi
(l+1) ×

∂zi
(l+1)

∂Wij
(l)

δi
(l+1)

= aj
(l)δi

(l+1)

aj
(l)

∂J
∂bi

(l) =
∂J

∂ai
(l+1) ×

∂ai
(l+1)

∂zi
(l+1) ×

∂zi
(l+1)

∂bi
(l)

δi
(l+1)

= δi
(l+1)

+1

How to compute
for all layers l ?

δi
(l)

73

Backpropagation:

• J depends on ai
(l) only through a1

(l+1), a2
(l+1), ...

δi
(l)

δi
(l) =

∂J
∂ai

(l) ×
∂ai

(l)

∂zi
(l) =

∂J
∂ai

(l) × #f (zi
(l))

?

...a2
(l+1) a1

(nl)ai
(l)

a1
(l+1)

a3
(l+1)

J

74

Backpropagation:

• J depends on ai
(l) only through a1

(l+1), a2
(l+1), ...

δi
(l)

∂J
∂ai

(l) =
∂J

∂aj
(l+1) ×

∂aj
(l+1)

∂ai
(l)

j=1

sl+1

∑ =
∂J

∂aj
(l+1) ×

∂aj
(l+1)

∂zj
(l+1)

j=1

sl+1

∑ ×
∂zj

(l+1)

∂ai
(l)

δ j
(l+1) Wji

(l)

δi
(l) =

∂J
∂ai

(l) × #f (zi
(l))

δi
(l)• Therefore, can be computed as:

= Wji
(l)δ j

(l+1)

j=1

sl+1

∑
"

#
$$

%

&
''×)f (zi

(l))

75

Backpropagation:

• Start computing δ’s for the output layer:

δi
(l)

δi
(nl) =

∂J
∂ai

(nl)
×
∂ai

(nl)

∂zi
(nl)

=
∂J
∂ai

(nl)
× #f (zi

(nl))

J = 1
2
a(nl) − y

2
=>

∂J
∂ai

(nl)
= ai

(nl) − yi()

δi
(nl) = ai

(nl) − yi()× #f (zi
(nl))

76

Backpropagation Algorithm

1. Feedforward pass on x to compute activations

2. For each output unit i compute:

3. For l = nl−1, nl−2, nl−3, ..., 2 compute:

4. Compute the partial derivatives of the cost

δi
(nl) = ai

(nl) − yi()× #f (zi
(nl))

δi
(l) = Wji

(l)δ j
(l+1)

j=1

sl+1

∑
"

#
$$

%

&
''×)f (zi

(l))

∂J
∂Wij

(l) = aj
(l)δi

(l+1) ∂J
∂bi

(l) = δi
(l+1)

ai
(l)

J(W,b, x, y)

77

Backpropagation Algorithm: Vectorization for
1 Example

1. Feedforward pass on x to compute activations

2. For last layer compute:

3. For l = nl−1, nl−2, nl−3, ..., 2 compute:

4. Compute the partial derivatives of the cost

δ (nl) = a(nl) − y()• "f (z(nl))

δ (l) = W (l)()
T
δ (l+1)()• !f (z(l))

∇
W (l)J = δ (l+1) a(l)()

T

ai
(l)

J(W,b, x, y)

∇
b(l)
J = δ (l+1)

78

Backpropagation Algorithm: Vectorization for
Dataset of m Examples

1. Feedforward pass on X to compute activations

2. For last layer compute:

3. For l = nl−1, nl−2, nl−3, ..., 2 compute:

4. Compute the partial derivatives of the cost

δ (nl) = a(nl) − y()• "f (z(nl))

δ (l) = W (l)()
T
δ (l+1)()• !f (z(l))

∇
W (l)J = δ (l+1) a(l)()

T

ai
(l)

J(W,b, x, y)

∇
b(l)
J = δ (l+1)/m .col_avg()

79

