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Lecture Plan

Lecture 11: ConvNets for NLP

1. Announcements (5 mins)

2. Intro to CNNs (20 mins)

3. Simple CNN for Sentence Classification: Yoon (2014) (20 mins)

4. CNN potpourri (5 mins)

5. Deep CNN for Sentence Classification: Conneau et al. (2017) 
(10 mins)

6. Quasi-recurrent Neural Networks (10 mins)
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Wanna read a book?

• Just out!
• You can buy a copy from the 

usual places
• Or you can read it at Stanford 

free:
• Go to 

http://library.Stanford.edu
• Search for “O’Reilly Safari”
• Then inside that collection, 

search for “PyTorch Rao”
• Remember to sign out

• Only 16 simultaneous users
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http://library.stanford.edu/


2. From RNNs to Convolutional Neural Nets 

• Recurrent neural nets cannot capture phrases without prefix 
context

• Often capture too much of last words in final vector

• E.g., softmax is often only calculated at the last step
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From RNNs to Convolutional Neural Nets 

• Main CNN/ConvNet idea: 
• What if we compute vectors for every possible word 

subsequence of a certain length?

• Example: “tentative deal reached to keep government open” 
computes vectors for:
• tentative deal reached, deal reached to, reached to keep, to 

keep government, keep government open

• Regardless of whether phrase is grammatical
• Not very linguistically or cognitively plausible

• Then group them afterwards (more soon)
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CNNs
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What is a convolution anyway?

• 1d discrete convolution generally:

• Convolution is classically used to extract features from images
• Models position-invariant identification
• Go to cs231n!

• 2d example à
• Yellow color and red numbers

show filter (=kernel) weights
• Green shows input
• Pink shows output

From Stanford UFLDL wiki
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tentative 0.2 0.1 −0.3 0.4
deal 0.5 0.2 −0.3 −0.1
reached −0.1 −0.3 −0.2 0.4
to 0.3 −0.3 0.1 0.1
keep 0.2 −0.3 0.4 0.2
government 0.1 0.2 −0.1 −0.1
open −0.4 −0.4 0.2 0.3
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A 1D convolution for text

Apply a filter (or kernel) of size 3

t,d,r −1.0
d,r,t −0.5
r,t,k −3.6
t,k,g −0.2
k,g,o 0.3

3 1 2 −3
−1 2 1 −3

1 1 −1 1



∅ 0.0 0.0 0.0 0.0
tentative 0.2 0.1 −0.3 0.4
deal 0.5 0.2 −0.3 −0.1
reached −0.1 −0.3 −0.2 0.4
to 0.3 −0.3 0.1 0.1
keep 0.2 −0.3 0.4 0.2
government 0.1 0.2 −0.1 −0.1
open −0.4 −0.4 0.2 0.3
∅ 0.0 0.0 0.0 0.0
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1D convolution for text with padding

Apply a filter (or kernel) of size 3

∅,t,d −0.6
t,d,r −1.0
d,r,t −0.5
r,t,k −3.6
t,k,g −0.2
k,g,o 0.3
g,o,∅ −0.5

3 1 2 −3
−1 2 1 −3

1 1 −1 1



∅ 0.0 0.0 0.0 0.0
tentative 0.2 0.1 −0.3 0.4
deal 0.5 0.2 −0.3 −0.1
reached −0.1 −0.3 −0.2 0.4
to 0.3 −0.3 0.1 0.1
keep 0.2 −0.3 0.4 0.2
government 0.1 0.2 −0.1 −0.1
open −0.4 −0.4 0.2 0.3
∅ 0.0 0.0 0.0 0.0
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3 channel 1D convolution with padding = 1

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4
t,d,r −1.0 1.6 −1.0
d,r,t −0.5 −0.1 0.8
r,t,k −3.6 0.3 0.3
t,k,g −0.2 0.1 1.2
k,g,o 0.3 0.6 0.9
g,o,∅ −0.5 −0.9 0.1

Could also use (zero)
padding = 2
Also called “wide convolution”

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1



∅ 0.0 0.0 0.0 0.0
tentative 0.2 0.1 −0.3 0.4
deal 0.5 0.2 −0.3 −0.1
reached −0.1 −0.3 −0.2 0.4
to 0.3 −0.3 0.1 0.1
keep 0.2 −0.3 0.4 0.2
government 0.1 0.2 −0.1 −0.1
open −0.4 −0.4 0.2 0.3
∅ 0.0 0.0 0.0 0.0
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conv1d, padded with max pooling over time

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4
t,d,r −1.0 1.6 −1.0
d,r,t −0.5 −0.1 0.8
r,t,k −3.6 0.3 0.3
t,k,g −0.2 0.1 1.2
k,g,o 0.3 0.6 0.9
g,o,∅ −0.5 −0.9 0.1

3 1 2 −3
−1 2 1 −3

1 1 −1 1

1 0 0 1
1 0 −1 −1
0 1 0 1

1 −1 2 −1
1 0 −1 3
0 2 2 1

max p 0.3 1.6 1.4



∅ 0.0 0.0 0.0 0.0
tentative 0.2 0.1 −0.3 0.4
deal 0.5 0.2 −0.3 −0.1
reached −0.1 −0.3 −0.2 0.4
to 0.3 −0.3 0.1 0.1
keep 0.2 −0.3 0.4 0.2
government 0.1 0.2 −0.1 −0.1
open −0.4 −0.4 0.2 0.3
∅ 0.0 0.0 0.0 0.0
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conv1d, padded with ave pooling over time

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4
t,d,r −1.0 1.6 −1.0
d,r,t −0.5 −0.1 0.8
r,t,k −3.6 0.3 0.3
t,k,g −0.2 0.1 1.2
k,g,o 0.3 0.6 0.9
g,o,∅ −0.5 −0.9 0.1

3 1 2 −3
−1 2 1 −3

1 1 −1 1

1 0 0 1
1 0 −1 −1
0 1 0 1

1 −1 2 −1
1 0 −1 3
0 2 2 1

ave p −0.87 0.26 0.53



In PyTorch

batch_size = 16
word_embed_size = 4
seq_len = 7
input = torch.randn(batch_size, word_embed_size, seq_len)
conv1 = Conv1d(in_channels=word_embed_size, out_channels=3,

kernel_size=3)  # can add: padding=1
hidden1 = conv1(input)
hidden2 = torch.max(hidden1, dim=2)  # max pool
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∅ 0.0 0.0 0.0 0.0
tentative 0.2 0.1 −0.3 0.4
deal 0.5 0.2 −0.3 −0.1
reached −0.1 −0.3 −0.2 0.4
to 0.3 −0.3 0.1 0.1
keep 0.2 −0.3 0.4 0.2
government 0.1 0.2 −0.1 −0.1
open −0.4 −0.4 0.2 0.3
∅ 0.0 0.0 0.0 0.0
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Other less useful notions: stride = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4
d,r,t −0.5 −0.1 0.8
t,k,g −0.2 0.1 1.2
g,o,∅ −0.5 −0.9 0.1

3 1 2 −3
−1 2 1 −3

1 1 −1 1

1 0 0 1
1 0 −1 −1
0 1 0 1

1 −1 2 −1
1 0 −1 3
0 2 2 1



∅ 0.0 0.0 0.0 0.0
tentative 0.2 0.1 −0.3 0.4
deal 0.5 0.2 −0.3 −0.1
reached −0.1 −0.3 −0.2 0.4
to 0.3 −0.3 0.1 0.1
keep 0.2 −0.3 0.4 0.2
government 0.1 0.2 −0.1 −0.1
open −0.4 −0.4 0.2 0.3
∅ 0.0 0.0 0.0 0.0

Less useful: local max pool, stride = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4
t,d,r −1.0 1.6 −1.0
d,r,t −0.5 −0.1 0.8
r,t,k −3.6 0.3 0.3
t,k,g −0.2 0.1 1.2
k,g,o 0.3 0.6 0.9
g,o,∅ −0.5 −0.9 0.1
∅ −Inf −Inf −Inf

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

∅,t,d,r −0.6 1.6 1.4
d,r,t,k −0.5 0.3 0.8
t,k,g,o 0.3 0.6 1.2
g,o,∅,∅ −0.5 −0.9 0.1



∅ 0.0 0.0 0.0 0.0
tentative 0.2 0.1 −0.3 0.4
deal 0.5 0.2 −0.3 −0.1
reached −0.1 −0.3 −0.2 0.4
to 0.3 −0.3 0.1 0.1
keep 0.2 −0.3 0.4 0.2
government 0.1 0.2 −0.1 −0.1
open −0.4 −0.4 0.2 0.3
∅ 0.0 0.0 0.0 0.0
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conv1d, k-max pooling over time, k = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4
t,d,r −1.0 1.6 −1.0
d,r,t −0.5 −0.1 0.8
r,t,k −3.6 0.3 0.3
t,k,g −0.2 0.1 1.2
k,g,o 0.3 0.6 0.9
g,o,∅ −0.5 −0.9 0.1

3 1 2 −3
−1 2 1 −3

1 1 −1 1

1 0 0 1
1 0 −1 −1
0 1 0 1

1 −1 2 −1
1 0 −1 3
0 2 2 1

2-max p −0.2 1.6 1.4
0.3 0.6 1.2



∅ 0.0 0.0 0.0 0.0
tentative 0.2 0.1 −0.3 0.4
deal 0.5 0.2 −0.3 −0.1
reached −0.1 −0.3 −0.2 0.4
to 0.3 −0.3 0.1 0.1
keep 0.2 −0.3 0.4 0.2
government 0.1 0.2 −0.1 −0.1
open −0.4 −0.4 0.2 0.3
∅ 0.0 0.0 0.0 0.0

Other somewhat useful notions: dilation = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4
t,d,r −1.0 1.6 −1.0
d,r,t −0.5 −0.1 0.8
r,t,k −3.6 0.3 0.3
t,k,g −0.2 0.1 1.2
k,g,o 0.3 0.6 0.9
g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

1,3,5 0.3 0.0
2,4,6
3,5,7

2 3 1

1 −1 −1

3 1 0

1 3 1

1 −1 −1

3 1 −1



3. Single Layer CNN for Sentence Classification

• Yoon Kim (2014): Convolutional Neural Networks for Sentence 
Classification. EMNLP 2014. https://arxiv.org/pdf/1408.5882.pdf
Code: https://arxiv.org/pdf/1408.5882.pdf [Theano!, etc.]

• A variant of convolutional NNs of Collobert, Weston et al. (2011)

• Goal: Sentence classification:
• Mainly positive or negative sentiment of a sentence
• Other  tasks like:
• Subjective or objective language sentence
• Question classification: about person, location, number, …

20

https://arxiv.org/pdf/1408.5882.pdf
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Single Layer CNN for Sentence Classification

• A simple use of one convolutional layer and pooling 
• Word vectors:  !" ∈ ℝ%
• Sentence: !&:( = !& ⊕ +, ⊕⋯⊕ !( (vectors concatenated)

• Concatenation of words in range: !":"./ (symmetric more common)

• Convolutional filter: 0 ∈ ℝ1% (over window of h words)

• Note, filter is a vector!
• Filter could be of size 2, 3, or 4:

the           country       of           my         birth
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Single layer CNN

• Filter w is applied to all possible windows (concatenated vectors)
• To compute feature (one channel) for CNN layer:

• Sentence:
• All possible windows of length h:
• Result is a feature map: 

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747
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Single layer CNN

• Filter w is applied to all possible windows (concatenated vectors)
• To compute feature (one channel) for CNN layer:

• Sentence:
• All possible windows of length h:
• Result is a feature map: 

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)
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ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
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ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
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image has red, green, and blue channels.
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Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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Multi-channel input idea

• Initialize with pre-trained word vectors (word2vec or Glove)

• Start with two copies

• Backprop into only one set, keep other “static”

• Both channel sets are added to ci before max-pooling
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Classification after one CNN layer

• First one convolution, followed by one max-pooling

• To obtain final feature vector:
(assuming m filters w)
• Used 100 feature maps each of sizes 3, 4, 5

• Simple final softmax layer 

Figure 1: Model architecture with two channels for an example sentence.
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nected softmax layer whose output is the probabil-
ity distribution over labels.
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that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2
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ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.
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For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
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From:
Zhang and Wallace 
(2015) A Sensitivity 
Analysis of (and 
Practitioners’ Guide 
to) Convolutional 
Neural Networks for 
Sentence 
Classification
https://arxiv.org/pdf/
1510.03820.pdf
(follow on paper, not 
famous, but a nice picture)
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Regularization

• Use Dropout: Create masking vector r of Bernoulli random 
variables with probability p (a hyperparameter) of being 1

• Delete features during training:

• Reasoning: Prevents co-adaptation (overfitting to seeing specific 
feature constellations) (Srivastava, Hinton, et al. 2014)

• At test time, no dropout, scale final vector by probability p

• Also: Constrain l2 norms of weight vectors of each class (row in 
softmax weight W(S)) to fixed number s (also a hyperparameter)

• If , then rescale it so that: 
• Not very common
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All hyperparameters in Kim (2014)

• Find hyperparameters based on dev set
• Nonlinearity: ReLU
• Window filter sizes h = 3, 4, 5
• Each filter size has 100 feature maps
• Dropout p = 0.5

• Kim (2014) reports 2–4% accuracy improvement from dropout
• L2 constraint s for rows of softmax, s = 3
• Mini batch size for SGD training: 50
• Word vectors: pre-trained with word2vec, k = 300

• During training, keep checking performance on dev set and pick 
highest accuracy weights for final evaluation
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Experiments

Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-rand 76.1 45.0 82.7 89.6 91.2 79.8 83.4
CNN-static 81.0 45.5 86.8 93.0 92.8 84.7 89.6
CNN-non-static 81.5 48.0 87.2 93.4 93.6 84.3 89.5
CNN-multichannel 81.1 47.4 88.1 93.2 92.2 85.0 89.4
RAE (Socher et al., 2011) 77.7 43.2 82.4 � � � 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 � � � �
RNTN (Socher et al., 2013) � 45.7 85.4 � � � �
DCNN (Kalchbrenner et al., 2014) � 48.5 86.8 � 93.0 � �
Paragraph-Vec (Le and Mikolov, 2014) � 48.7 87.8 � � � �
CCAE (Hermann and Blunsom, 2013) 77.8 � � � � � 87.2
Sent-Parser (Dong et al., 2014) 79.5 � � � � � 86.3
NBSVM (Wang and Manning, 2012) 79.4 � � 93.2 � 81.8 86.3
MNB (Wang and Manning, 2012) 79.0 � � 93.6 � 80.0 86.3
G-Dropout (Wang and Manning, 2013) 79.0 � � 93.4 � 82.1 86.1
F-Dropout (Wang and Manning, 2013) 79.1 � � 93.6 � 81.9 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 � � � � 81.4 86.1
CRF-PR (Yang and Cardie, 2014) � � � � � 82.7 �
SVMS (Silva et al., 2011) � � � � 95.0 � �

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from
Wikipedia (Socher et al., 2011). MV-RNN: Matrix-Vector Recursive Neural Network with parse trees (Socher et al., 2012).
RNTN: Recursive Neural Tensor Network with tensor-based feature function and parse trees (Socher et al., 2013). DCNN:
Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). Paragraph-Vec: Logistic regres-
sion on top of paragraph vectors (Le and Mikolov, 2014). CCAE: Combinatorial Category Autoencoders with combinatorial
category grammar operators (Hermann and Blunsom, 2013). Sent-Parser: Sentiment analysis-specific parser (Dong et al.,
2014). NBSVM, MNB: Naive Bayes SVM and Multinomial Naive Bayes with uni-bigrams from Wang and Manning (2012).
G-Dropout, F-Dropout: Gaussian Dropout and Fast Dropout from Wang and Manning (2013). Tree-CRF: Dependency tree
with Conditional Random Fields (Nakagawa et al., 2010). CRF-PR: Conditional Random Fields with Posterior Regularization
(Yang and Cardie, 2014). SVMS : SVM with uni-bi-trigrams, wh word, head word, POS, parser, hypernyms, and 60 hand-coded
rules as features from Silva et al. (2011).

to both channels, but gradients are back-
propagated only through one of the chan-
nels. Hence the model is able to fine-tune
one set of vectors while keeping the other
static. Both channels are initialized with
word2vec.

In order to disentangle the effect of the above
variations versus other random factors, we elim-
inate other sources of randomness—CV-fold as-
signment, initialization of unknown word vec-
tors, initialization of CNN parameters—by keep-
ing them uniform within each dataset.

4 Results and Discussion

Results of our models against other methods are
listed in table 2. Our baseline model with all ran-
domly initialized words (CNN-rand) does not per-
form well on its own. While we had expected per-
formance gains through the use of pre-trained vec-
tors, we were surprised at the magnitude of the
gains. Even a simple model with static vectors
(CNN-static) performs remarkably well, giving

competitive results against the more sophisticated
deep learning models that utilize complex pool-
ing schemes (Kalchbrenner et al., 2014) or require
parse trees to be computed beforehand (Socher
et al., 2013). These results suggest that the pre-
trained vectors are good, ‘universal’ feature ex-
tractors and can be utilized across datasets. Fine-
tuning the pre-trained vectors for each task gives
still further improvements (CNN-non-static).

4.1 Multichannel vs. Single Channel Models
We had initially hoped that the multichannel ar-
chitecture would prevent overfitting (by ensuring
that the learned vectors do not deviate too far
from the original values) and thus work better than
the single channel model, especially on smaller
datasets. The results, however, are mixed, and fur-
ther work on regularizing the fine-tuning process
is warranted. For instance, instead of using an
additional channel for the non-static portion, one
could maintain a single channel but employ extra
dimensions that are allowed to be modified during
training.
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Problem with comparison?

• Dropout gives 2–4 % accuracy improvement
• But several compared-to systems didn’t use dropout and would 

possibly gain equally from it

• Still seen as remarkable results from a simple architecture!

• Difference to window and RNN architectures we described in 
previous lectures: pooling, many filters, and dropout

• Some of these ideas can be used in RNNs too 
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4. Model comparison: Our growing toolkit

• Bag of Vectors: Surprisingly good baseline for simple 
classification problems. Especially if followed by a few ReLU
layers! (See paper: Deep Averaging Networks)

• Window Model: Good for single word classification for 
problems that do not need wide context. E.g., POS, NER.

• CNNs: good for classification, need zero padding for shorter 
phrases, hard to interpret, easy to parallelize on GPUs. Efficient 
and versatile

• Recurrent Neural Networks: Cognitively plausible (reading from 
left to right), not best for classification (if just use last state), 
much slower than CNNs, good for sequence tagging and 
classification, great for language models, can be amazing with 
attention mechanisms
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Gated units used vertically

• The gating/skipping that we saw in LSTMs and GRUs is a general 
idea, which is now used in a whole bunch of places

• You can also gate vertically

• Indeed the key idea – summing candidate update with shortcut 
connection – is needed for very deep networks to work

relu

Residual block
(He et al. ECCV 2016)

conv

conv
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F(x) + x

F(x)
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x
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Highway block
(Srivistava et al. NeurIPS 2015)
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Batch Normalization (BatchNorm)

[Ioffe and Szegedy. 2015. Batch normalization: Accelerating deep network 
training by reducing internal covariate shift. arXiv:1502.03167.]
• Often used in CNNs
• Transform the convolution output of a batch by scaling the 

activations to have zero mean and unit variance
• This is the familiar Z-transform of statistics
• But updated per batch so fluctuation don’t affect things much

• Use of BatchNorm makes models much less sensitive to 
parameter initialization, since outputs are automatically rescaled
• It also tends to make tuning of learning rates simpler

• PyTorch: nn.BatchNorm1d
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1 x 1 Convolutions

[Lin, Chen, and Yan. 2013. Network in network. arXiv:1312.4400.]

• Does this concept make sense?!? Yes.
• 1 x 1 convolutions, a.k.a. Network-in-network (NiN) 

connections, are convolutional kernels with kernel_size=1

• A 1�1 convolution gives you a fully connected linear layer 
across channels!

• It can be used to map from many channels to fewer channels

• 1�1 convolutions add additional neural network layers with 
very few additional parameters

• Unlike Fully Connected (FC) layers which add a lot of 
parameters
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CNN application: Translation

• One of the first successful neural 
machine translation efforts

• Uses CNN for encoding and 
RNN for decoding

• Kalchbrenner and Blunsom (2013)
“Recurrent Continuous Translation Models”
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g 

Figure 3: A graphical depiction of the two RCTMs. Arrows represent full matrix transformations while lines are
vector transformations corresponding to columns of weight matrices.

represented by Ee
i . For example, for a sufficiently

long sentence e, gram(Ee
2) = 2, gram(Ee

3) = 4,
gram(Ee

4) = 7. We denote by cgm(e, n) that matrix
Ee

i from the CSM that represents the n-grams of the
source sentence e.

The CGM can also be inverted to obtain a repre-
sentation for a sentence from the representation of
its n-grams. We denote by icgm the inverse CGM,
which depends on the size of the n-gram represen-
tation cgm(e, n) and on the target sentence length
m. The transformation icgm unfolds the n-gram
representation onto a representation of a target sen-
tence with m words. The architecture corresponds
to an inverted CGM or, equivalently, to an inverted
truncated CSM (Fig. 3). Given the transformations
cgm and icgm, we now detail the computation of the
RCTM II.

4.2 RCTM II

The RCTM II models the conditional probability
P (f|e) by factoring it as follows:

P (f|e) = P (f|m, e) · P (m|e) (9a)

=
mY

i=1

P (fi+1|f1:i,m, e) · P (m|e) (9b)

and computing the distributions P (fi+1|f1:i,m, e)
and P (m|e). The architecture of the RCTM II
comprises all the elements of the RCTM I together
with the following additional elements: a translation
transformation Tq⇥q and two sequences of weight
matrices (Ji)2is and (Hi)2is that are part of
the icgm3.

The computation of the RCTM II proceeds recur-
sively as follows:

Eg = cgm(e, 4) (10a)
Fg
:,j = �(T ·Eg

:,j) (10b)

F = icgm(Fg,m) (10c)
h1 = �(I · v(f1) + S · F:,1) (10d)

hi+1 = �(R · hi + I · v(fi+1) + S · F:,i+1) (10e)
oi+1 = O · hi (10f)

and the conditional distributions P (fi+1|f1:i, e) are
obtained from oi as in Eq. 4. Note how each re-
constructed vector F:,i is added successively to the
corresponding layer hi that predicts the target word
fi. The RCTM II is illustrated in Fig. 3.

3Just like r the value s is small and depends on the length
of the source and target sentences in the training set. See
Sect. 5.1.2.
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Learning Character-level Representations for 
Part-of-Speech Tagging
Dos Santos and Zadrozny (2014) 

• Convolution over 
characters to 
generate word 
embeddings

• Fixed window of 
word embeddings 
used for PoS
tagging
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Character-Aware 
Neural Language 
Models
(Kim, Jernite, Sontag, 
and Rush 2015) 

38

• Character-based word 
embedding

• Utilizes convolution, 
highway network, and 
LSTM



5. Very Deep Convolutional Networks for Text Classification 

• Conneau, Schwenk, Lecun, Barrault. EACL 2017.

• Starting point: sequence models (LSTMs) have been very 

dominant in NLP; also CNNs, Attention, etc., but all the models 

are basically not very deep – not like the deep models in Vision

• What happens when we build a vision-like system for NLP

• Works from the character level
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VD-CNN architecture
The system very much looks 
like a vision system in its 
design, similar to VGGnet or 
ResNet.

It looks very unlike a typical 
Deep Learning NLP system.

40 s = 1024 chars; 16d embed

Local pooling at each 
stage halves temporal 
resolution and 
doubles number of 
features

Result is constant size, 
since text is truncated 
or padded



Convolutional block in VD-CNN

• Each convolutional block is 
two convolutional layers, each 
followed by batch norm and a 
ReLU nonlinearity

• Convolutions of size 3
• Pad to preserve (or halve 

when local pooling) dimension
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• Use large text classification datasets
• Much bigger than the small datasets quite often used in NLP, such 

as in the Yoon Kim (2014) paper.
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6. RNNs are Slow …

• RNNs are a very standard building block for deep NLP

• But they parallelize badly and so are slow

• Idea: Take the best and parallelizable parts of RNNs and CNNs

• Quasi-Recurrent Neural Networks by
James Bradbury, Stephen Merity, Caiming Xiong & Richard 
Socher. ICLR 2017
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Quasi-Recurrent Neural Network
• Tries to combine the best of both model families

• Convolutions for parallelism across time:

à

• Element-wise gated pseudo-recurrence for parallelism across 
channels is done in pooling layer:

Under review as a conference paper at ICLR 2017
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Figure 1: Block diagrams showing the computation structure of the QRNN compared with typical
LSTM and CNN architectures. Red signifies convolutions or matrix multiplications; a continuous
block means that those computations can proceed in parallel. Blue signifies parameterless functions
that operate in parallel along the channel/feature dimension. LSTMs can be factored into (red) linear
blocks and (blue) elementwise blocks, but computation at each timestep still depends on the results
from the previous timestep.

2 MODEL

Each layer of a quasi-recurrent neural network consists of two kinds of subcomponents, analogous
to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT , the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z 2 RT⇥m of m-dimensional candidate vectors zt. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
given timestep to access information from future timesteps. That is, with filters of width k, each zt

depends only on xt�k+1 through xt. This concept, known as a masked convolution (van den Oord
et al., 2016), is implemented by padding the input to the left by the convolution’s filter size minus
one.

We apply additional convolutions with separate filter banks to obtain sequences of vectors for the
elementwise gates that are needed for the pooling function. While the candidate vectors are passed
through a tanh nonlinearity, the gates use an elementwise sigmoid. If the pooling function requires a
forget gate ft and an output gate ot at each timestep, the full set of computations in the convolutional
component is then:

Z = tanh(Wz ⇤X)

F = �(Wf ⇤X)

O = �(Wo ⇤X),

(1)

where Wz ,Wf , and Wo, each in Rk⇥n⇥m, are the convolutional filter banks and ⇤ denotes a
masked convolution along the timestep dimension. Note that if the filter width is 2, these equations
reduce to the LSTM-like

zt = tanh(W1
zxt�1 +W

2
zxt)

ft = �(W1
fxt�1 +W

2
fxt)

ot = �(W1
oxt�1 +W

2
oxt).

(2)

Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
which Balduzzi & Ghifary (2016) term “dynamic average pooling”, uses only a forget gate:

ht = ft � ht�1 + (1� ft)� zt, (3)

2
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elementwise gates that are needed for the pooling function. While the candidate vectors are passed
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Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
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Each layer of a quasi-recurrent neural network consists of two kinds of subcomponents, analogous
to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT , the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z 2 RT⇥m of m-dimensional candidate vectors zt. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
given timestep to access information from future timesteps. That is, with filters of width k, each zt

depends only on xt�k+1 through xt. This concept, known as a masked convolution (van den Oord
et al., 2016), is implemented by padding the input to the left by the convolution’s filter size minus
one.

We apply additional convolutions with separate filter banks to obtain sequences of vectors for the
elementwise gates that are needed for the pooling function. While the candidate vectors are passed
through a tanh nonlinearity, the gates use an elementwise sigmoid. If the pooling function requires a
forget gate ft and an output gate ot at each timestep, the full set of computations in the convolutional
component is then:

Z = tanh(Wz ⇤X)

F = �(Wf ⇤X)

O = �(Wo ⇤X),

(1)

where Wz ,Wf , and Wo, each in Rk⇥n⇥m, are the convolutional filter banks and ⇤ denotes a
masked convolution along the timestep dimension. Note that if the filter width is 2, these equations
reduce to the LSTM-like

zt = tanh(W1
zxt�1 +W

2
zxt)

ft = �(W1
fxt�1 +W

2
fxt)

ot = �(W1
oxt�1 +W

2
oxt).

(2)

Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
which Balduzzi & Ghifary (2016) term “dynamic average pooling”, uses only a forget gate:

ht = ft � ht�1 + (1� ft)� zt, (3)
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Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
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Q-RNN Experiments: Language Modeling

• James Bradbury, Stephen Merity, Caiming Xiong, Richard Socher 
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• Faster
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Figure 3: Visualization of the final QRNN layer’s hidden state vectors c
L
t in the IMDb task, with

timesteps along the vertical axis. Colors denote neuron activations. After an initial positive statement
“This movie is simply gorgeous” (off graph at timestep 9), timestep 117 triggers a reset of most
hidden states due to the phrase “not exactly a bad story” (soon after “main weakness is its story”).
Only at timestep 158, after “I recommend this movie to everyone, even if you’ve never played the
game”, do the hidden units recover.

each layer, it was more computationally convenient to use a multiple of 32. As the Penn Treebank
is a relatively small dataset, preventing overfitting is of considerable importance and a major focus
of recent research. It is not obvious in advance which of the many RNN regularization schemes
would perform well when applied to the QRNN. Our tests showed encouraging results from zoneout
applied to the QRNN’s recurrent pooling layer, implemented as described in Section 2.1.

The experimental settings largely followed the “medium” setup of Zaremba et al. (2014). Optimiza-
tion was performed by stochastic gradient descent (SGD) without momentum. The learning rate was
set at 1 for six epochs, then decayed by 0.95 for each subsequent epoch, for a total of 72 epochs.
We additionally used L2 regularization of 2 ⇥ 10�4 and rescaled gradients with norm above 10.
Zoneout was applied by performing dropout with ratio 0.1 on the forget gates of the QRNN, without
rescaling the output of the dropout function. Batches consist of 20 examples, each 105 timesteps.

Comparing our results on the gated QRNN with zoneout to the results of LSTMs with both ordinary
and variational dropout in Table 2, we see that the QRNN is highly competitive. The QRNN without
zoneout strongly outperforms both our medium LSTM and the medium LSTM of Zaremba et al.
(2014) which do not use recurrent dropout and is even competitive with variational LSTMs. This
may be due to the limited computational capacity that the QRNN’s pooling layer has relative to the
LSTM’s recurrent weights, providing structural regularization over the recurrence.

Without zoneout, early stopping based upon validation loss was required as the QRNN would begin
overfitting. By applying a small amount of zoneout (p = 0.1), no early stopping is required and
the QRNN achieves competitive levels of perplexity to the variational LSTM of Gal & Ghahramani

Model Parameters Validation Test
LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M � 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6

Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3

Table 2: Single model perplexity on validation and test sets for the Penn Treebank language model-
ing task. Lower is better. “Medium” refers to a two-layer network with 640 or 650 hidden units per
layer. All QRNN models include dropout of 0.5 on embeddings and between layers. MC refers to
Monte Carlo dropout averaging at test time.
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8 5.5x 8.8x 11.0x 12.4x 16.9x
16 5.5x 6.7x 7.8x 8.3x 10.8x
32 4.2x 4.5x 4.9x 4.9x 6.4x
64 3.0x 3.0x 3.0x 3.0x 3.7x

128 2.1x 1.9x 2.0x 2.0x 2.4x
256 1.4x 1.4x 1.3x 1.3x 1.3x

Figure 4: Left: Training speed for two-layer 640-unit PTB LM on a batch of 20 examples of 105
timesteps. “RNN” and “softmax” include the forward and backward times, while “optimization
overhead” includes gradient clipping, L2 regularization, and SGD computations.
Right: Inference speed advantage of a 320-unit QRNN layer alone over an equal-sized cuDNN
LSTM layer for data with the given batch size and sequence length. Training results are similar.

(2016), which had variational inference based dropout of 0.2 applied recurrently. The best perform-
ing variation also used Monte Carlo (MC) dropout averaging at test time of 1000 different masks,
making it computationally expensive to run.

When training on the PTB dataset with an NVIDIA K40 GPU, we found that the QRNN is sub-
stantially faster than a standard LSTM, even when comparing against the optimized cuDNN LSTM.
In Figure 4 we provide a breakdown of the time taken for Chainer’s default LSTM, the cuDNN
LSTM, and QRNN to perform a full forward and backward pass on a single batch during training of
the RNN LM on PTB. For both LSTM implementations, running time was dominated by the RNN
computations, even with the highly optimized cuDNN implementation. For the QRNN implementa-
tion, however, the “RNN” layers are no longer the bottleneck. Indeed, there are diminishing returns
from further optimization of the QRNN itself as the softmax and optimization overhead take equal
or greater time. Note that the softmax, over a vocabulary size of only 10,000 words, is relatively
small; for tasks with larger vocabularies, the softmax would likely dominate computation time.

It is also important to note that the cuDNN library’s RNN primitives do not natively support any form
of recurrent dropout. That is, running an LSTM that uses a state-of-the-art regularization scheme at
cuDNN-like speeds would likely require an entirely custom kernel.

3.3 CHARACTER-LEVEL NEURAL MACHINE TRANSLATION

We evaluate the sequence-to-sequence QRNN architecture described in 2.1 on a challenging neu-
ral machine translation task, IWSLT German–English spoken-domain translation, applying fully
character-level segmentation. This dataset consists of 209,772 sentence pairs of parallel training
data from transcribed TED and TEDx presentations, with a mean sentence length of 103 characters
for German and 93 for English. We remove training sentences with more than 300 characters in
English or German, and use a unified vocabulary of 187 Unicode code points.

Our best performance on a development set (TED.tst2013) was achieved using a four-layer encoder–
decoder QRNN with 320 units per layer, no dropout or L2 regularization, and gradient rescaling to
a maximum magnitude of 5. Inputs were supplied to the encoder reversed. The first encoder layer
used convolutional filter width k = 6, while the other encoder layers used k = 2. Optimization was
performed for 10 epochs on minibatches of 16 examples using Adam (Kingma & Ba, 2014) with
↵ = 0.001, �1 = 0.9, �2 = 0.999, and ✏ = 10�8. Decoding was performed using beam search with
beam width 8 and length normalization ↵ = 0.6. The modified log-probability ranking criterion is
provided in the appendix.

Results using this architecture were compared to an equal-sized four-layer encoder–decoder LSTM
with attention, applying dropout of 0.2. We again optimized using Adam; other hyperparameters
were equal to their values for the QRNN and the same beam search procedure was applied. Table
3 shows that the QRNN outperformed the character-level LSTM, almost matching the performance
of a word-level attentional baseline.
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Q-RNNs for Sentiment Analysis

• Often better and faster
than LSTMs 

• More interpretable

• Example:
• Initial positive review
• Review starts out positive

At 117: “not exactly a bad story”
At 158: “I recommend this movie to everyone, even if you’ve 
never played the game”
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Model Time / Epoch (s) Test Acc (%)
BSVM-bi (Wang & Manning, 2012) � 91.2
2 layer sequential BoW CNN (Johnson & Zhang, 2014) � 92.3
Ensemble of RNNs and NB-SVM (Mesnil et al., 2014) � 92.6
2-layer LSTM (Longpre et al., 2016) � 87.6
Residual 2-layer bi-LSTM (Longpre et al., 2016) � 90.1

Our models
Deeply connected 4-layer LSTM (cuDNN optimized) 480 90.9
Deeply connected 4-layer QRNN 150 91.4
D.C. 4-layer QRNN with k = 4 160 91.1

Table 1: Accuracy comparison on the IMDb binary sentiment classification task. All of our models
use 256 units per layer; all layers other than the first layer, whose filter width may vary, use filter
width k = 2. Train times are reported on a single NVIDIA K40 GPU. We exclude semi-supervised
models that conduct additional training on the unlabeled portion of the dataset.

3 EXPERIMENTS

We evaluate the performance of the QRNN on three different natural language tasks: document-level
sentiment classification, language modeling, and character-based neural machine translation. Our
QRNN models outperform LSTM-based models of equal hidden size on all three tasks while dra-
matically improving computation speed. Experiments were implemented in Chainer (Tokui et al.).

3.1 SENTIMENT CLASSIFICATION

We evaluate the QRNN architecture on a popular document-level sentiment classification bench-
mark, the IMDb movie review dataset (Maas et al., 2011). The dataset consists of a balanced sample
of 25,000 positive and 25,000 negative reviews, divided into equal-size train and test sets, with an
average document length of 231 words (Wang & Manning, 2012). We compare only to other results
that do not make use of additional unlabeled data (thus excluding e.g., Miyato et al. (2016)).

Our best performance on a held-out development set was achieved using a four-layer densely-
connected QRNN with 256 units per layer and word vectors initialized using 300-dimensional cased
GloVe embeddings (Pennington et al., 2014). Dropout of 0.3 was applied between layers, and we
used L2 regularization of 4 ⇥ 10�6. Optimization was performed on minibatches of 24 examples
using RMSprop (Tieleman & Hinton, 2012) with learning rate of 0.001, ↵ = 0.9, and ✏ = 10�8.

Small batch sizes and long sequence lengths provide an ideal situation for demonstrating the
QRNN’s performance advantages over traditional recurrent architectures. We observed a speedup
of 3.2x on IMDb train time per epoch compared to the optimized LSTM implementation provided
in NVIDIA’s cuDNN library. For specific batch sizes and sequence lengths, a 16x speed gain is
possible. Figure 4 provides extensive speed comparisons.

In Figure 3, we visualize the hidden state vectors cLt of the final QRNN layer on part of an example
from the IMDb dataset. Even without any post-processing, changes in the hidden state are visible
and interpretable in regards to the input. This is a consequence of the elementwise nature of the
recurrent pooling function, which delays direct interaction between different channels of the hidden
state until the computation of the next QRNN layer.

3.2 LANGUAGE MODELING

We replicate the language modeling experiment of Zaremba et al. (2014) and Gal & Ghahramani
(2016) to benchmark the QRNN architecture for natural language sequence prediction. The experi-
ment uses a standard preprocessed version of the Penn Treebank (PTB) by Mikolov et al. (2010).

We implemented a gated QRNN model with medium hidden size: 2 layers with 640 units in each
layer. Both QRNN layers use a convolutional filter width k of two timesteps. While the “medium”
models used in other work (Zaremba et al., 2014; Gal & Ghahramani, 2016) consist of 650 units in
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Figure 3: Visualization of the final QRNN layer’s hidden state vectors c
L
t in the IMDb task, with

timesteps along the vertical axis. Colors denote neuron activations. After an initial positive statement
“This movie is simply gorgeous” (off graph at timestep 9), timestep 117 triggers a reset of most
hidden states due to the phrase “not exactly a bad story” (soon after “main weakness is its story”).
Only at timestep 158, after “I recommend this movie to everyone, even if you’ve never played the
game”, do the hidden units recover.

each layer, it was more computationally convenient to use a multiple of 32. As the Penn Treebank
is a relatively small dataset, preventing overfitting is of considerable importance and a major focus
of recent research. It is not obvious in advance which of the many RNN regularization schemes
would perform well when applied to the QRNN. Our tests showed encouraging results from zoneout
applied to the QRNN’s recurrent pooling layer, implemented as described in Section 2.1.

The experimental settings largely followed the “medium” setup of Zaremba et al. (2014). Optimiza-
tion was performed by stochastic gradient descent (SGD) without momentum. The learning rate was
set at 1 for six epochs, then decayed by 0.95 for each subsequent epoch, for a total of 72 epochs.
We additionally used L2 regularization of 2 ⇥ 10�4 and rescaled gradients with norm above 10.
Zoneout was applied by performing dropout with ratio 0.1 on the forget gates of the QRNN, without
rescaling the output of the dropout function. Batches consist of 20 examples, each 105 timesteps.

Comparing our results on the gated QRNN with zoneout to the results of LSTMs with both ordinary
and variational dropout in Table 2, we see that the QRNN is highly competitive. The QRNN without
zoneout strongly outperforms both our medium LSTM and the medium LSTM of Zaremba et al.
(2014) which do not use recurrent dropout and is even competitive with variational LSTMs. This
may be due to the limited computational capacity that the QRNN’s pooling layer has relative to the
LSTM’s recurrent weights, providing structural regularization over the recurrence.

Without zoneout, early stopping based upon validation loss was required as the QRNN would begin
overfitting. By applying a small amount of zoneout (p = 0.1), no early stopping is required and
the QRNN achieves competitive levels of perplexity to the variational LSTM of Gal & Ghahramani

Model Parameters Validation Test
LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M � 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6

Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3

Table 2: Single model perplexity on validation and test sets for the Penn Treebank language model-
ing task. Lower is better. “Medium” refers to a two-layer network with 640 or 650 hidden units per
layer. All QRNN models include dropout of 0.5 on embeddings and between layers. MC refers to
Monte Carlo dropout averaging at test time.
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QRNN limitations

• Didn’t work for character-level LMs as well as LSTMs
• Trouble modeling much longer dependencies?

• Often need deeper network to get as good performance as LSTM
• They’re still faster when deeper
• Effectively they use depth as a substitute for true recurrence
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Problems with RNNs & Motivation for Transformers

• We want parallelization but RNNs are inherently sequential

• Despite GRUs and LSTMs, RNNs still gain from attention 
mechanism to deal with long range dependencies – path length 
between states grows with sequence otherwise

• But if attention gives us access to any state … maybe we don’t 
need the RNN?
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