Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning
Lecture 11: ConvNets for NLP

Lecture Plan

Lecture 11: ConvNets for NLP

Announcements (5 mins)

Intro to CNNs (20 mins)

Simple CNN for Sentence Classification: Yoon (2014) (20 mins)
CNN potpourri (5 mins)

Lk W

Deep CNN for Sentence Classification: Conneau et al. (2017)
(10 mins)

6. Quasi-recurrent Neural Networks (10 mins)

Wanna read a book?

O'REILLY"

Natural Language
Processing with

Pylorch

Build Intelligent Language Applications y
Using Deep Learning ,

Delip Rao & Brian McMahan

Just out!

* You can buy a copy from the
usual places

* Oryou can read it at Stanford
free:

e Goto

e Search for “O’Reilly Safari”

* Then inside that collection,
search for “PyTorch Rao”

e Remember to sign out
* Only 16 simultaneous users

http://library.stanford.edu/

2. From RNNs to Convolutional Neural Nets

e Recurrent neural nets cannot capture phrases without prefix
context

e Often capture too much of last words in final vector

1 1 5.5 4.5 2.5
3.5 s 61 >58 25
0.4 2.1 7 4 2.3
0.3 3.3 7 4.5 3.6
the country of my birth

e E.g., softmax is often only calculated at the last step

From RNNs to Convolutional Neural Nets

* Main CNN/ConvNet idea:

e What if we compute vectors for every possible word
subsequence of a certain length?

e Example: “tentative deal reached to keep government open”
computes vectors for:

 tentative deal reached, deal reached to, reached to keep, to
keep government, keep government open

e Regardless of whether phrase is grammatical
e Not very linguistically or cognitively plausible

e Then group them afterwards (more soon)

What is a convolution anyway?

1d discrete convolution generally: (f« 9)[n] = Z fln — m]g[m].
m=—M

e Convolution is classically used to extract features from images

* Models position-invariant identification

* Gotocs231n!

111,100
e 2dexample 2 0,1/1)1]0 4
e Yellow color and red numbers | Qi O L./1[1
show filter (=kernel) weights 0/{0(1/1]0
* Green shows input 0/1/1/0|0
* Pink shows output Image Convolved
Feature

From Stanford UFLDL wiki

A 1D convolution for text

0.1
0.2
-0.3

-0.3
-0.3
-0.2
0.3 -0.3 01 0.1
0.2 -0.3 04 0.2

01 02 -01 -01
m _04 -04 02 03

Apply a filter (or kernel) of size 3

tentative 0.2
0.5
reached -0.1

0.4
-0.1
0.4

3 1 2 -3
-1 2 1 -3
1 1 -1 1

10

1D convolution for text with padding

g
D S
'é)
9 2,
O

e o 0.3 0.6
EEE o5 02 03 -0l -1.0
01 -03 -02 0.4 05
EB o3 03 o1 ol 36
m 03 04 02 0.2
02 -01 -0.1 0.3

04 -0.4 0.5

Apply a filter (or kernel) of size 3
3 1 2 -3
-1 2 1 -3
11 1 1 -1 1

3 channel 1D convolution with padding =1

02 01 -03 04

m 5 02 -03 -01
01 -03 -02 04

0.5
_ 3 -03 01 01 36 03 03
T -
 government [IKKI

0
0.2 -0.3 04 0.2 -0.2 01 1.2
government 0

0.2 -01 -0.1 03 06 059

-04 -04 02 03 A/ -05 -09 0.1
Apply 3 filters of size 3

-06 0.2 14
-1.0 16 -1.0
-05 -0.1 0.8

Could also use (zero)
padding =2
Also called “wide convolution”

convld, padded with max pooling over time

-06 0.2 14
-1.0 16 -1.0
-05 -0.1 0.8
-36 03 0.3
-0.2 0.1 1.2

03 06 09
-05 -09 0.1

02 01 -03 04
0.2 -03 -0.1

01 -03 -02 04
EB o3 03 o1 ol
Coa o

1

0
02 -03 04 02
01 02 -01 -01

-04 -04 02 03
03 16 1.4
Apply 3 filters of size 3

government

Apply 3 filters of size 3

0.1
0.2
-0.3
-0.3
-0.3
0.2
-0.4

-0.3
-0.3
-0.2
0.1
0.4
-0.1

0.2 0.3

-0.6
-1.0
-0.5
-3.6
-0.2

0.3
-0.5

-0.87 0.26 0.53

convld, padded with ave pooling over time

0.2
1.6
-0.1
0.3
0.1
0.6
-0.9

In PyTorch

batch_size =16

word_embed size =4

seq_len=7

input = torch.randn(batch_size, word _embed_size, seq_len)

convl = Convld(in_channels=word _embed_size, out_channels=3,
kernel _size=3) # can add: padding=1

hiddenl = conv1(input)
hidden2 = torch.max(hidden1, dim=2) # max pool

15

02 01 -03 04

m 5 02 -03 -01
01 -03 -02 04

0.5
_ 3 -03 01 01
T -
 government VK

0
0.2 -0.3 04 0.2
government 0

0.2 -01 -0.1

-04 -04 02 03
Apply 3 filters of size 3

Other less useful notions: stride = 2

0.2
-0.1
0.1
-0.9

1.4
0.8
1.2
0.1

Less useful: local max pool, stride = 2

1.4
1.6 -1.0
-0.1 0.8
-36 03 0.3
-0.2 01 1.2

03 06 0.9
-0.5 -09 0.1
-Inf -Inf -Inf

¢;t;d _0-6 0.2

02 01 -03 04 t,d,r -1.0

m 5 02 -03 -01
01 -03 -02 04

0.5
_ 3 -03 01 01
T -
 government [IKKI

0
0.2 -0.3 04 0.2
government 0

0.2 -01 -0.1

-04 -04 02 03
Apply 3 filters of size 3

1.4
0.8

-0.6
d,rtk -0.5

1.6
0.3

3 1 2 -3 1 0 0 1 1 =12 =1
1 2 1 -3 00 I) R 1 0 -1 3 03 06 1.
0 BT N ol 1| @ i o 2 2 1 -0.5 -09 0.1

0.2
R o
0.3
0.2
0.1

government

-0.4

0.1
0.2
-0.3
-0.3
-0.3
0.2
-0.4

-0.3
-0.3
-0.2
0.1
0.4
-0.1
0.2

Apply 3 filters of size 3

0.4
-0.1
0.4
0.1
0.2
-0.1
0.3

-0.6
-1.0
-0.5
-3.6
-0.2

0.3
-0.5

S

-0.2
0.3

gq
o

1 -1
0
2

o =

0.2
1.6
-0.1
0.3
0.1
0.6
-0.9

1.6
0.6

2
-1
2

convld, k-max pooling over time, k = 2

1.4
-1.0
0.8
0.3
1.2
0.9
0.1

1.4
1.2

-1
3
1

0.2

0.5
01

-0.4

0.1
0.2
-0.3
-0.3
-0.3
0.2
-0.4

-0.3 0.4
-0.3 -0.1
-0.2 0.4
01 0.1
04 0.2
-0.1 -0.1
0.2 0.3

Apply 3 filters of size 3

1 1
-1 1
1 0

?,t,d -06 0.2 14

3 03
03 06 0.9
05 -09 0.1

I 1 -1 -1
3 1 O 3 1 -1

3. Single Layer CNN for Sentence Classification

20

Yoon Kim (2014): Convolutional Neural Networks for Sentence
Classification. EMNLP 2014.
Code: [Theano!, etc.]

A variant of convolutional NNs of Collobert, Weston et al. (2011)

Goal: Sentence classification:
* Mainly positive or negative sentiment of a sentence
* Other tasks like:

e Subjective or objective language sentence
e Question classification: about person, location, number, ...

https://arxiv.org/pdf/1408.5882.pdf
https://arxiv.org/pdf/1408.5882.pdf

Single Layer CNN for Sentence Classification

21

A simple use of one convolutional layer and pooling

Word vectors: x; € R¥

Sentence: X1, = X1 @ x, @ --- P X,, (vectors concatenated)
Concatenation of words in range: X;.;;; (symmetric more common)
Convolutional filter: w € R (over window of h words)
Note, filter is a vector!

Filter could be of size 2, 3, or 4:

11

5 I 4 I A I

the country of my birth

Single layer CNN

Filter w is applied to all possible windows (concatenated vectors)
e To compute feature (one channel) for CNN layer:

ci = f(wWw!Xsipn_1+0b)

e Sentence: X1., = X1 PXoD ... P x,
 All possible windows of length h: {x1.5,X2.p41, -+, Xp_hilm |
e Resultis a feature map: ¢ = [c1,¢2,...,Ch_pyq] € RPH

F N

2.4
.f\
N —

,
0.4 2.1] 4] 2.3
0.3 h3.3 ‘4.5 3.6 2972227777

the country of my birth

22

Single layer CNN

e Filter wis applied to all possible windows (concatenated vectors)
e To compute feature (one channel) for CNN layer:

ci = f(W' Xi.izn_1 +b)

e Sentence: X1., =X1 EXoP ... bXxX,
 All possible windows of length h: {X1.4,X2.h 01, -+, Xp_htlm}
* Resultisafeature map: ¢ = [c1,¢2,...,Cn_ni1] € R+l

1.1 2.4

—

F NN F NN

0.4 2.1 4 2.3

0.3 3.3 4.5 3.6 [0] [
\ p \ \ O

the country of my birth

o

|

o

23

Pooling and channels

24

Pooling: max-over-time pooling layer
ldea: capture most important activation (maximum over time)
From featuremap ¢ = |c1,¢2,...,Cn_pi1] € RPAH]

A

Pooled single number: C = maX{C}

Use multiple filter weights w

Useful to have different window sizes h

Because of max pooling ¢ = max{c}, length of c irrelevant
C = [Cl, Coy ..., Cn—h—l—l] c Rn—h+l

So we could have some filters that look at unigrams, bigrams,
tri-grams, 4-grams, etc.

Multi-channel input idea

e Initialize with pre-trained word vectors (word2vec or Glove)

Start with two copies

* Backprop into only one set, keep other “static”

Both channel sets are added to c; before max-pooling

25

Classification after one CNN layer
e First one convolution, followed by one max-pooling

A

e To obtain final feature vector: z = [¢1,..., ¢
(assuming m filters w)

* Used 100 feature maps each of sizes 3, 4,5

* Simple final softmax layer ¢ = softmax (W(S)z + b)

26

From:

Zhang and Wallace
(2015) A Sensitivity
Analysis of (and
Practitioners’ Guide
to) Convolutional
Neural Networks for
Sentence
Classification

https://arxiv.org/pdf/

1510.03820.pdf

(follow on paper, not
famous, but a nice picture)

27

+ activation function

softmax function
regularization
y /A inthislayer

convolution
1-max
v \ pooling
\ 3 region sizes: (2,3,4) 2 feature
Sentence matrix 2 filters for each region maps for 6 univariate
7x5 size each vectors
totally 6 filters region size concatenated

like
this
movie

very
much

1

IIIIIIl/

single feature
vector

together to form a

il

2 classes

https://arxiv.org/pdf/1510.03820.pdf

Regularization

28

Use Dropout: Create masking vector r of Bernoulli random
variables with probability p (a hyperparameter) of being 1

Delete features during training:

y = softmax (W(S> (roz)+ b)
Reasoning: Prevents co-adaptation (overfitting to seeing specific
feature constellations) (Srivastava, Hinton, et al. 2014)
At test time, no dropout, scale final vector by probability p

W) — pW(S)

Also: Constrain /, norms of weight vectors of each class (row in
softmax weight W) to fixed number s (also a hyperparameter)

If HWC(S>|| > s | then rescale it so that: HWC(S)H = s
Not very common

All hyperparameters in Kim (2014)

* Find hyperparameters based on dev set
 Nonlinearity: ReLU
e Window filter sizesh=3,4,5
e Each filter size has 100 feature maps
* Dropoutp=0.5
* Kim (2014) reports 2—4% accuracy improvement from dropout
e |2 constraint s for rows of softmax, s =3
e Mini batch size for SGD training: 50
e Word vectors: pre-trained with word2vec, k = 300

e During training, keep checking performance on dev set and pick
highest accuracy weights for final evaluation

29

Experiments

Model MR | SST-1 | SST-2 | Subj | TREC| CR | MPQA
CNN-rand 76.1 45.0 82.7 89.6 | 91.2 79.8 | 834
CNN-static 81.0 45.5 86.8 93.0 | 928 | 84.7 | 89.6
CNN-non-static 81.5 | 48.0 87.2 93.4 | 93.6 84.3 89.5
CNN-multichannel 81.1 47.4 88.1 93.2 92.2 | 85.0 | 894
RAE (Socher et al., 2011) 7.7 43.2 82.4 — — — 86.4
MV-RNN (Socher et al., 2012) 79.0 44 .4 82.9 — — — —
RNTN (Socher et al., 2013) — 45.7 85.4 — — — —
DCNN (Kalchbrenner et al., 2014) — 48.5 86.8 — 93.0 — —
Paragraph-Vec (Le and Mikolov, 2014) — 48.7 | 87.8 — — — —
CCAE (Hermann and Blunsom, 2013) 77.8 — — — — — 87.2
Sent-Parser (Dong et al., 2014) 79.5 — — — — — 86.3
NBSVM (Wang and Manning, 2012) 79.4 — — 93.2 — 81.8 | 86.3
MNB (Wang and Manning, 2012) 79.0 — — 93.6 — 80.0 | 86.3
G-Dropout (Wang and Manning, 2013) || 79.0 — — 93.4 — 82.1 | 86.1
F-Dropout (Wang and Manning, 2013) || 79.1 — — 93.6 — 81.9 | 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 — — — — 81.4 86.1
CRF-PR (Yang and Cardie, 2014) — — — — — 82.7 —
SVMg (Silva et al., 2011) — — — — 95.0 — —

30

Problem with comparison?

* Dropout gives 2—4 % accuracy improvement

e But several compared-to systems didn’t use dropout and would
possibly gain equally from it

e Still seen as remarkable results from a simple architecture!

e Difference to window and RNN architectures we described in
previous lectures: pooling, many filters, and dropout

e Some of these ideas can be used in RNNs too

31

4. Model comparison: Our growing toolkit

32

Bag of Vectors: Surprisingly good baseline for simple
classification problems. Especially if followed by a few RelLU
layers! (See paper: Deep Averaging Networks)

Window Model: Good for single word classification for
problems that do not need wide context. E.g., POS, NER.

CNNs: good for classification, need zero padding for shorter
phrases, hard to interpret, easy to parallelize on GPUs. Efficient
and versatile

Recurrent Neural Networks: Cognitively plausible (reading from
left to right), not best for classification (if just use last state),
much slower than CNNs, good for sequence tagging and
classification, great for language models, can be amazing with
attention mechanisms

Gated units used vertically

e The gating/skipping that we saw in LSTMs and GRUs is a general
idea, which is now used in a whole bunch of places

* You can also gate vertically

* |ndeed the key idea — summing candidate update with shortcut
connection —is needed for very deep networks to work

T relu T relu
F(x) + x F(x)T(x) + x.C(x)
F(x) T relu X F(x) T relu X
identity identity
X X
Residual block Highway block
(He et al. ECCV 2016) (Srivistava et al. NeurlPS 2015)

Note: pad x for conv so same size when add them

Batch Normalization (BatchNorm)

[loffe and Szegedy. 2015. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv:1502.03167.]

e Often used in CNNs

 Transform the convolution output of a batch by scaling the
activations to have zero mean and unit variance

* This is the familiar Z-transform of statistics
* But updated per batch so fluctuation don’t affect things much

e Use of BatchNorm makes models much less sensitive to
parameter initialization, since outputs are automatically rescaled

* |t also tends to make tuning of learning rates simpler
e PyTorch: nn.BatchNorm1d

34

1 x 1 Convolutions

[Lin, Chen, and Yan. 2013. Network in network. arXiv:1312.4400.]
 Does this concept make sense?!? Yes.

e 1 x 1 convolutions, a.k.a. Network-in-network (NiN)
connections, are convolutional kernels with kernel_size=1

e A1X1convolution gives you a fully connected linear layer
across channels!

e |t can be used to map from many channels to fewer channels

e 1 X1 convolutions add additional neural network layers with
very few additional parameters

e Unlike Fully Connected (FC) layers which add a lot of
parameters

Lecture 1, Slide 35

CNN application: Translation

e One of the first successful neural
machine translation efforts

e Uses CNN for encoding and
RNN for decoding

e Kalchbrenner and Blunsom (2013)
“Recurrent Continuous Translation Models”

Lecture 1, Slide 36

P(fle)
4 4 4 4 4 4
[V- Y/ v/ ¥ |
[J [] [] [) [] []
o [] [] [) [] []
> & & > P>
[J [] [J [) [] []
[J [] [] [) L] []
“w » A 4 vV
S
oe
e o o
cSMm

Learning Character-level Representations for

Part-of-Speech Tagging
Dos Santos and Zadrozny (2014)

e Convolution over
Convolution | R BN
generate word BN a1
embeddings AL

e Fixed window of
word embeddings
used for PoS wax) T T]

tagging d,

HEGEEH

..................

37

Character-Aware ™™ & rowmied T om
Neural Language

Models %T I
(Kim, Jernite, Sontag,
&
\(

and Rush 2015)

+ S
Highway netwaork
(T LI TITIIL]
« Character-based word i
embEdding nl | | I I | IT l] Max-over-time

a1 i pooling layer

« Utilizes convolution, ; - R -
highway network, and SESESES

LSTM Convolution layer
_/f with multiple filters

of different widths

‘ ‘ Concatenation
& of character

embeddings

moment the iabsurdity! is recognized

38

39

. Very Deep Convolutional Networks for Text Classification

Conneau, Schwenk, Lecun, Barrault. EACL 2017.

Starting point: sequence models (LSTMs) have been very
dominant in NLP; also CNNs, Attention, etc., but all the models
are basically not very deep — not like the deep models in Vision

What happens when we build a vision-like system for NLP
Works from the character level

40

VD-CNN architecture

The system very much looks
like a vision system in its
design, similar to VGGnet or
ResNet.

It looks very unlike a typical
Deep Learning NLP system.

Result is constant size,
since text is truncated
or padded optional

shortcut

optional
shortcut

optional
shortcut

optional
shortcut

optional
shortcut

Local pooling at each
stage halves temporal
resolution and
doubles number of cptional
features

optional
shortcut

s = 1024 chars; 16d embed

fc(2048, nClasses) ‘

A

fc(2048, 2048), RelU |

A

fc(4096, 2048), ReLU

T output: 512 x k

k-max pooling, k=8 ‘

A

Convolutional Block, 3, 512

A

Convolutional Block, 3, 512

T output: 512 x s/8
pool/2

!

Convolutional Block, 3, 256

!

Convolutional Block, 3, 256

output: 256 x s/4

pool/2

f

Convolutional Block, 3, 128

!

Convolutional Block, 3, 128

T output: 128 x s/2

pool/2

Convolutional Block, 3, 64

!

Convolutional Block, 3, 64

A output: 64 x s

3, Temp Conv, 64 |

A output: 16 x s

Lookup table, 16 |

? input: 1xs
Text

Convolutional block in VD-CNN

41

Each convolutional block is
two convolutional layers, each
followed by batch norm and a
ReLU nonlinearity

Convolutions of size 3

Pad to preserve (or halve
when local pooling) dimension

RelU

!

Temporal Batch Norm

!

3, Temp Conv, 256

T

RelU

!

Temporal Batch Norm

}

3, Temp Conv, 256

Experiments

e Use large text classification datasets

* Much bigger than the small datasets quite often used in NLP, such
as in the Yoon Kim (2014) paper.

Data set #Train #Test #Classes Classification Task

AG’s news 120k 7.6k 4 English news categorization
Sogou news 450k 60k 5 Chinese news categorization
DBPedia 560k 70k 14 Ontology classification

Yelp Review Polarity 560k 38k 2 Sentiment analysis

Yelp Review Full 650k S0k 5 Sentiment analysis

Yahoo! Answers 1 400k 60k 10 Topic classification
Amazon Review Full 3000k 650k 5 Sentiment analysis

Amazon Review Polarity 3 600k 400k 2 Sentiment analysis

42

Experiments

Corpus: AG Sogou DBP. YelpP. YelpF. Yah. A. Amz.F. Amz.P.
Method n-TFIDF n-TFIDF n-TFIDF ngrams Conv Conv+RNN Conv Conv
Author [Zhang] [Zhang] [Zhang] [Zhang] [Zhang] [Xiao] [Zhang] [Zhang]
Error 7.64 2.81 1.31 4.36 37.95* 28.26 40 43* 4.93*
[Yang] - - - - - 242 36.4 -

Table 4: Best published results from previous work. Zhang et al. (2015) best results use a Thesaurus data
augmentation technique (marked with an *). Yang et al. (2016)’s hierarchical methods is particularly

Depth Pooling AG Sogou DBP. YelpP. YelpF. Yah.A. Amz.F. Amz. P.
9 Convolution 10.17 422 1.64 501 37.63 28.10 3852 494
9 KMaxPooling 9.83 358 156 527 38.04 2824 39.19 5.69
9 MaxPooling 9.17 370 135 488 3673 27.60 3795 4.70
17 Convolution 929 394 142 496 36.10 27.35 37.50 453
17 KMaxPooling 939 351 1.61 505 3741 28.25 38.81 543
17 MaxPooling 888 354 140 450 3607 2751 37.39 441
29 Convolution 936 361 136 435 3528 27.17 37.58 4.28
29 KMaxPooling 8.67 3.18 141 463 3700 27.16 38.39 4.94
29 MaxPooling 873 336 129 428 3574 2657 37.00 431

Table 5: Testing error of our models on the 8 data sets. No data preprocessing or augmentation is used.
43

6. RNNs are Slow ...

e RNNSs are a very standard building block for deep NLP

e But they parallelize badly and so are slow

e |dea: Take the best and parallelizable parts of RNNs and CNNs

e (Quasi-Recurrent Neural Networks by
James Bradbury, Stephen Merity, Caiming Xiong & Richard
Socher. ICLR 2017

44

Quasi-Recurrent Neural Network

e Tries to combine the best of both model families

LSTM CNN QRNN
Linear Convolution # Convolution #
LSTM/Linear Max-Pool | | fo-Pool [— — — — — —
Linear Convolution # Convoltion #
LSTM/Linear Max-Pool | | fo-Pool [— — — — — —

e Convolutions for parallelism across time:

f, = o(Wixs—1 + Wixy) 2 F =0(W;xX)
o; = U(Wixt—l —+ WgXt). O = U(Wo * X)7

Convolutions compute candidate, forget & output gates

 Element-wise gated pseudo-recurrence for parallelism across
channels is done in pooling layer: h, = f, ©h; ; + (1 — f;) ® z,,

Lecture 1, Slide 45

Q-RNN Experiments: Language Modeling

e James Bradbury, Stephen Merity, Caiming Xiong, Richard Socher
(ICLR 2017)

Model | Parameters Validation Test
[

BEtte r LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M — 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6
Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3

500 -

mmm RNN Sequence length
Softmax - 32 64 128 256 512

Optimization Overhead 8 | 5.5x 88x 1L0x 124x 16.9x

@ 16 |55x 67x 7.8x 83x 10.8x
L. 732 |42x 45x 49x 49% 64x
£ S 64]30x 30x 3.0x 3.0x 3.7x
F 100 . S 128 | 21x 19x 20x 20x 24x

256 | 14x 1.4x 1.3x 1.3x 1.3x

LSTM LSTM (cuDNN) QRNN

46

Q-RNNs for Sentiment Analysis

e (Often better and faster Model | Time/Epoch (s) Test Ace (%)
BSVM-bi (Wang & Manning, 2012) - 91.2
21 tial BoW CNN (Joh & Zhang, 2014) — 92.3
than LSTMs B ot S ot ey |
2-layer LSTM (Longpre et al., 2016) — 87.6
Residual 2-layer bi-LSTM (Longpre et al., 2016) — 90.1
Our models
Deeply connected 4-layer LSTM (cuDNN optimized) 480 90.9
Deeply connected 4-layer QRNN 150 91.4
D.C. 4-layer QRNN with k = 4 160 91.1
 More interpretable . | | o
P o IHUEL L D RERR AWML LS W TR L |
oo M VRRILE EFREIRTRRE A BT ROEET 1 AR (IR
R LU Y AR AR | ¥ AT 0 GER LD I T
S S e e
e Xa m e: ngO— ! | l ! i]
P g 0 LR
e Initial positive review - HIEREHETEEEAREL T RUIRATLO0NE T | UL
0 50 100 150 200 250
Hidden units

* Review starts out positive
At 117: “not exactly a bad story”
At 158: “I recommend this movie to everyone, even if you’ve

., hnever played the game”

QRNN limitations

e Didn’t work for character-level LMs as well as LSTMs
* Trouble modeling much longer dependencies?

e Often need deeper network to get as good performance as LSTM
* They're still faster when deeper
» Effectively they use depth as a substitute for true recurrence

48

Problems with RNNs & Motivation for Transformers

e We want parallelization but RNNs are inherently sequential

LSTM

Linear #

LsSTM/Linear —{ - M

Linear #

LsST™M/Linear — M- MM |

v v v

e Despite GRUs and LSTMs, RNNs still gain from attention
mechanism to deal with long range dependencies — path length
between states grows with sequence otherwise

e Butif attention gives us access to any state ... maybe we don’t
need the RNN? ~=

—_

/\ ‘/r

49

