Natural Language Processing with Deep Learning CS224N/Ling284

Lecture 8: Machine Translation, Sequence-to-sequence and Attention

Abigail See

Overview

Today we will:

• Introduce a <u>new task</u>: Machine Translation

is a major use-case of

• Introduce a <u>new neural architecture</u>: sequence-to-sequence

is improved by

• Introduce a <u>new neural technique</u>: attention

Section 1: Pre-Neural Machine Translation

Machine Translation

<u>Machine Translation (MT)</u> is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

- Rousseau

1950s: Early Machine Translation

Machine Translation research began in the early 1950s.

 Russian → English (motivated by the Cold War!)

1 minute video showing 1954 MT: https://youtu.be/K-HfpsHPmvw

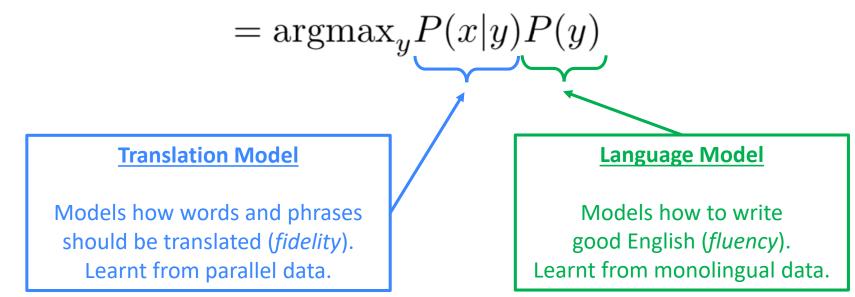
• Systems were mostly rule-based, using a bilingual dictionary to map Russian words to their English counterparts

1990s-2010s: Statistical Machine Translation

- <u>Core idea</u>: Learn a probabilistic model from data
- Suppose we're translating French \rightarrow English.
- We want to find best English sentence y, given French sentence x

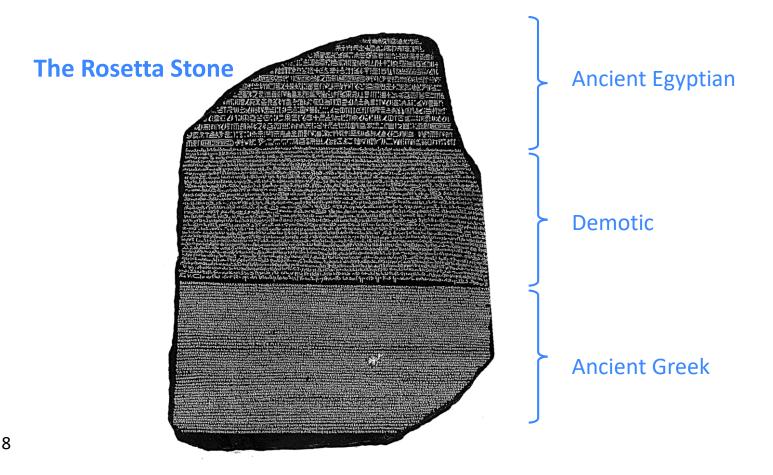
 $\mathrm{argmax}_y P(y|x)$

 Use Bayes Rule to break this down into two components to be learnt separately:



1990s-2010s: Statistical Machine Translation

- <u>Question</u>: How to learn translation model P(x|y) ?
- First, need large amount of parallel data (e.g. pairs of human-translated French/English sentences)



Learning alignment for SMT

- <u>Question</u>: How to learn translation model P(x|y) from the parallel corpus?
- Break it down further: we actually want to consider

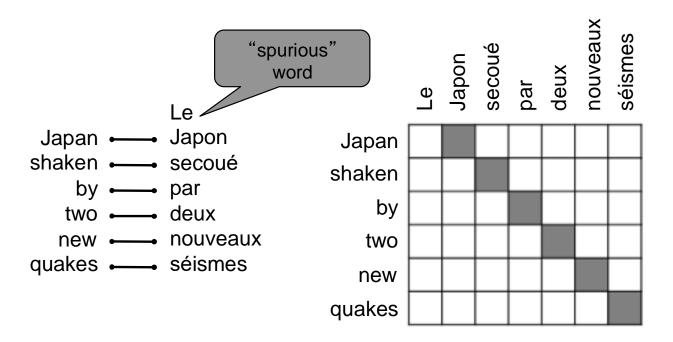
P(x, a|y)

where *a* is the alignment, i.e. word-level correspondence between French sentence *x* and English sentence *y*

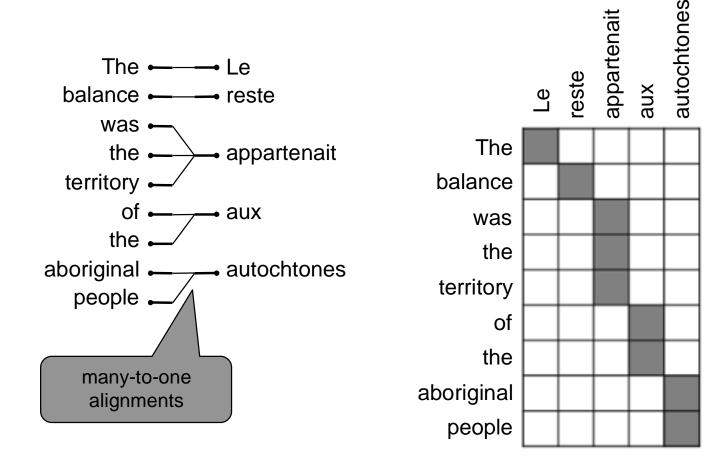
What is alignment?

Alignment is the correspondence between particular words in the translated sentence pair.

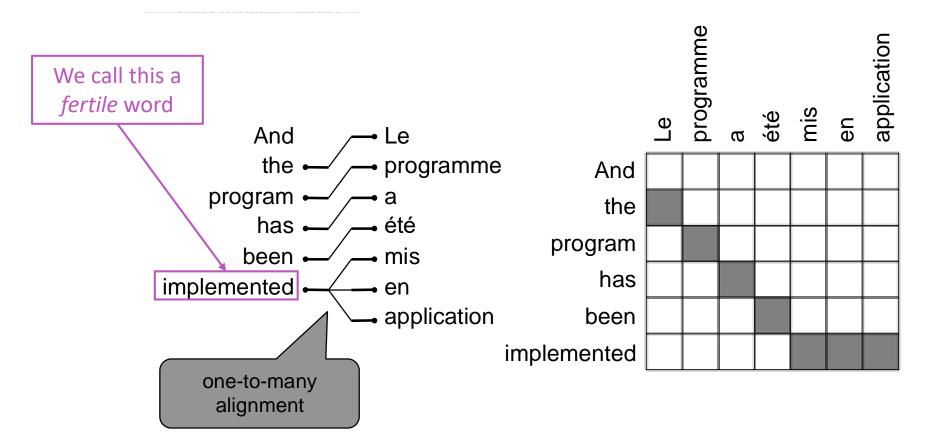
• Note: Some words have no counterpart



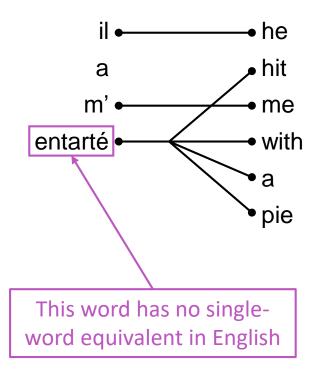
Alignment can be many-to-one

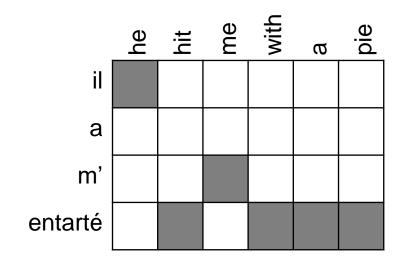


Alignment can be one-to-many

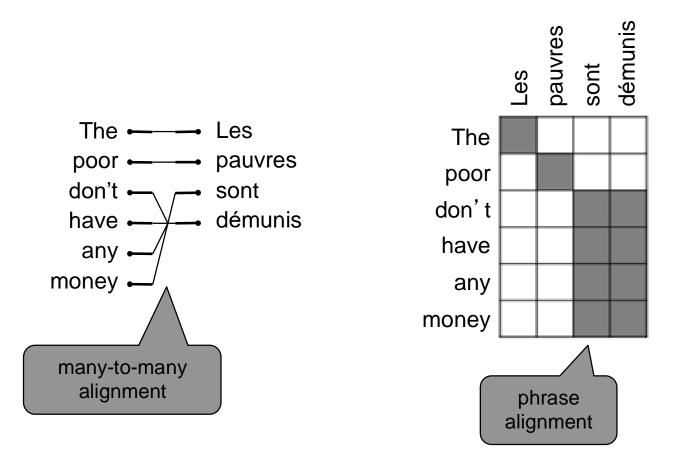


Some words are very fertile!





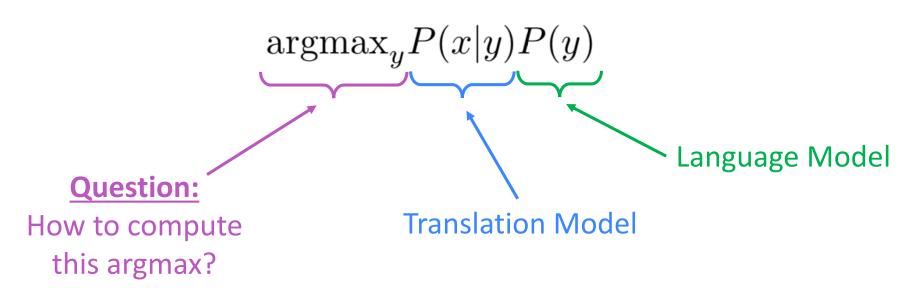
Alignment can be many-to-many (phrase-level)



Learning alignment for SMT

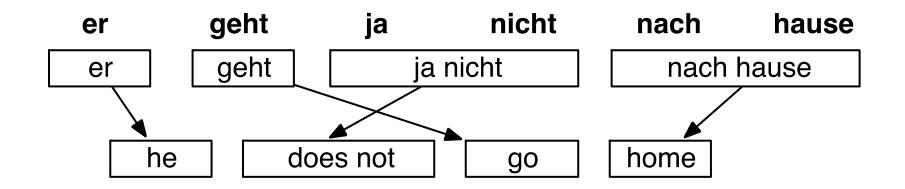
- We learn P(x, a|y) as a combination of many factors, including:
 - Probability of particular words aligning (also depends on position in sent)
 - Probability of particular words having particular fertility (number of corresponding words)
 - etc.

Decoding for SMT

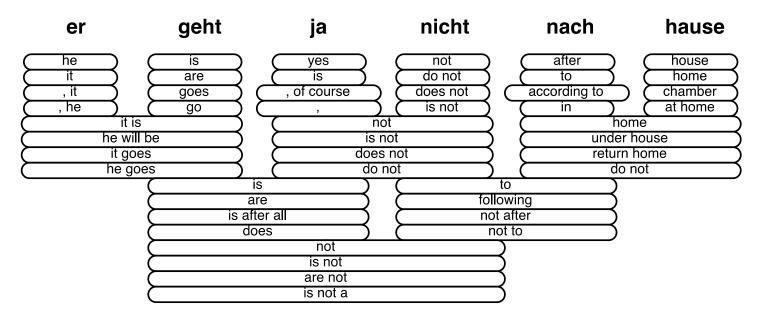


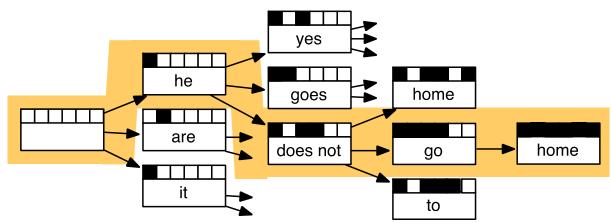
- We could enumerate every possible y and calculate the probability? → Too expensive!
- <u>Answer</u>: Use a heuristic search algorithm to search for the best translation, discarding hypotheses that are too low-probability
- This process is called *decoding*

Decoding for SMT



Decoding for SMT





Source: "Statistical Machine Translation", Chapter 6, Koehn, 2009. <u>https://www.cambridge.org/core/books/statistical-machine-translation/94EADF9F680558E13BE759997553CDE5</u>

1990s-2010s: Statistical Machine Translation

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details we haven't mentioned here
 - Systems had many separately-designed subcomponents
 - Lots of feature engineering
 - Need to design features to capture particular language phenomena
 - Require compiling and maintaining extra resources
 - Like tables of equivalent phrases
 - Lots of human effort to maintain
 - Repeated effort for each language pair!

Section 2: Neural Machine Translation

2014

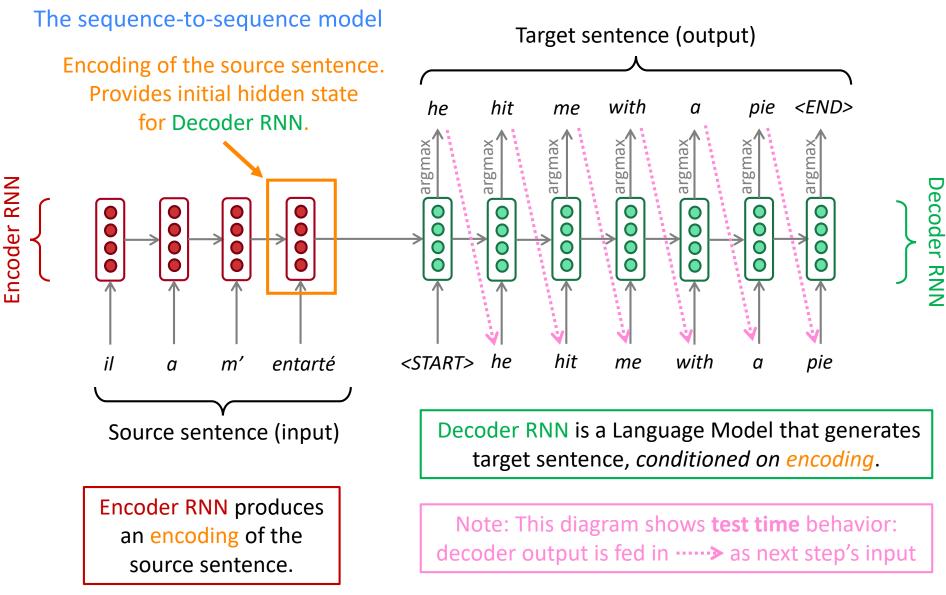
(dramatic reenactment)

2014 anslation Milesearch (dramatic reenactment)

What is Neural Machine Translation?

- Neural Machine Translation (NMT) is a way to do Machine Translation with a *single neural network*
- The neural network architecture is called sequence-to-sequence (aka seq2seq) and it involves two RNNs.

Neural Machine Translation (NMT)



Sequence-to-sequence is versatile!

- Sequence-to-sequence is useful for *more than just MT*
- Many NLP tasks can be phrased as sequence-to-sequence:
 - Summarization (long text \rightarrow short text)
 - Dialogue (previous utterances \rightarrow next utterance)
 - Parsing (input text → output parse as sequence)
 - Code generation (natural language \rightarrow Python code)

Neural Machine Translation (NMT)

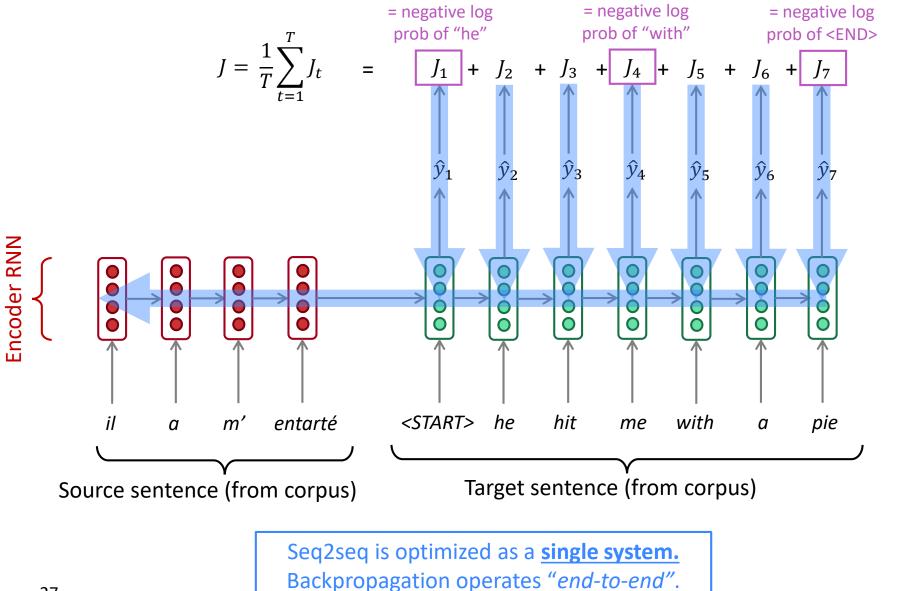
- The sequence-to-sequence model is an example of a **Conditional Language Model**.
 - Language Model because the decoder is predicting the next word of the target sentence *y*
 - Conditional because its predictions are *also* conditioned on the source sentence x
- NMT directly calculates P(y|x):

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots P(y_T|y_1, \dots, y_{T-1}, x)$$

Probability of next target word, given target words so far and source sentence *x*

- **<u>Question</u>**: How to train a NMT system?
- <u>Answer</u>: Get a big parallel corpus...

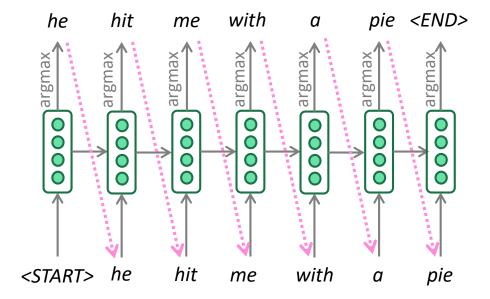
Training a Neural Machine Translation system



ecoder RNN

Greedy decoding

• We saw how to generate (or "decode") the target sentence by taking argmax on each step of the decoder



- This is greedy decoding (take most probable word on each step)
- Problems with this method?

Problems with greedy decoding

- Greedy decoding has no way to undo decisions!
 - Input: *il a m'entarté* (he hit me with a pie)
 - \rightarrow he _____
 - \rightarrow he hit _____
 - \rightarrow he hit a _____

(whoops! no going back now...)

• How to fix this?

Exhaustive search decoding

• Ideally we want to find a (length *T*) translation *y* that maximizes

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$
$$= \prod_{t=1}^T P(y_t|y_1, \dots, y_{t-1}, x)$$

- We could try computing all possible sequences y
 - This means that on each step t of the decoder, we're tracking V^t possible partial translations, where V is vocab size
 - This O(V^T) complexity is far too expensive!

Beam search decoding

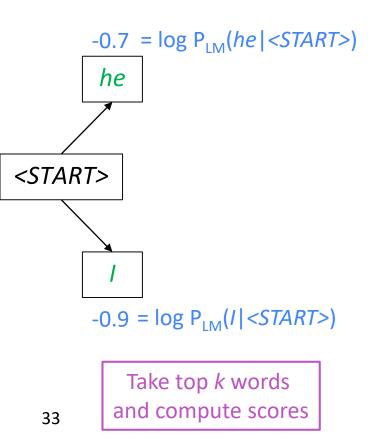
- <u>Core idea</u>: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
 - k is the beam size (in practice around 5 to 10)
- A hypothesis y_1, \ldots, y_t has a score which is its log probability: $\operatorname{score}(y_1, \ldots, y_t) = \log P_{\mathrm{LM}}(y_1, \ldots, y_t | x) = \sum_{i=1}^t \log P_{\mathrm{LM}}(y_i | y_1, \ldots, y_{i-1}, x)$
 - Scores are all negative, and higher score is better
 - We search for high-scoring hypotheses, tracking top k on each step
- Beam search is not guaranteed to find optimal solution
- But much more efficient than exhaustive search!

Beam size = k = 2. Blue numbers = $score(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$

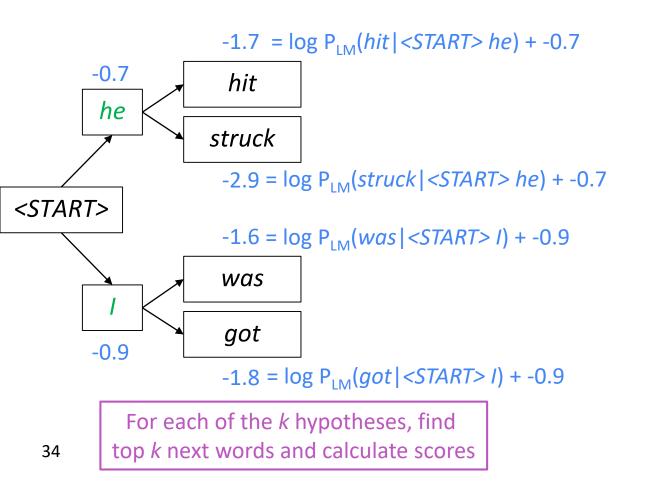
<START>

Calculate prob dist of next word

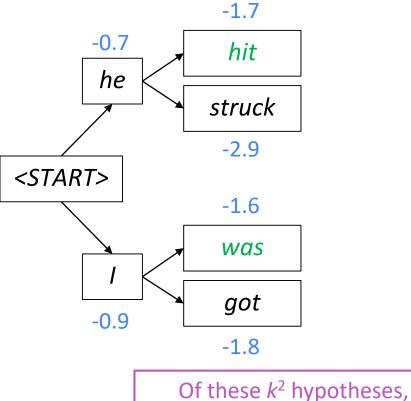
Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

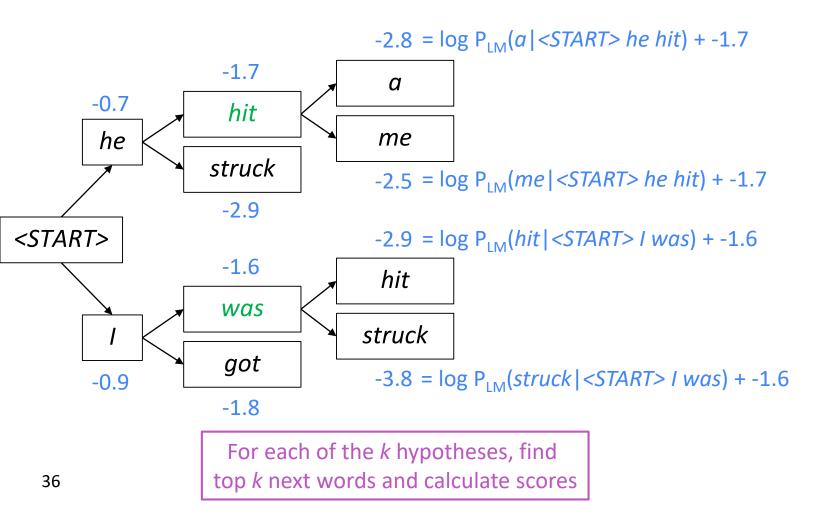


Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{n} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

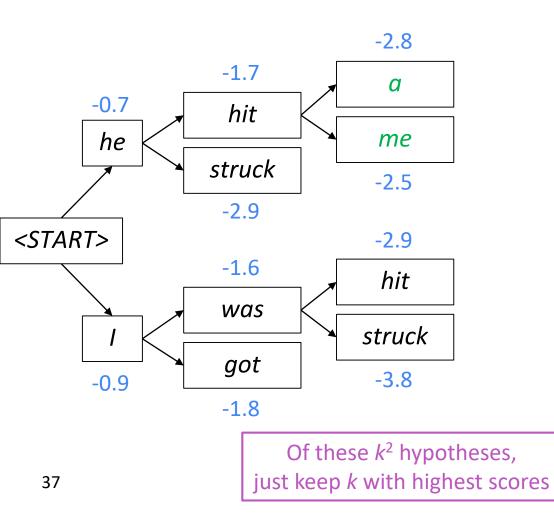


just keep k with highest scores

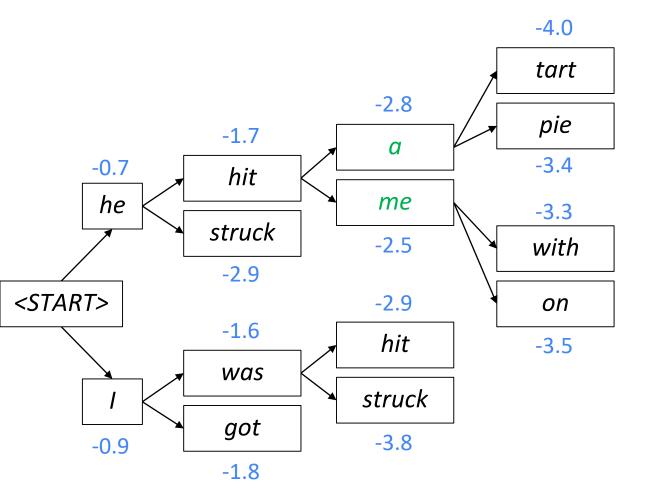
Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

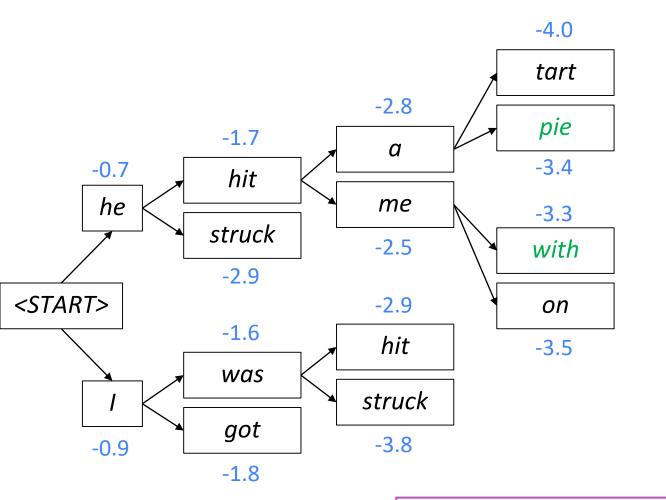


Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



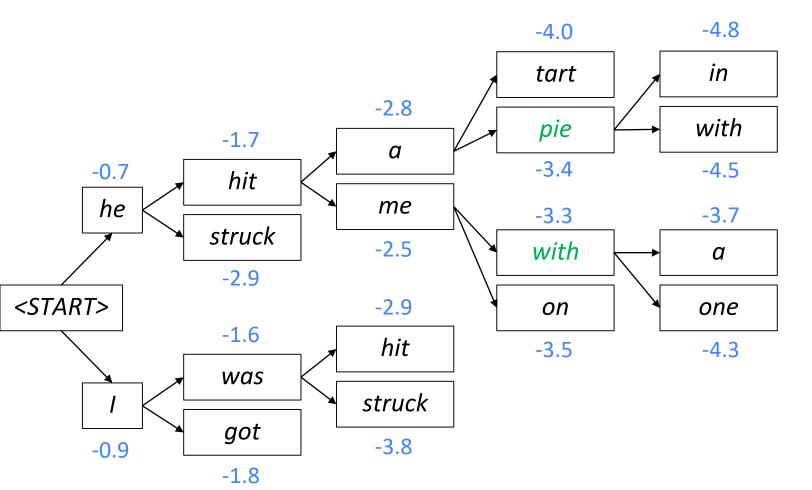
For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



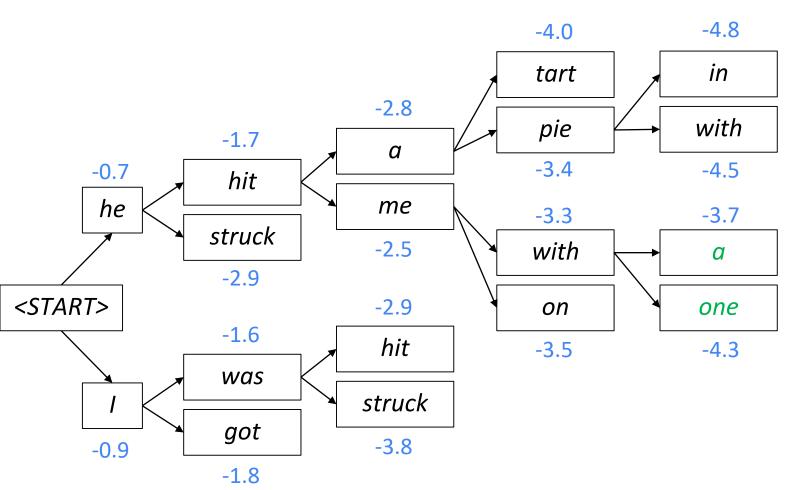
Of these k^2 hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



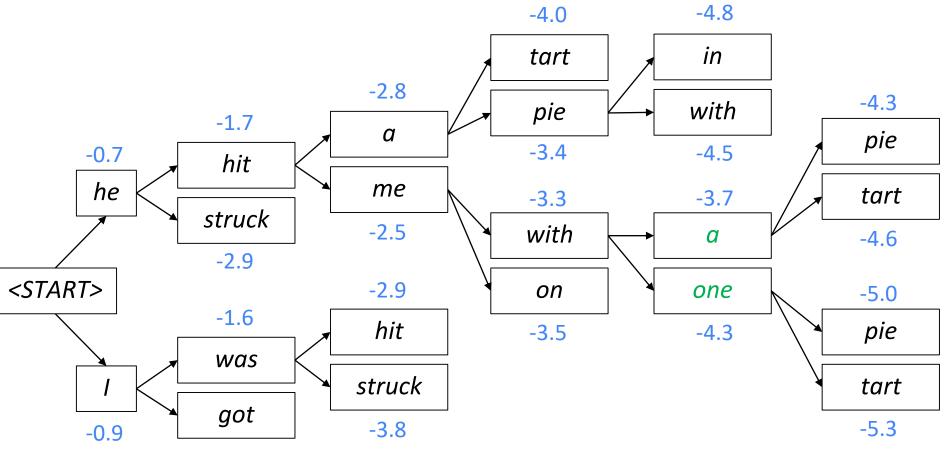
For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



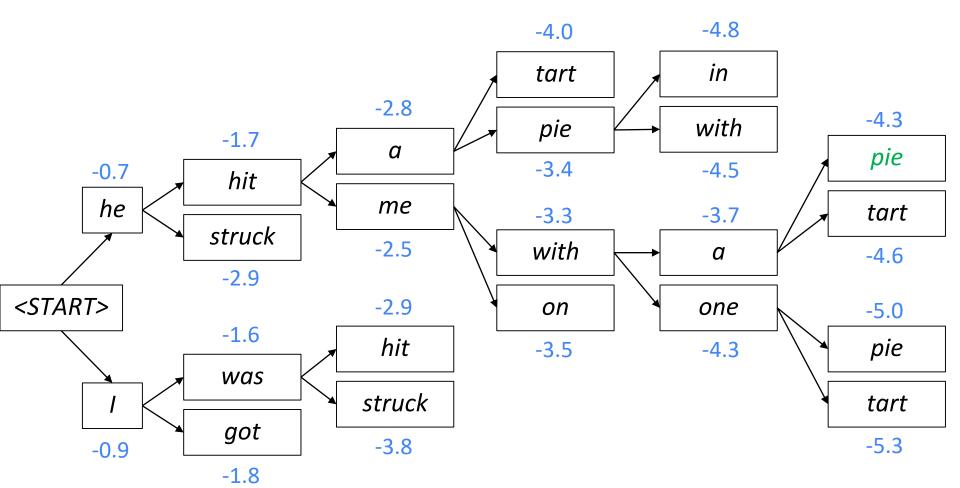
Of these k² hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



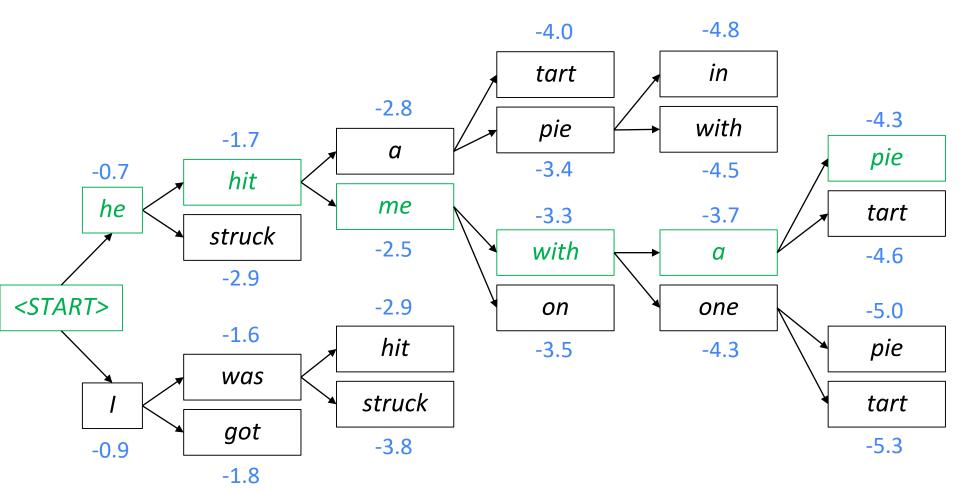
For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



This is the top-scoring hypothesis!

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



Backtrack to obtain the full hypothesis

Beam search decoding: stopping criterion

- In greedy decoding, usually we decode until the model produces a <END> token
 - <u>For example:</u> *<START> he hit me with a pie <END>*
- In beam search decoding, different hypotheses may produce <END> tokens on different timesteps
 - When a hypothesis produces <END>, that hypothesis is complete.
 - Place it aside and continue exploring other hypotheses via beam search.
- Usually we continue beam search until:
 - We reach timestep T (where T is some pre-defined cutoff), or
 - We have at least *n* completed hypotheses (where *n* is pre-defined cutoff)

Beam search decoding: finishing up

- We have our list of completed hypotheses.
- How to select top one with highest score?
- Each hypothesis y_1, \ldots, y_t on our list has a score $\operatorname{score}(y_1, \ldots, y_t) = \log P_{\operatorname{LM}}(y_1, \ldots, y_t | x) = \sum_{i=1}^t \log P_{\operatorname{LM}}(y_i | y_1, \ldots, y_{i-1}, x)$
- <u>Problem with this:</u> longer hypotheses have lower scores
- <u>Fix:</u> Normalize by length. Use this to select top one instead:

$$\frac{1}{t}\sum_{i=1}^t \log P_{\mathrm{LM}}(y_i|y_1,\ldots,y_{i-1},x)$$

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

Disadvantages of NMT?

Compared to SMT:

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation
 - Safety concerns!

How do we evaluate Machine Translation?

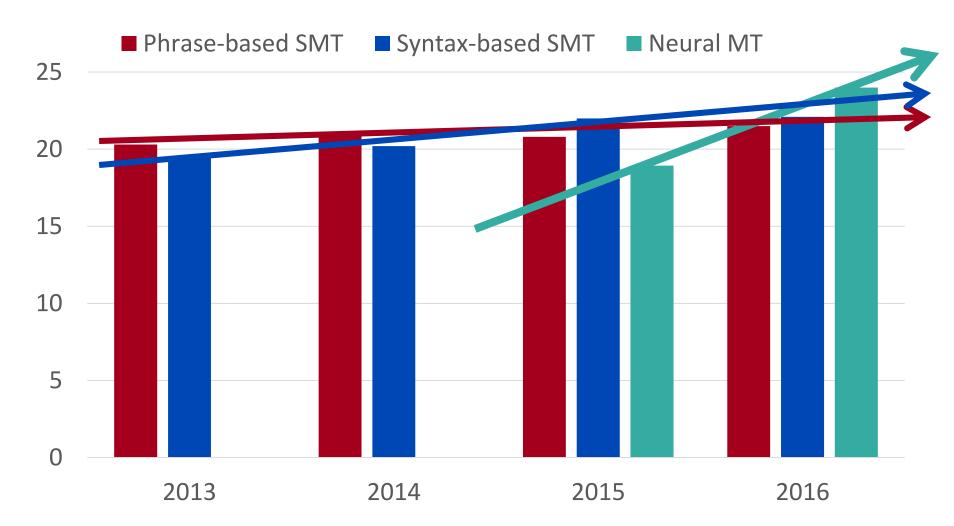
BLEU (Bilingual Evaluation Understudy)

You'll see BLEU in detail in Assignment 4!

- BLEU compares the <u>machine-written translation</u> to one or several <u>human-written translation(s)</u>, and computes a similarity score based on:
 - *n*-gram precision (usually for 1, 2, 3 and 4-grams)
 - Plus a penalty for too-short system translations
- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence
 - So a good translation can get a poor BLEU score because it has low *n*-gram overlap with the human translation ⁽³⁾

MT progress over time

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]



Source: http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf

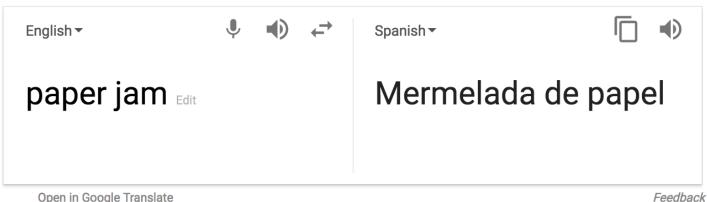
NMT: the biggest success story of NLP Deep Learning

Neural Machine Translation went from a fringe research activity in **2014** to the leading standard method in **2016**

- **2014**: First seq2seq paper published
- **2016**: Google Translate switches from SMT to NMT
- This is amazing!
 - SMT systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by a handful of engineers in a few months

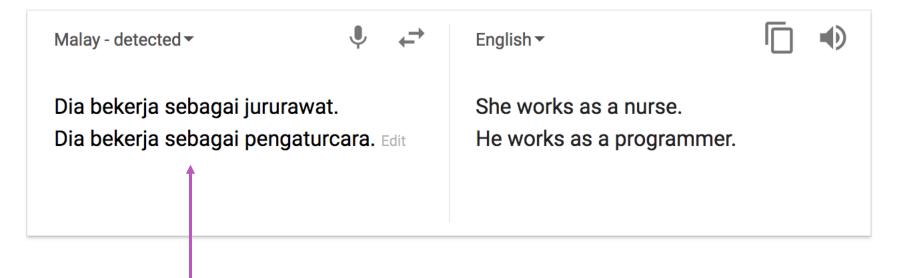
- Nope!
- Many difficulties remain:
 - Out-of-vocabulary words
 - Domain mismatch between train and test data
 - Maintaining context over longer text
 - Low-resource language pairs

- Nope! ۲
- Using common sense is still hard •



Open in Google Translate

- Nope!
- NMT picks up biases in training data



Didn't specify gender

Source: <u>https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c</u>

- Nope!
- Uninterpretable systems do strange things

Open in Google Translate

55

Feedback

NMT research continues

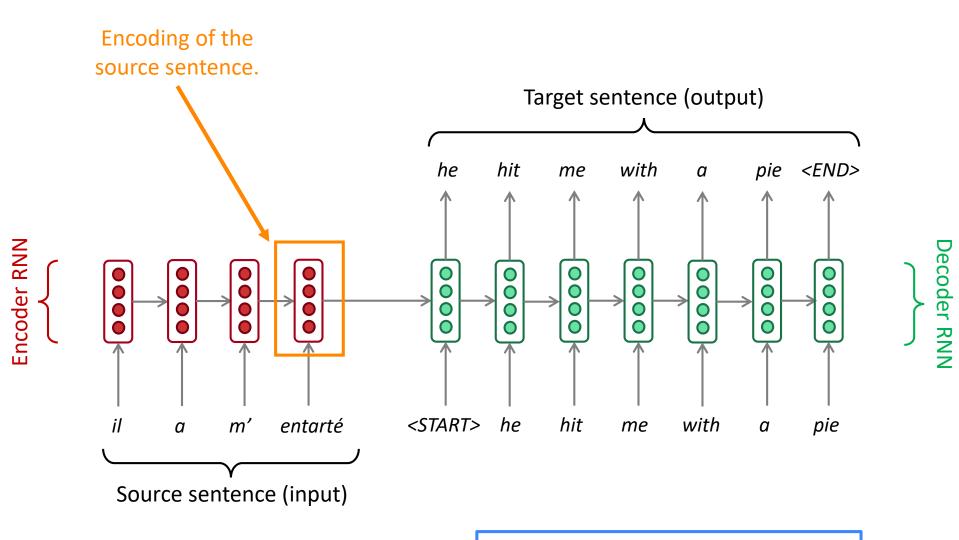
NMT is the **flagship task** for NLP Deep Learning

- NMT research has pioneered many of the recent innovations of NLP Deep Learning
- In **2019**: NMT research continues to thrive
 - Researchers have found *many, many* improvements to the "vanilla" seq2seq NMT system we've presented today
 - But one improvement is so integral that it is the new vanilla...

ATTENTION

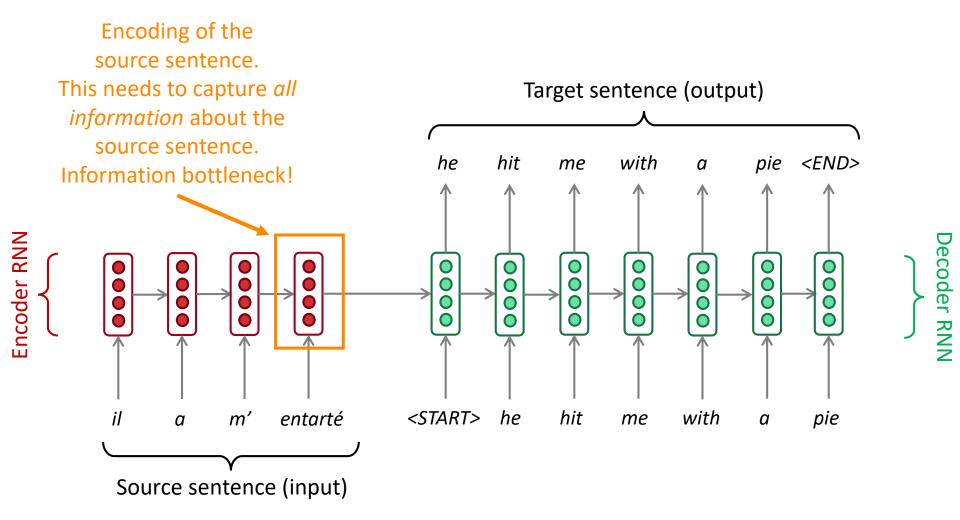
Section 3: Attention

Sequence-to-sequence: the bottleneck problem



Problems with this architecture?

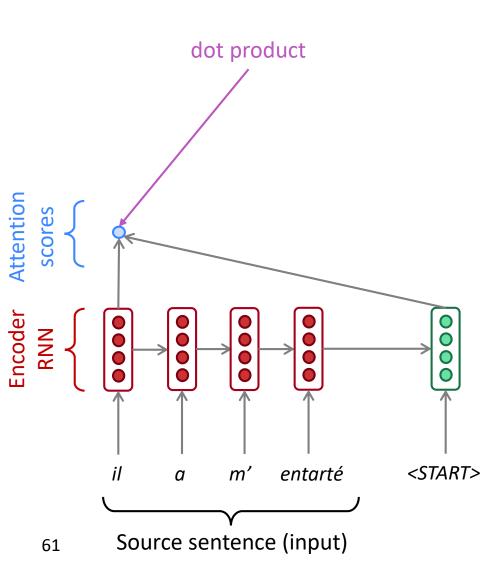
Sequence-to-sequence: the bottleneck problem

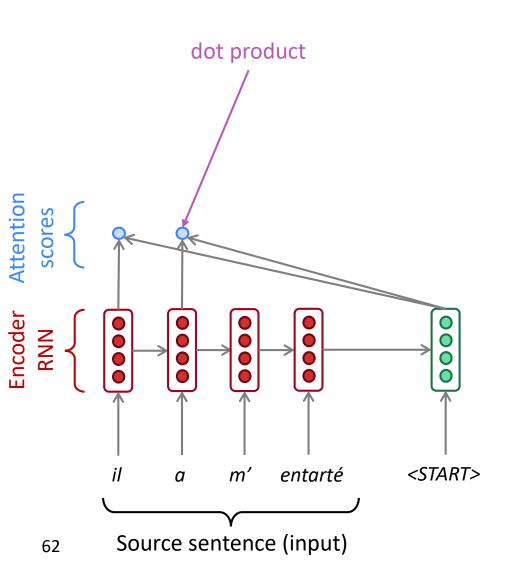


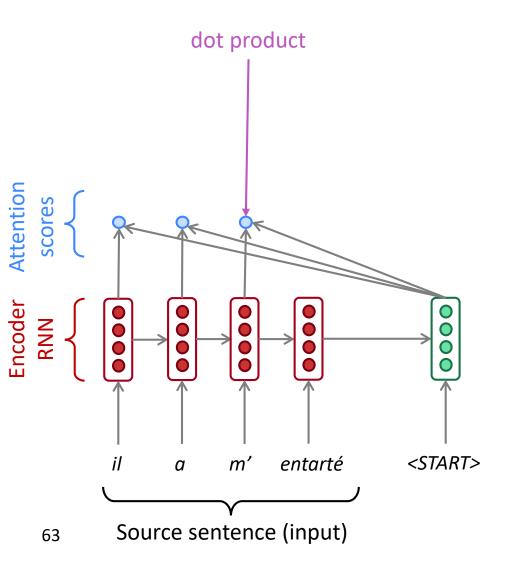
Attention

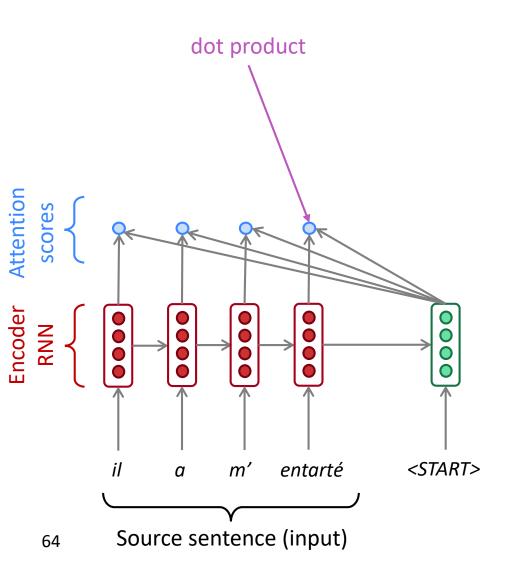
- Attention provides a solution to the bottleneck problem.
- <u>Core idea</u>: on each step of the decoder, use *direct connection to the encoder* to *focus on a particular part* of the source sequence

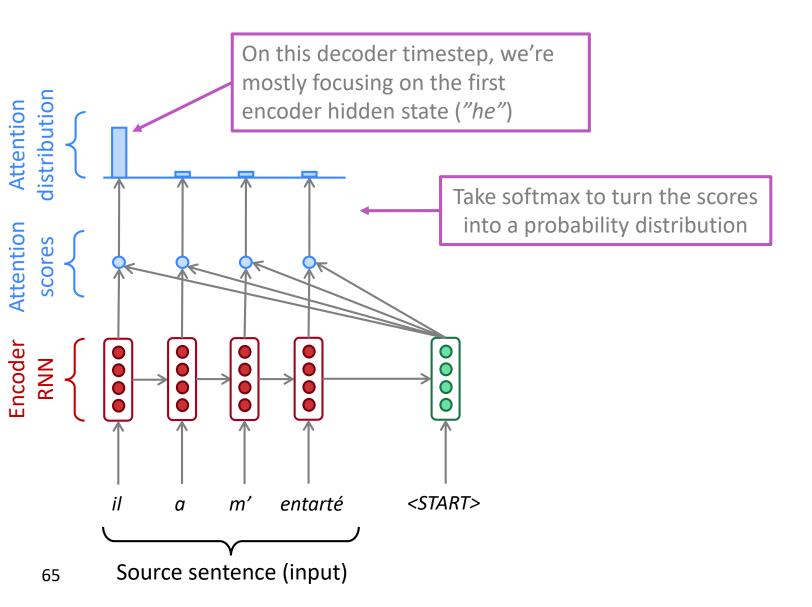
 First we will show via diagram (no equations), then we will show with equations

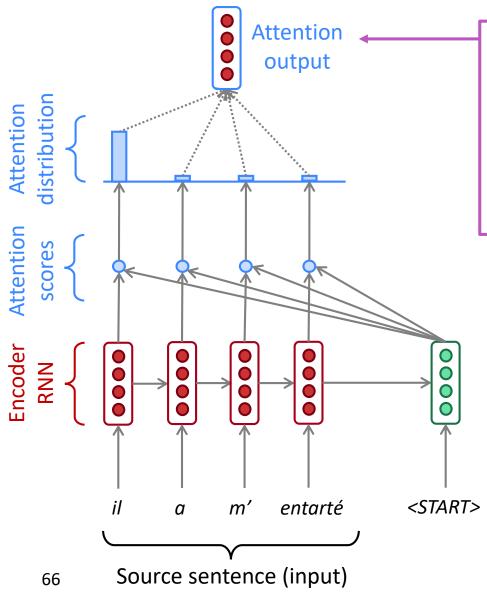






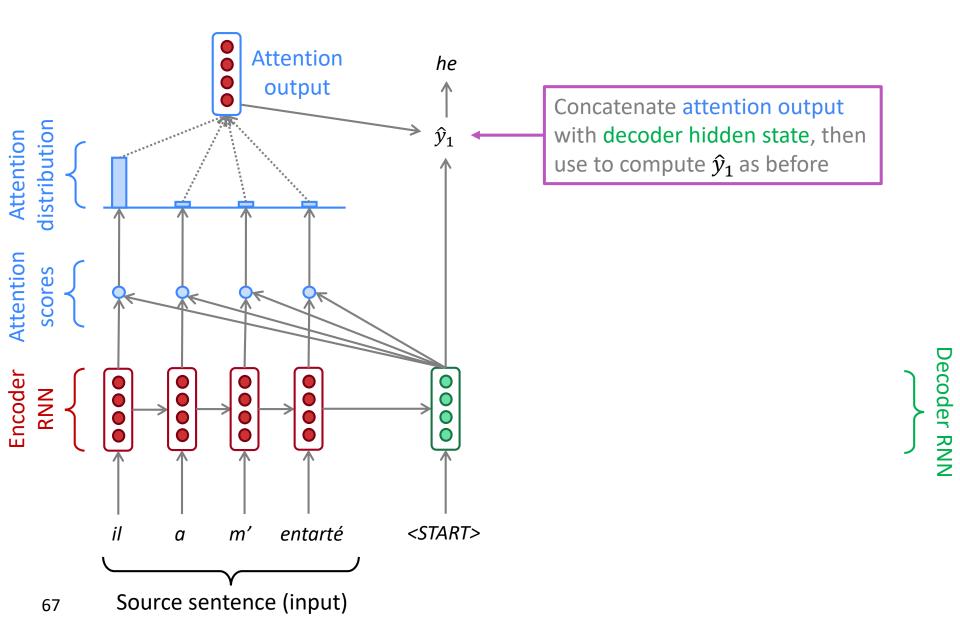


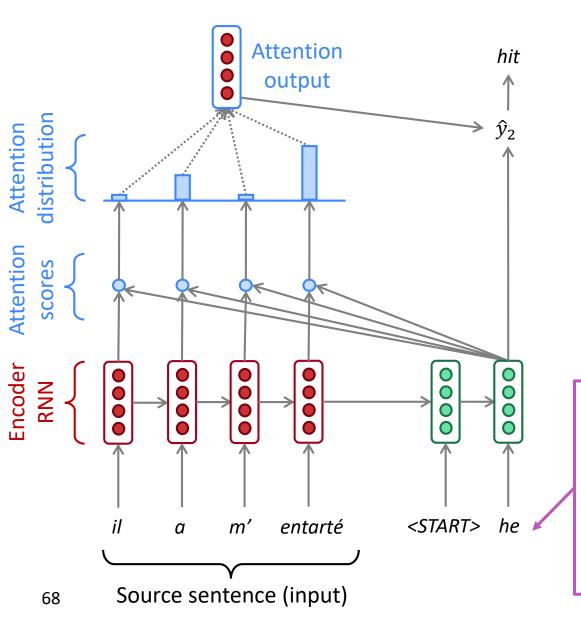




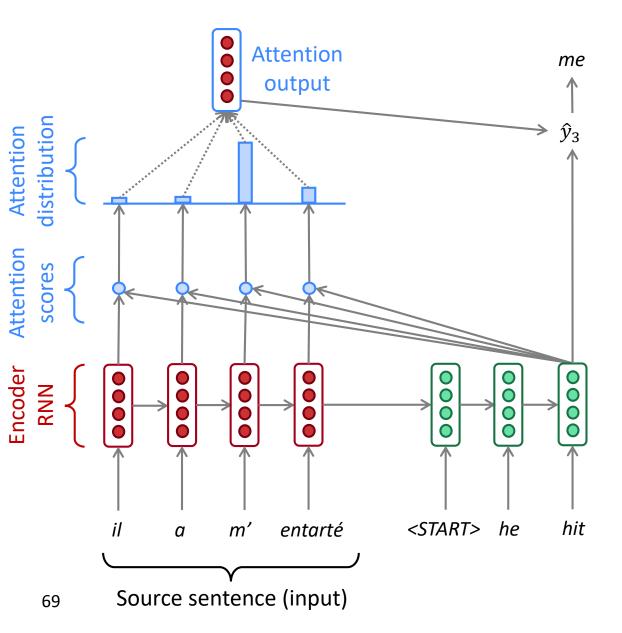
Use the attention distribution to take a **weighted sum** of the encoder hidden states.

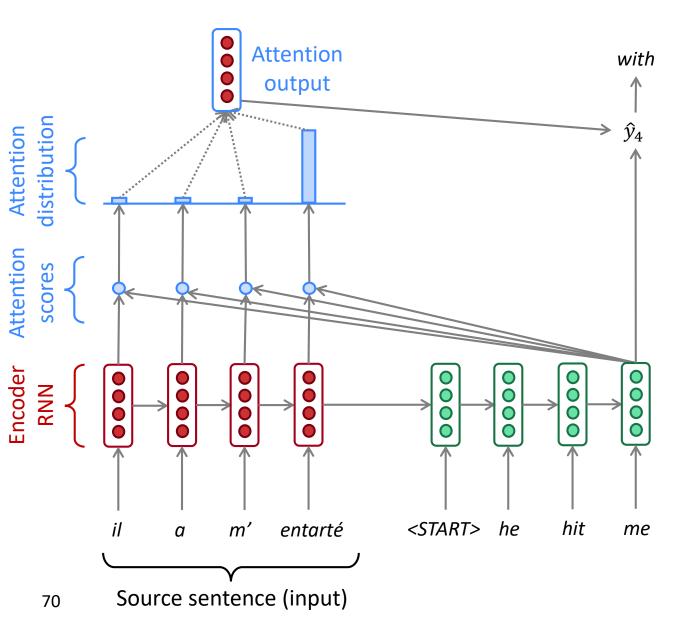
The attention output mostly contains information from the hidden states that received high attention.

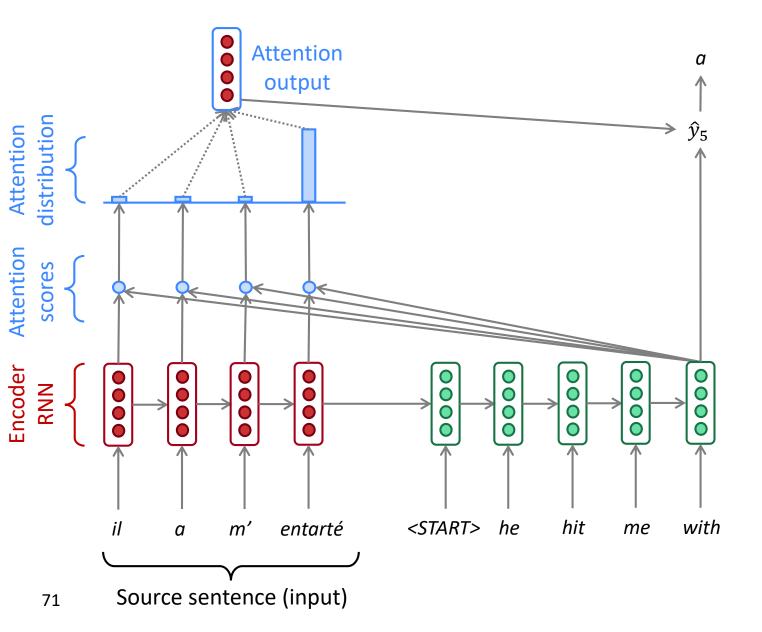


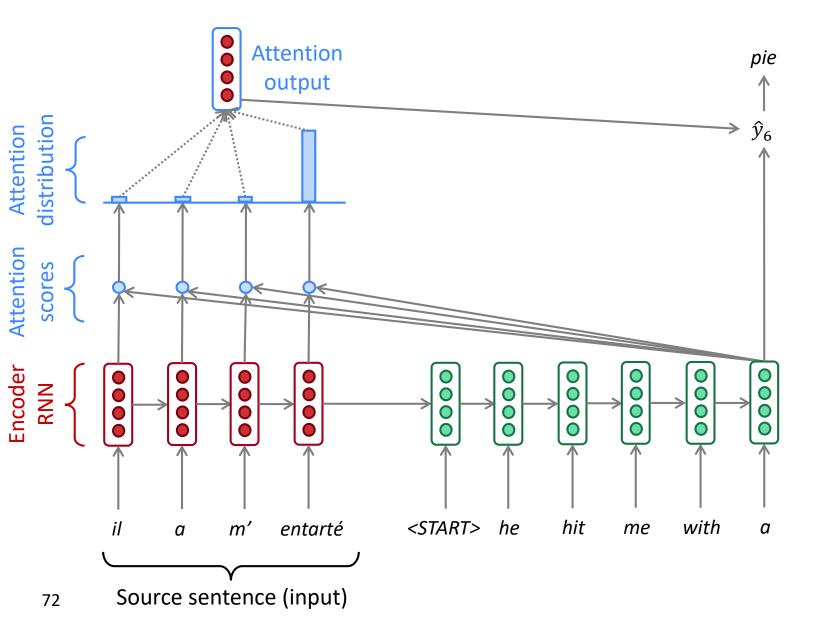


Sometimes we take the attention output from the previous step, and also feed it into the decoder (along with the usual decoder input). We do this in Assignment 4.









Attention: in equations

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep *t*, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

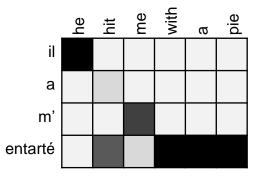
$$\boldsymbol{a}_t = \sum_{i=1}^{N} \alpha_i^t \boldsymbol{h}_i \in \mathbb{R}^h$$

• Finally we concatenate the attention output a_t with the decoder hidden state s_t and proceed as in the non-attention seq2seq model

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

Attention is great

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on
 - We get (soft) alignment for free!
 - This is cool because we never explicitly trained an alignment system
 - The network just learned alignment by itself



Attention is a *general* **Deep Learning technique**

- We've seen that attention is a great way to improve the sequence-to-sequence model for Machine Translation.
- <u>However</u>: You can use attention in many architectures (not just seq2seq) and many tasks (not just MT)

More general definition of attention:

- Given a set of vector values, and a vector query, <u>attention</u> is a technique to compute a weighted sum of the values, dependent on the query.
- We sometimes say that the query *attends to* the values.
- For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the encoder hidden states
- 75 (values).

Attention is a general Deep Learning technique

More general definition of attention:

Given a set of vector *values*, and a vector *query*, <u>attention</u> is a technique to compute a weighted sum of the values, dependent on the query.

Intuition:

- The weighted sum is a *selective summary* of the information contained in the values, where the query determines which values to focus on.
- Attention is a way to obtain a *fixed-size representation of an* arbitrary set of representations (the values), dependent on some other representation (the query).

There are *several* attention variants

- We have some values $oldsymbol{h}_1,\ldots,oldsymbol{h}_N\in\mathbb{R}^{d_1}$ and a query $oldsymbol{s}\in\mathbb{R}^{d_2}$
- Attention always involves:
 - 1. Computing the *attention scores* $e \in \mathbb{R}^N$
 - **2.** Taking softmax to get *attention distribution* α :

$$\alpha = \operatorname{softmax}(\boldsymbol{e}) \in \mathbb{R}^N$$

There are

multiple ways

to do this

$$oldsymbol{a} = \sum_{i=1}^N lpha_i oldsymbol{h}_i \in \mathbb{R}^{d_1}$$

thus obtaining the *attention output* **a** (sometimes called the *context vector*)

3

Attention variants

There are several ways you can compute $e \in \mathbb{R}^N$ from $h_1, \ldots, h_N \in \mathbb{R}^{d_1}$ and $s \in \mathbb{R}^{d_2}$:

- Basic dot-product attention: $oldsymbol{e}_i = oldsymbol{s}^T oldsymbol{h}_i \in \mathbb{R}$
 - Note: this assumes $d_1 = d_2$
 - This is the version we saw earlier
- Multiplicative attention: $oldsymbol{e}_i = oldsymbol{s}^T oldsymbol{W} oldsymbol{h}_i \in \mathbb{R}$
 - Where $oldsymbol{W} \in \mathbb{R}^{d_2 imes d_1}$ is a weight matrix
- Additive attention: $\boldsymbol{e}_i = \boldsymbol{v}^T anh(\boldsymbol{W}_1 \boldsymbol{h}_i + \boldsymbol{W}_2 \boldsymbol{s}) \in \mathbb{R}$
 - Where $W_1 \in \mathbb{R}^{d_3 \times d_1}$, $W_2 \in \mathbb{R}^{d_3 \times d_2}$ are weight matrices and $v \in \mathbb{R}^{d_3}$ is a weight vector.
 - d_3 (the attention dimensionality) is a hyperparameter

Summary of today's lecture

- We learned some history of Machine Translation (MT)
- Since 2014, Neural MT rapidly replaced intricate Statistical MT

 Sequence-to-sequence is the architecture for NMT (uses 2 RNNs)

- Attention is a way to *focus on particular parts* of the input
 - Improves sequence-to-sequence a lot!

