
Natural Language Processing
with Deep Learning

CS224N/Ling284

Lecture	13:
Transformer	Networks	and	

Convolutional	Neural	Networks

Richard Socher

Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning and Richard Socher

Lecture 2: Word Vectors

Byte	Pair	Encoding

Rico	Sennrich,	Barry	Haddow,	and	Alexandra	Birch.	Neural	Machine	
Translation	of	Rare	Words	with	Subword Units.	ACL	2016.

• A	compression algorithm:
• Most	frequent	byte	pair ↦ a	new	byte.

51

Replace bytes with character ngrams

Byte	Pair	Encoding

• A	word	segmentation algorithm:
• Start	with	a	vocabulary	of	characters.
• Most	frequent	ngram pairs	↦ a	new	ngram.

52

Byte	Pair	Encoding

• A	word	segmentation algorithm:
• Start	with	a	vocabulary	of	characters.
• Most	frequent	ngram pairs	↦ a	new	ngram.

53

5 l o w
2 l o w e r
6 n e w e s t
3 w i d e s t

(Example	from	Sennrich)

l, o, w, e, r, n, w, s, t, i, d

VocabularyDictionary

Start with all characters in vocab

Byte	Pair	Encoding

• A	word	segmentation algorithm:
• Start	with	a	vocabulary	of	characters.
• Most	frequent	ngram pairs	↦ a	new	ngram.

54

5 l o w
2 l o w e r
6 n e w es t
3 w i d es t

(Example	from	Sennrich)

l, o, w, e, r, n, w, s, t, i, d, es

VocabularyDictionary

Add a pair (e, s) with freq 9

Byte	Pair	Encoding

• A	word	segmentation algorithm:
• Start	with	a	vocabulary	of	characters.
• Most	frequent	ngram pairs	↦ a	new	ngram.

55

5 l o w
2 l o w e r
6 n e w est
3 w i d est

(Example	from	Sennrich)

l, o, w, e, r, n, w, s, t, i, d, es, est

VocabularyDictionary

Add a pair (es, t) with freq 9

Byte	Pair	Encoding

• A	word	segmentation algorithm:
• Start	with	a	vocabulary	of	characters.
• Most	frequent	ngram pairs	↦ a	new	ngram.

56

5 lo w
2 lo w e r
6 n e w est
3 w i d est

(Example	from	Sennrich)

l, o, w, e, r, n, w, s, t, i, d, es, est, lo

VocabularyDictionary

Add a pair (l, o) with freq 7

Byte	Pair	Encoding

57

• A	word	segmentation algorithm:
• Start	with	a	vocabulary	of	characters.
• Most	frequent	ngram pairs	↦ a	new	ngram.

• Automatically	decide	vocabs	for	NMT

Top places in WMT 2016!
https://github.com/rsennrich/nematus

Character-based	LSTM

58

u n yl

…

…

(unfortunately)

Bi-LSTM builds word representations

Ling,	Luís,	Marujo,	Astudillo,	Amir,	Dyer,	Black,	Trancoso.	Finding	Function	in	Form:	
Compositional	Character	Models	for	Open	Vocabulary	Word	Representation.	EMNLP’15.

Ling,	Luís,	Marujo,	Astudillo,	Amir,	Dyer,	Black,	Trancoso.	Finding	Function	in	Form:	
Compositional	Character	Models	for	Open	Vocabulary	Word	Representation.	EMNLP’15.

Character-based	LSTM

59

Recurrent Language Model

u n yl

…

…

(unfortunately)

the

the

bank

bank

was

was

closed

Bi-LSTM builds word representations

• A best-of-both-worlds architecture:
• Translate	mostly	at	the	word	level
• Only	go	to	the	character	level	when	needed.

• More	than	2 BLEU	improvement	over	a	copy	mechanism.

Thang	Luong	and	Chris	Manning.	Achieving	Open	Vocabulary	Neural	Machine	
Translation	with	Hybrid	Word-Character	Models.	ACL	2016.

Hybrid	NMT

60

Hybrid	NMT

Word-level	
(4	layers)

End-to-end training
8-stacking LSTM layers.

61

2-stage	Decoding

62

• Word-level beam search

2-stage	Decoding Init with	word	
hidden	states.

63

• Word-level beam search
• Char-level beam search

for <unk>.

Problems	with	RNNs	=	Motivation	for	Transformers

• Sequential	computation	prevents parallelization	

• Despite	GRUs	and	LSTMs,	RNNs	still	need	attention	mechanism	
to	deal	with	long	range	dependencies	– path	length	for	co-
dependent	computation	between	states	grows	with	sequence

• But	if	attention	gives	us	access	to	any	state… maybe	we	don’t	
need	the	RNN?

2/22/18Lecture	1,	Slide	3

Transformer	Overview

• Sequence-to-sequence	
• Encoder-Decoder
• Task:	machine	translation	

with	parallel	corpus
• Predict	each	translated	word
• Final	cost/error	function	is	

standard	cross-entropy	error
on	top	of	a	softmax classifier

This	and	related	figures	from	paper:	
https://arxiv.org/pdf/1706.03762.pdf 2/22/18Lecture	1,	Slide	4

Transformer	Paper

• Attention	Is	All	You	Need	[2017]
• by	Ashish	Vaswani, Noam	Shazeer, Niki	Parmar, Jakob

Uszkoreit, Llion Jones, Aidan	N.	Gomez, Lukasz	Kaiser, Illia
Polosukhin

• Equal	contribution.	Listing	order	is	random.	Jakob proposed	replacing	RNNs	with	self-
attention	and	started	the	effort	to	evaluate	this	idea.	Ashish,	with	Illia,	designed	and	
implemented	the	first	Transformer	models	and	has	been	crucially	involved	in	every	
aspect	of	this	work.	Noam	proposed	scaled	dot-product	attention,	multi-head	
attention	and	the	parameter-free	position	representation	and	became	the	other	
person	involved	in	nearly	every	detail.	Niki	designed,	implemented,	tuned	and	
evaluated	countless	model	variants	in	our	original	codebase	and	tensor2tensor.	Llion
also	experimented	with	novel	model	variants,	was	responsible	for	our	initial	
codebase,	and	efficient	inference	and	visualizations.	Lukasz	and	Aidan	spent	
countless	long	days	designing	various	parts	of	and	implementing	tensor2tensor,	
replacing	our	earlier	codebase,	greatly	improving	results	and	massively	accelerating	
our	research.

2/22/18Lecture	1,	Slide	5

Transformer	Basics

• Let’s	define	the	basic	building	blocks	
of	transformer	networks	first:	new	attention	layers!

2/22/18Lecture	1,	Slide	6

Dot-Product	Attention	(Extending	our	previous	def.)

• Inputs:	a	query	q	and	a	set	of	key-value	(k-v)	pairs	to	an	output
• Query,	keys,	values,	and	output	are	all	vectors

• Output	is	weighted	sum	of	values,	where	
• Weight	of	each	value	is	computed	by	an	inner	product	of	query	

and	corresponding	key
• Queries	and	keys	have	same	dimensionality	dk value	have	dv

2/22/18Lecture	1,	Slide	7

Dot-Product	Attention	– Matrix	notation

• When	we	have	multiple	queries	q,	we	stack	them	in	a	matrix	Q:

• Becomes:

[|Q|	x	dk]		x		[dk x	|K|]		x		[|K|	x	dv]

softmax =	[|Q|	x	dv]
row-wise

2/22/18Lecture	1,	Slide	8

Scaled	Dot-Product	Attention

• Problem:	As	dk gets	large,	the	variance	of	qTk increases	à some	
values	inside	the	softmax get	large	à the	softmax gets	very	
peaked	-->	hence	its	gradient	gets	smaller.

• Solution:	Scale	by	length	of	
query/key	vectors:

2/22/18Lecture	1,	Slide	9

Self-attention	and	Multi-head	attention

• The	input	word	vectors	could	be	the	queries,	keys	and	values
• In	other	words:	the	word	vectors	themselves	select	each	other
• Word	vector	stack	=	Q	=	K	=	V
• Problem:	Only	one	way	for	words	to	interact	with	one-another
• Solution:	Multi-head	attention
• First	map	Q,	K,	V	into	h	many	lower	

dimensional	spaces	via	W	matrices
• Then	apply	attention,	then	concatenate	

outputs	and	pipe	through	linear	layer

2/22/18Lecture	1,	Slide	10

Complete	transformer	block	

• Each	block	has	two	“sublayers”
1. Multihead attention
2. 2	layer	feed-forward	Nnet (with	relu)

Each	of	these	two	steps	also	has:
Residual	(short-circuit)	connection	and	LayerNorm:
LayerNorm(x	+	Sublayer(x))
Layernorm changes	input	to	have	mean	0	and	variance	1,	
per	layer	and	per	training	point	(and	adds	two	more	parameters)

Layer	Normalization	by	Ba,	Kiros and	Hinton,	https://arxiv.org/pdf/1607.06450.pdf
2/22/18Lecture	1,	Slide	11

Encoder	Input

• Actual	word	representations	are	byte-pair	encodings	(see	last	
lecture)

• Also	added	is	a	positional	encoding	so	same	words	at	different	
locations	have	different	overall	representations:

2/22/18Lecture	1,	Slide	12

Complete	Encoder

• For	encoder,	at	each	block,	we	use	
the	same	Q,	K	and	V	
from	the	previous	layer

• Blocks	are	repeated	6	times

2/22/18Lecture	1,	Slide	13

Attention	visualization	in	layer	5

• Words	start	to	pay	attention	to	other	words	in	sensible	ways

2/22/18Lecture	1,	Slide	14

Attention	visualization:	Implicit	anaphora	resolution

In	5th layer.	Isolated	attentions	from	just	the	word	‘its’	for	attention	heads	5	and	6.
Note	that	the	attentions	are	very	sharp	for	this	word. 2/22/18Lecture	1,	Slide	15

Transformer	Decoder

• 2	sublayer	changes	in	decoder
• Masked	decoder	self-attention	

on	previously	generated	outputs:

• Encoder-Decoder	Attention,
where	queries	come	from	
previous	decoder	layer	and
keys	and	values	come	from	
output	of	encoder

• Blocks	repeated	6	times	also 2/22/18Lecture	1,	Slide	16

Tips	and	tricks	of	the	Transformer

Details	in	paper	and	later	lectures:
• Byte-pair	encodings
• Checkpoint	averaging
• ADAM	optimizer	with	learning	rate	changes
• Dropout	during	training	at	every	layer	just	before	adding	

residual	
• Label	smoothing
• Auto-regressive	decoding	with	beam	search	and	length	

penalties	

• à Overall,	they	are	hard	to	optimize	and	unlike	LSTMs	don’t	
usually	work	out	of	the	box	and	don’t	play	well	yet	with	other	
building	blocks	on	tasks.	

2/22/18Lecture	1,	Slide	17

Experimental	Results	for	MT

2/22/18Lecture	1,	Slide	18

Experimental	Results	for	Parsing

2/22/18Lecture	1,	Slide	19

	header
	byte-pair
	stanford-trans

