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Abstract—Patients with diabetes must continually monitor
their blood glucose levels and adjust insulin doses, striving to
keep blood glucose levels as close to normal as possible. Blood
glucose levels that deviate from the normal range can lead to
serious short-term and long-term complications. An automatic
prediction model that warned people of imminent changes in
their blood glucose levels would enable them to take preventive
action. Modeling inter-patient differences and the combined
effects of insulin and life events on blood glucose have been
particularly challenging in the design of accurate blood glucose
forecasting systems. In this paper, we describe a solution that
uses a generic physiological model of blood glucose dynamics to
generate informative features for a Support Vector Regression
model that is trained on patient specific data. Experimental
results show that the new prediction model outperforms all
three diabetes experts involved in the study, thus demonstrating
the utility of using the generic physiological features in machine
learning models that are individually trained for every patient.
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I. INTRODUCTION AND MOTIVATION

Type 1 diabetes (T1D) is a chronic disease, which cannot
be prevented or cured, but which must be managed over a
lifetime. In this disease, the pancreas does not produce the
insulin needed to maintain normal blood glucose (BG) levels,
and so patients depend upon exogenous supplies of insulin to
live. In order to avoid serious diabetic complications, patients
must continually monitor their blood glucose levels and adjust
insulin doses, striving to keep blood glucose levels as close to
normal as possible. Blood glucose management is complicated
by a wide variability among individual patients in terms of
sensitivity to insulin, response to lifestyle factors, propensity
for complications, and response to treatment. Furthermore,
large volumes of blood glucose data that are automatically
collected through sensors must be manually analyzed and
interpreted by the physicians.

Blood glucose levels that are too high, or hyperglycemia,
lead to longterm complications of diabetes. Extremely high
levels can cause diabetic ketoacidosis, a serious condition
leading to severe illness or death. Blood glucose levels that
are too low, or hypoglycemia, lead to complications including
weakness, confusion, dizziness, sweating, shaking, and, if not
treated in time, seizures, coma, or death. It is important to note
that patients do not always know when problems are impending
and are frequently unaware of problems even once they occur.

Problems that occur when patients are asleep are especially
dangerous. The ability to predict impending BG problems
before they occur would enable preemptive intervention. This
would not only improve overall BG control, but could greatly
impact patient safety. For example, a sleeping patient could be
awakened and advised to eat before becoming hypoglycemic.

An accurate prediction model that warned people up to an
hour in advance of imminent changes in their blood glucose
levels would allow plenty of time for them to take preventive
action. Consequently, we have spent significant research effort
on designing machine learning models aimed at predicting
blood glucose levels 30 minutes and 60 minutes into the future.
Since blood glucose measurements have a natural temporal
ordering, we approach the task of predicting blood glucose as
a time series forecasting problem. For training and evaluation,
we capitalize on a database of approximately 1,400 days worth
of clinical patient data, which was amassed over the course
of three clinical research studies. The collected data consists
of blood glucose measurements taken at five-minute intervals
through a continuous glucose monitoring (CGM) system and
the corresponding daily events that include insulin and life
event data. Life event data is input by the patients using a
smartphone interface and tracks factors known to impact blood
glucose levels, including: the timing and composition of meals;
the intensity, duration and competitive nature of exercise; work
schedules; sleep patterns; stress; illness; alcohol; holidays and
travel.

II. OUTLINE OF RESEARCH ON BG PREDICTION

In previous work (Section III), we have introduced a
Support Vector Regression (SVR) model [1] that incorporates a
set of features based on past BG behavior and daily event data.
This approach was shown to outperform a simple baseline in
which blood glucose levels were assumed to remain constant.
In a subsequent effort to improve the utility of the BG time
series, we experimented with Auto Regressive Integrated Mov-
ing Average (ARIMA) [2] models and discovered that the SVR
model, which was using both blood glucose and daily event
data, did not perform better than an ARIMA model, which
was using only BG data. This result challenged our belief that
incorporating daily event data should lead to an improvement
in prediction performance. Two alternative hypotheses were
considered at this stage: either 1) the daily event data was
not sufficiently accurate to have an impact on the predictive
performance; or 2) the way daily event data was used in our



initial SVR model was suboptimal. The first hypothesis lost
support after an annotation exercise (Section IV) in which
three diabetes experts were shown plots of past BG behavior
superimposed with daily event data and asked to predict the BG
levels 30 and 60 minutes into the future. The physicians, who
had access to daily event data, outperformed the prediction
models that were using only BG data. Furthermore, live
feedback from the physicians during the annotation exercise
contained numerous references to daily events, reinforcing our
belief in their explanatory power. Consequently, we focused
on finding better ways to extract informative features from
the daily event data (Section V). We implemented existing
equations that attempt to model the impact that insulin and
carbohydrate consumption have on the dynamics of blood
glucose. Due to high inter-patient variability, the resulting
generic physiological model does not have a good predictive
performance. However, when incorporated as features in the
SVR model (Section VI), it leads to significant improvements
in accuracy. In particular, we show that the new SVR model,
when augmented with physiological features, outperforms our
diabetes experts on both 30 minute and 60 minute prediction
(Section VII).

III. PREVIOUS WORK

In [3], [4], we conducted a preliminary experimental eval-
uation in which an SVR model was trained to predict the
BG levels of a T1D patient. An arbitrary pivot date was
selected about one month into the experimental data. Then
7 days before the pivot date were used to create training data,
while test data was created from the 3 days following the
pivot date. Since BG measurements are recorded by CGM
systems every 5 minutes, one day may contribute up to 288
training or testing examples. Two separate SVR models were
trained and tested to predict the BG levels for 30 and 60
minutes into the future. Each training and testing example was
represented using features computed from past BG levels, as
well as bolus dosages, basal rates, meal carbohydrate amounts
and intensity of exercise. When trained with a linear kernel
and default parameter settings, the SVR models were shown to
substantially outperform a simple baseline that used the present
BG level as the predicted value. For 30 minutes prediction,
the SVR model obtained a Root Mean Square Error (RMSE)
of 18.0 which compares favorably with the baseline RMSE of
25.1. For 60 minutes prediction, the SVR model had an RMSE
of 30.9, substantially lower than the baseline RMSE of 43.2.

In subsequent work [5], the SVR system was refined to use
a more comprehensive set of features and then evaluated on a
much larger dataset. The feature templates used therein are as
follows:

1) The BG level of patient x at present time t0.
2) Exponential moving averages over k = 3, 6, 9, 12

previous BG levels, with an exponential decrease
coefficient λ = 0.9.

3) Rates of change in the BG level over k = 3, 6, 9, 12
previous observations, with an exponential smoothing
factor λ = 0.25.

4) Bolus insulin totals for every 10 minute interval in
the past 60 minutes.

5) Basal insulin totals for every 10 minute interval in
the past 60 minutes.

6) How much the basal rate in each 10 minute interval
deviates from the average basal rate in the past 60
minutes.

7) Carbohydrate amounts ingested in each of the 10
minute intervals from the past hour.

8) Amounts of time spent on exercise, at work, or
sleeping in multiple intervals in the past 60 minutes.

Data from 10 different T1D patients was used for evaluation
this time. For each patient, a pivot date was chosen such that
it was always a Sunday about 1 month into the patient’s study.
The feature templates were tuned using a grid search with 2
weeks of training data and 1 week of development data prior to
the pivot point. This gave ten unique feature vectors tailored
for each individual at each prediction horizon. The next 14
days after this pivot date were used for testing, while the 14
days prior to the pivot date were used for training an SVR
model with a Gaussian kernel. The pivot date itself was used
for tuning the model parameters. The SVR system was then
compared against two baselines: the simple t0 baseline that
uses the present BG level as the prediction, and an ARIMA
model trained on 4 days of CGM data – an exploratory data
analysis had shown that 4 days gave the lowest RMSE for
the ARIMA model. Model identification for ARIMA was
completed with the R statistical function auto.arima, which
uses the Bayes information criterion to determine the orders p
and q of the autoregressive and moving average components,
and the Phillips-Perron unit root test for determining the order
d of the difference component. The RMSE results are shown
in Table I, in which SVR1 stands for the SVR system trained
with all the features (including ARIMA), whereas SVR2 stands
for the SVR system trained without insulin or life event data.

TABLE I. PREVIOUS BG PREDICTION RESULTS [5].

Horizon t0 ARIMA SVR1 SVR2

30 min 19.5 4.5 4.7 4.5
60 min 35.5 17.9 17.7 17.4

Table I shows an unexpected result: the incorporation of
daily event data in the SVR model (SVR1) does not necessarily
lead to improvements over an SVR model that uses only CGM
data (SVR2) or the simpler ARIMA model. One possible cause
of this behavior was thought to be the suboptimal use of daily
event data in our feature templates. Consequently, we explored
the utility of using physiological models of glucose dynamics
for the extraction of informative features from daily event data
such as insulin and carbohydrates, as described in Sections V
and VI later in this paper.

IV. PHYSICIAN PERFORMANCE DATA

In order to better understand the role of daily events in
the dynamics of blood glucose levels, we asked three diabetes
experts to label an evaluation dataset with their 30 and 60
minute predictions. There are a total of 200 timestamps in the
dataset, collected from 5 T1D patients, 40 points per patient.
The 200 evaluation points were manually selected to reflect
a diverse set of situations: different times of day or night;
close to or far from each of the possible types of daily events;
on rising, decreasing, or flat BG curves; close to or far from
local minima or maxima of the BG curve – where the local



Fig. 1. The core frame of the annotation GUI with a sample CGM graph.

optima were either in the past or in the future; or in the vicinity
of inflection points. The annotation exercise was performed
using an in-house graphical user interface (GUI) through
which the doctors could see only the patient data up to the
present time t0. The doctors were able to use the interface to
navigate to any day in the past in order to make generalizations
about BG level behavior. Before each annotation exercise, the
doctors were trained to use the annotation user interface on
a separate development dataset of ten points. For each point
t0 in the dataset, the doctors made two predictions: one for
30 minutes, one for 60 minutes, in this order. After making
the two predictions for any given point, the system displays
the real BG behavior, so that the doctors could further fine
tune their prediction strategy. The annotation of the dataset
was done separately with each of the three doctors. Figure 1
shows part of the user interface displaying the CGM data
of a patient up to time t0 = 20:40. The vertical dotted line
corresponds to 60 minutes into the future, for which the doctor
is supposed to make a prediction. Whenever the doctor clicks
on the graph, a horizontal line is displayed, together with the
corresponding BG level. The doctor can use the mouse to
perform multiple exploratory clicks. The annotation is final
only after pressing a “next” button. The same graph also
shows two black diamond shaped points at about 10 and 10:30,
corresponding to predictions made by the same doctor for t0 =
9:30. Daily event data is superimposed in the upper part of the
frame. Detailed information about each event can be displayed
by clicking on the corresponding point.

The RMSE results of the three physicians are summarized
in Table II, together with the ARIMA and t0 baseline per-
formance on the same dataset of 200 timestamps. Note that
the t0 and ARIMA baseline RMSE values are significantly
larger than the previous results reported in Table I. This was
expected, as the new evaluation dataset, which contains many
points close to local optima, is much more difficult than
the previous dataset where most of the test points lie on
quasi-linear segments of the BG graph. Furthermore, previous

TABLE II. PHYSICIAN PREDICTION RMSE VS. BASELINES.

Horizon t0 ARIMA Phys1 Phys2 Phys3
30 min 27.5 22.9 19.8 21.2 34.1
60 min 43.8 42.2 38.4 40.0 47.0

results were obtained on CGM data that was smoothed using
regularized cubic spline interpolation, whereas the results in
Table II and henceforth are computed on raw CGM data. Most
important, however, is the comparison between the doctors and
ARIMA. Our highest scoring doctors, who use both the CGM
data and daily events to perform prediction, outperform the
ARIMA model that is using only CGM data. Regarding the
third doctor’s performance, we noticed during the annotation
sessions that the doctor was fairly accurate in guessing the
trend of the BG levels, but typically overestimated the increase
or decrease in BG levels. To quantify this behavior, we defined
a ternary classification task with the following three classes:

1) Same (S): the future BG value is within a threshold
τ of the current value.

2) Lower (L): the future BG value is more than τ lower
than the current value.

3) Higher (H): the future BG value is more than τ higher
than the current value.

We used a threshold τ = 5mg/dl for 30 minute prediction and
τ = 10mg/dl for 60 minute prediction. We then evaluated per-
formance using a symmetric cost matrix C with a zero diagonal
in which C(L, S) = 1, C(H,S) = 1, and C(S,H) = 2. The
total costs for each doctor over the same evaluation dataset are
listed in Table III. While the first physician still obtains the
best results (lowest costs), the third physician now has results
on the 60 minute task that are better than the baselines and
the second physician.

TABLE III. PHYSICIAN PREDICTION COST VS. BASELINES.

Horizon t0 ARIMA Phys1 Phys2 Phys3
30 min 159 107 81 86 115
60 min 151 131 106 119 113

Additional support for the utility of daily event data came
from the live feedback that the doctors generated during the
annotation sessions. In making their predictions, the doctors
would regularly refer to the presence of daily events and their
properties, such as: the timing of meal events, the amount
of carbohydrates and meal composition, the frequency of the
bolus events and their type and dosage. This further reinforced
our belief that daily event data is important in BG prediction,
motivating us to look for better ways of using them to extract
features for the automatic prediction models.

V. PHYSIOLOGICAL MODEL

Physiological models try to capture the dynamics of glu-
cose relevant variables within different systems in the body. For
example, equations have been introduced in the literature for
tracking the carbohydrate intake as it is converted to blood glu-
cose which then interacts with the kidneys, liver, muscles, and
other body systems. Most physiological models characterize



Fig. 2. Dependencies between variables in the physiological model.

the overall dynamics into three compartments: meal absorption
dynamics, insulin dynamics, and glucose dynamics [6], [7],
[8]. Since they are based on the same data, the equations used
in the literature to model the underlying processes are almost
identical [8], [9]. For our physiological model, we used these
equations based on the description in Duke’s PhD thesis [9],
with a few adaptations in order to better match published data
and feedback from our doctors.

A physiological model of glucose dynamics can be seen
as a continuous dynamic model that is described by its state
variables X , input variables U , and a state transition function
that computes the next state given the current state and input
variables i.e. Xt+1 = f(Xt, Ut). The vector of state variables
X is organized according to the three compartments as follows:

1) Meal Absorption Dynamics:
• Cg1(t) = carbohydrate consumption (g).
• Cg2(t) = carbohydrate digestion (g).

2) Insulin Dynamics:
• IS(t) = subcutaneous insulin (µU).
• Im(t) = insulin mass (µU).
• I(t) = level of active plasma insulin (µU/ml).

3) Glucose Dynamics:
• Gm(t) = blood glucose mass (mg).
• G(t) = blood glucose concentration (mg/dl).

The vector of input variables U contains the carbohydrate
intake UC(t), measured in grams (g), and the amount of rapid
acting insulin UI(t), measured in insulin units (U). The value
UI(t) at any time step t is computed automatically from the
bolus events and the basal rate information. The state transition
function captures dependencies among variables in the model,
as illustrated in Figure 2.

The state transition equations are parametrized with a set of
parameters α and are listed below for each compartment. For
the meal absorption compartment, the equations are:

• Cg1(t+1) = Cg1(t)−α1C ∗Cg1(t)+UC(t) [consumption]

• Cg2(t+1) = Cg2(t)+α1C ∗Cg1(t)−α2C/(1+25/Cg2(t))
[digestion]

The equations for the insulin compartment are:

• IS(t+ 1) = IS(t) − αfi ∗ IS(t) + UI(t) [injection]

• Im(t+ 1) = Im(t) +αfi ∗ IS(t)−αci ∗ Im(t) [absorption]

The general equation for the glucose compartment is
Gm(t+1)=Gm(t)+∆abs−∆ind−∆dep−∆clr+∆egp, where:

• ∆abs = α3C ∗ α2C/(1 + 25/Cg2(t)) [absorption]

• ∆ind = α1ind ∗
√
G(t) [insulin independent utilization]

• ∆dep = α1dep ∗ I(t) ∗ (G(t) + α2dep)[insulin dependent
utilization]

• ∆clr = α1clr ∗ (G(t) − 115) [renal clearance, only when
G(t) > 115)]

• ∆egp = α2egp ∗exp(−I(t)/α3egp)−α1egp ∗G(t) [endoge-
nous liver production]

Finally, the glucose and insulin concentrations depend deter-
ministically on their mass equivalents as follows, where bm
refers to the body mass and IS refers to the insulin sensitivity:

• G(t) = Gm(t)/(2.2 ∗ bm)

• I(t) = Im(t) ∗ IS/(142 ∗ bm)

In order to account for the noise inherent in the CGM data
and the input variables, the state transition equations were
used in an extended Kalman filter (EKF) model [10]. Since
the CGM data comes every 5 minutes, the Kalman filter ran
a state prediction step every 1 minute and a correction step
every 5 minutes. The parameters α used in the physiological
model were tuned to match published behavior and further
refined based on feedback from the doctors, who were shown
plots of the dependencies between variables in the model. This
generic EKF model can be used on its own to make predictions
about the BG level, however results from initial experiments
on the reference dataset from Section IV were not better than
the simple t0 baseline. This was somewhat expected, given
that patients with diabetes can vary significantly in how they
respond to insulin or carbohydrate intake. One possibility for
improving performance is to use a grid search to tune the
model parameters α and the insulin sensitivity in order to fit
training data from any given patient, an approach followed by
Duke in [9]. However, using a grid search on all the parameters
is unfeasible; even tuning just a subset of parameters can
still be prohibitive in terms of time complexity. Furthermore,
incorporating other types of life events in the EKF model
requires significant engineering effort and may lead to a further
increase in the number of parameters. Given the drawbacks
associated with making the EKF model useful on its own for
prediction, we decided to use it instead to generate informative
physiological features for our SVR model.

VI. SVR MODEL WITH PHYSIOLOGICAL FEATURES

The state vector computed by the physiological model
is X(t) = [Cg1(t), Cg2(t), IS(t), Im(t), I(t), Gm(t), G(t)]. In
order to create features for the SVR model, the extended
Kalman filter was first run up to the training/test point t0,
with a correction step every 5 minutes, including a correction
at t0. This resulted in a state vector X(t0). The EKF model
was then run in prediction mode for 60 more minutes, and
the state vectors at 30 minutes X(t0 + 30) and 60 minutes
X(t0 + 60) were selected for feature generation. The actual
physiological features were as follows: all the state variables
in the vectors X(t0 + 30), X(t0 + 60), and the difference
vectors X(t0 + 30)−X(t0), X(t0 + 60)−X(t0). The 4 * 7
= 28 physiological features were augmented with a set of 12
deltai features that were meant to encode information about
the trend of the CGM plot in the hour before the test point t0.



Each deltai feature was computed as the difference between
the BG level at time t0 and the BG level at i time steps in
the past, i.e., deltai = BG(t0) − BG(t0 − 5i). Furthermore,
whenever ARIMA was used to generate features, it was trained
on the 4 days before t0 and then used to forecast the 12 values
at 5 minute intervals in the hour after t0. These values were
used as additional features in one version of the SVR system.

For a given test point t0 in the dataset, the SVR systems
were trained on the week of data preceding t0, using a
Gaussian kernel. The width γ of the kernel, the width ε of the
ε-insensitive tube, and the capacity parameter C were tuned
using grid search on the data preceding the training week.
This training and tuning scheme was problematic, however,
for points in the evaluation dataset that were early in the
history of a patient, and thus had insufficient training and/or
tuning data. Since the evaluation dataset contained data from
5 patients, we used the data from a 6th patient to create
a set of generic parameters to use in these early cases, as
follows: a set of 50 points was selected from the 6th patient
history; for each parameter combination in the grid search,
SVR models were trained for all 50 points using the week
before as training data, and performance was averaged across
the 50 test points; the parameter setting that resulted in the
best average performance was then selected as the generic set
of parameters. We used these parameters whenever one of the
test points in the evaluation dataset did not have at least 1,000
CGM measurements before the training week. For the few
early points in the patient history that had less than one week
of training data, we trained only on the data that was available.

VII. EXPERIMENTAL RESULTS

We used the evaluation dataset described in Section IV to
compare the following BG prediction systems:

1) ARIMA and the simple t0 baseline.
2) The SVR system that uses physiological features, as

described in Section VI above. Two versions of this
system were evaluated: with (SVRφ+A) and without
(SVRφ) ARIMA features.

3) The previous SVR system (SVRπ+A) [5] that uses
the CGM and daily event features described in Sec-
tion III, as well as ARIMA features.

The previous SVR system (SVRπ) was tuned, trained, and
tested using the same scenario described for SVRφ. However,
we noticed that it obtained better performance when it used the
same generic parameters for all points in the dataset; therefore
we report these better results for SVRπ. A possible reason
for this behavior may be the fact that the generic parameters
were tuned by averaging performance over 5 weeks of training
on a different patient, as opposed to using only one week of
training from the given patient. While the new SVRφ, due to
its better physiological features, obtained good performance
using one week of training, the old SVRπ system, which
used a poorer feature representation for daily events, was less
resilient to overfitting when trained with the same amount of
data. The RMSE results are summarized in Table IV, in which,
for comparison purposes, we repeat the first three columns of
results from Table II. The new SVR system that is trained
with physiological features beats the baselines and the previous
SVR results (all with p < 0.01 in a one-tailed T-test of

TABLE IV. SVR PREDICTION RESULTS VS. BASELINES AND HIGHEST
SCORING DOCTOR RESULTS.

Horizon t0 ARIMA Phys1
30 min 27.5 22.9 19.8
60 min 43.8 42.2 38.4

Horizon SVRπ+A SVRφ SVRφ+A
30 min 22.2 19.6 19.5
60 min 41.3 36.1 35.7

statistical significance). Most importantly, it also outperforms
the best predictions from our three diabetes experts, thus
demonstrating the utility of physiological modeling for the
engineering of features in machine learning models for blood
glucose level prediction.

VIII. RELATED WORK

Attempts to model blood glucose levels for the purpose of
determining insulin dosage date back to the 1960s [11]. While
no definitive model exists as of yet, it should be noted that
early efforts were hindered by the lack of CGM data, which
first became available in 1999. Before CGM data was available,
blood glucose values were obtained from patient finger sticks,
typically yielding only four to six blood glucose values per day.
Most blood glucose models developed to date are mathematical
formalisms of physiological processes. A well-known, freely
available, model is AIDA1 [12]. The authors note that the
model is not powerful enough to simulate individual patients
and restrict its use to education and demonstration. Another
influential, but proprietary, mathematical model was developed
at the University of Virginia. This model was developed for
testing control algorithms for an artificial pancreas, which
could someday supplant the diabetic patient’s own deficient
pancreatic function [13].

The desire to build an artificial pancreas is the impetus
behind much current blood glucose modeling research. In
brief, an artificial pancreas consists of three components:
an insulin pump; a continuous glucose monitoring system;
and a closed loop control algorithm to tie them together,
so that insulin flow can be continuously adjusted to meet
patient needs [14], [15]. Some control algorithms are of
the traditional proportional-integral-derivative (PID) variety,
in which case, no blood glucose modeling is used. Others,
however, use model predictive control (MPC), which employs
mathematical/physiological models, or neural networks [16].
Many of these models consider the effects of food, but as they
are intended for use without patient intervention, they do not
consider patient recorded life-events.

Closest to our work is the research reported in [9], in which
Gaussian Process regression with a Gaussian kernel was shown
to outperform patients and other published results on the task
of predicting post-meal blood glucose levels. The Gaussian
Process approach in [9] was focused on patient decisions at
meal times, and was evaluated on predicting the blood glucose
level two hours after a meal. Shorter prediction times of 15
or 45 minutes were modeled differently, using autoregressive
models or physiological models that were extended to exploit

1http://www.2aida.net



exercise information. The results were mixed, showing that
autoregressive models are better for near future predictions,
while physiological models perform better at prediction times
45 minutes or more into the future. In our work, the BG
prediction models are trained and evaluated on a much larger
dataset to predict BG levels in a wide variety of situations, at
any time of day. Most importantly, our best performing model
was shown to make better predictions than all three diabetes
experts involved in the study.

More recently, Jensen et al. [17] trained an SVM model
for detecting hypoglycemic events based on seven features
derived from CGM and insulin data. The model was tested
on 17 examples extracted from patients whose hypoglycemic
events were induced artificially with insulin injections. While
their trained system is able to predict hypoglycemia 14 to
20 minutes before it happens, it needs to be evaluated on a
larger dataset, with CGM data from patients with spontaneous
hypoglycemic events. Similarly, Zecchin et al. [18] evaluate
a CGM prediction system using data generated with a type 1
diabetes simulator, and show that the system can be used to
significantly decrease the time spent in hypoglycemia.

IX. CONCLUSIONS AND FUTURE WORK

We introduced an adaptive model for blood glucose pre-
diction that uses past BG behavior from CGM data and daily
events such as insulin boluses and meals. We have shown how
to integrate state variables computed by a physiological model
as features into an SVM model for regression. Experimental
results on 30 and 60 minute prediction confirmed the utility of
the physiological features: when incorporated into an existing
SVR model, they led to a significant improvement in RMSE
performance. Furthermore, the SVR model with physiological
features made better predictions than each of the three diabetes
experts involved in the study. The results demonstrate the
significant utility of physiological modeling for the engineering
of features in machine learning models for BG level prediction.

An interesting aspect of the results is that the adaptive
BG prediction model, using only a subset of the daily events
available to the diabetes experts, was able to outperform them.
Based on the feedback obtained from the doctors during the
annotation exercise (Section IV), we know that physicians use
all types of events in their predictions. For example, the time of
day was deemed to be important due to dawn phenomena [19]
and other time related patterns. Therefore, we plan to engineer
features that capture the impact of all relevant life events on the
blood glucose dynamics. We are also investigating unobtrusive
sensing solutions for physiological parameters that will be
less demanding on the patient and consequently less prone
to incorrect or missing data.
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