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Abstract

Objective:
Glycemic variability contributes to oxidative stress, which has been linked to the pathogenesis of the long-term 
complications of diabetes. Currently, the best metric for assessing glycemic variability is mean amplitude of 
glycemic excursion (MAGE); however, MAGE is not in routine clinical use. A glycemic variability metric in 
routine clinical use could potentially be an important measure of overall glucose control and a predictor of 
diabetes complication risk not detected by glycosylated hemoglobin (A1C) levels. This study aimed to develop 
and evaluate new automated metrics of glycemic variability that could be routinely applied to continuous 
glucose monitoring (CGM) data to assess and enhance glucose control.

Method: 
Individual 24 h CGM tracings from our clinical diabetes research database were scored for MAGE and two 
additional metrics designed to compensate for aspects of variability not captured by MAGE: (1) number of 
daily glucose fluctuations >75 mg/dl that leave the normal range (70–175 mg/dl), or excursion frequency, and  
(2) total daily fluctuation, or distance traveled. These scores were used to train machine learning algorithms to 
recognize excessive variability based on physician ratings of daily CGM charts, producing a third metric 
of glycemic variability: perceived variability. Finger stick A1C (average) and serum 1,5-anhydroglucitol 
(postprandial) levels were used as clinical markers of overall glucose control for comparison.

Results: 
Mean amplitude of glycemic excursion, excursion frequency, and distance traveled did not adequately quantify  
the glycemic variability visualized by physicians who evaluated the daily CGM plots. A naive Bayes classifier 
was developed that characterizes CGM tracings based on physician interpretations of tracings. Preliminary 
results suggest that the number of excessively variable days, as determined by this naive Bayes classifier, 
may be an effective way to automatically assess glycemic variability of CGM data. This metric more closely reflects  
90-day changes in serum 1,5-anhydroglucitol levels than does MAGE.
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Introduction

Poorly controlled diabetes mellitus is associated with 
multiple long-term complications that contribute to 
increased morbidity and mortality. The pathogenesis of 
these complications is complex and involves multiple 
mechanisms, with chronic hyperglycemia being the 
principal contributor.1,2 The role of glycemic variability 
and the induction of oxidative stress in the pathogenesis 
of complications is currently the subject of significant 
interest.3–8 In investigating this role, one challenge is in 
definitively measuring glycemic variability. A standard 
means of quantifying glycemic variability, integrated with 
continuous glucose monitoring (CGM) systems, would 
further this investigation as well as facilitate clinical 
diabetes management.

Measuring glycemic variability is not a new concept.  
First proposed in 1970 by Service and colleagues,9 the 
mean amplitude of glycemic excursion (MAGE) attempted 
to quantify glucose variability. There have since been 
several proposed measures, including standard deviation, 
mean of daily differences, continuous overlapping net 
glycemic action over an n-hour period, and average daily 
risk range, just to name a few.10–13 However, none has 
clearly emerged as the best overall indicator of glycemic 
variability.13 While definitively measuring glycemic 
variability has proven to be difficult, diabetes specialists 
clearly recognize excessive variability when they see it 
in CGM charts. Therefore, a novel approach was adopted 
in this work to incorporate physician perception into an 
automated metric using machine learning algorithms. 
The resulting metric, once refined and validated, could 
be incorporated into existing CGM system software to 
supplement glycosylated hemoglobin (A1C) as a routine 
assessment of overall glucose control.

This work was undertaken as part of the 4 Diabetes Support 
System™ studies. The 4 Diabetes Support System is an 
experimental system prototype that automatically detects  
problems in blood glucose control and suggests therapeutic 
changes to improve control in patients with type 1 diabetes 
on insulin pump therapy with CGM.14–16 While this system 
can accurately detect numerous glucose control problems 
(hyperglycemia and hypoglycemia), our initial attempts 
to automatically detect excessive glycemic variability were 
not satisfactory. In particular, when MAGE was used as 
the detection criterion, our physicians, Frank L. Schwartz 
and Jay H. Shubrook, sometimes disagreed with system 
designations of excessive variability and sometimes noted 
actual excessive variability that went undetected by the 
system. This led to a consideration of the quantifiable 
aspects of glycemic variability as they relate to physician 
perception of variability and to the development of the 
metric reported herein.

Methods

Patients and Continuous Glucose Monitoring Data
Data for this study came from 11 patients with type 1 
diabetes on insulin pump therapy participating in the  
4 Diabetes Support System studies.14–16 The 9 female and 
2 male patients ranged in age from 26 to 67 years, and 
A1C levels ranged between 7.0% and 9.5%, with some 
patients considered to have excellent glucose control and 
others not even close to target levels. All patients used 
Medtronic Paradigm® insulin pumps with REAL-Time 
continuous glucose monitors. Patients were instructed 
to calibrate three times a day—before breakfast, lunch, 
and bedtime—when glucose levels were between 60 
and 240 mg/dl. The CGM data were extracted from the 
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Conclusion:
We have developed a new automated metric to assess overall glycemic variability in people with diabetes 
using CGM, which could easily be incorporated into commercially available CGM software. Additional work 
to validate and refine this metric is underway. Future studies are planned to correlate the metric with both 
urinary 8-iso-prostaglandin F2 alpha excretion and serum 1,5-anhydroglucitol levels to see how well it identifies 
patients with high glycemic variability and increased markers of oxidative stress to assess risk for long-term 
complications of diabetes.
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Medtronic CareLink® database into our clinical diabetes 
research database. Each patient supplied 3 months’ worth  
of CGM data in all. Three hundred fifty different daily 
CGM charts, selected to exhibit a wide range of glycemic 
variability, were used to develop and test the new metrics. 
The 24 h data included in each chart ran from midnight  
of one day to midnight of the next.

Serum 1,5-anhydroglucitol (GlycoMark) and A1C
Serum levels of 1,5-anhydroglucitol (GlycoMark™) and 
A1C scores were routinely obtained for all participating 
patients on the first and last days of the 3-month CGM 
data collection period in our studies. These were used as 
clinical markers of overall glucose control for comparison. 
Glycosylated hemoglobin is a measure of overall glucose 
exposure, while GlycoMark values reflect postprandial 
glucose excursions. There is an inverse relationship 
between GlycoMark levels and postprandial glucose 
excursions, as higher GlycoMark scores indicate lower 
postprandial glucose peaks.17 These tests were performed 
by LabCorp™. Note that GlycoMark scores do not reflect 
downward excursions leading to hypoglycemia and are 
therefore an incomplete measure of variability. Urinary 
8-iso-prostaglandin F2 alpha excretion (PGF2), a marker 
of oxidative stress,18,19 would be useful for comparison; 
however, PGF2 was not routinely measured as part of 
the 4 Diabetes Support System studies.

Mean Amplitude of Glycemic Excursion, Excursion 
Frequency, and Distance Traveled
Mean amplitude of glycemic excursion is the original 
medical measurement for variability9 and is still considered 
to be the best available clinical metric for assessing 
glycemic variability.13 It is known to correlate with PGF2 
and GlycoMark. Mean amplitude of glycemic excursion 
computes the average height of glucose excursions that 
exceed the standard deviation for a given day. It includes 
only peak-to-nadir or nadir-to-peak excursions in its 
calculation, depending on which type of excursion occurs 
first in the day‘s data. Programmed versions of MAGE 
vary in forms of implementation, which may be viewed 
as one of its drawbacks.13 Our implementation follows 
the original specification.9 Figure 1 demonstrates how 
MAGE is calculated for an actual daily CGM chart. 

The 75-point excursion frequency measurement was 
created to address two aspects of variability that MAGE 
does not take into account. First, MAGE does not 
consider the frequency of significant excursions, only 
the mean of the amplitudes. Second, MAGE does not 
consider whether or not the glycemic excursions are out 

Figure 1. Example of MAGE calculation. For this 24 h CGM chart, 
the standard deviation is 63. The distance from the first peak (144) to 
the first nadir (72) is 72, which is greater than 63, so only peak-to-
nadir excursions are counted. The second excursion, from 318 to 192, 
measures 126. The third excursion, from 314 to 78, measures 236.  
Mean amplitude of glycemic excursion is then (72 + 126 + 236)/3, or 145.

of the normal range. For example, in Figure 1, the first 
excursion is entirely within the normal range, the second  
is entirely in the hyperglycemic range, and the third goes 
from hyperglycemic to normal. At this time, we do not 
know which aspect of the glucose excursion (amplitude, 
frequency, or rate of change) is responsible for inducing 
the most oxidative stress in persons with diabetes, but we 
expect fluctuation within the normal range to be less 
stressful than fluctuation outside it, so we developed 
this metric to supplement MAGE. Excursion frequency 
counts the number of glucose excursions that leave the 
normal range over the course of one day, beginning at 
midnight. For implementation purposes, we arbitrarily 
set the amplitude of excursion to 75 mg/dl and the 
normal range to 70–175 mg/dl. Figure 2 shows how 
excursion frequency is calculated.

The distance traveled metric is the sum of the absolute 
difference in glucose levels for one day of consecutive 

Figure 2. Example of excursion frequency calculation. The first dip, 
from 144 to 72, is less than 75 mg/dl, so it is not counted. Counted 
excursions are from 72 to 318, from 318 to 192, from 192 to 314, from 314 
to 78, and from 78 to 218, yielding an excursion frequency score of 5.
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CGM readings. It does not directly calculate frequency or 
magnitude (amplitude) of excursions; instead, it quantifies 
the total change in blood glucose levels throughout the 
day by measuring the total distance from point to point  
in a daily CGM plot. Thus the greater the distance traveled,  
the greater the variability. Figure 3 illustrates the distance 
traveled calculation. The total fluctuation measured by 
distance traveled is another aspect of variability not 
directly captured by MAGE. Consider the hypothetical 
CGM plot shown in Figure 4, which was constructed 
by duplicating the actual blood glucose points shown in 
Figures 1, 2, and 3. Distance traveled goes from 1496 to 
3064, reflecting the intuition that there is now twice as 
much variability in the chart, whereas MAGE only goes 
from 145 to 157. This is because the standard deviation 
remains the same (63), and the amplitudes of the excursions 
are the same, except for one larger excursion in the 
middle of the chart artificially introduced by appending 
the duplicate data. 

Distance traveled is related to area under the curve (AUC) 
metrics in that it captures changes in the curve delimiting 
the area. An important distinction is that AUC, when 
calculated above a threshold, reflects blood glucose 
level as well as glycemic fluctuation. Consider again the 
curve of Figure 4. If every glucose point were elevated 
by 100 mg/dl, AUC would increase but distance traveled 
would remain the same. It should be noted that distance 
traveled is adversely affected by glucose sensor error. 
Mastrototaro and associates20 reported that only 75.6% 
of readings from sensors such as those used in this 
study fell within an acceptable ±20% range when used 
in patients with type 1 diabetes. As sensor accuracy 
improves, we will be better able to measure variability. 
In the meantime, we are exploring the use of smoothing 
algorithms currently used for blood glucose prediction 
to minimize the effect of sensor noise.21,22

Physician Perception of Glycemic Variability and 
Machine Learning Algorithms
The metrics presented earlier measure different aspects 
of glycemic variability. However, they do not provide a 
distinct “cutoff“ point (such as 7.0% for A1C) delimiting 
excessive from acceptable glycemic variability. Based on the 
assumption that “you know it when you see it,“ machine 
learning techniques were explored in an effort to create 
a new metric and automate the detection of excessive 
variability from CGM data. In machine learning terms, a 
classifier was sought that could automatically characterize 
any daily CGM chart as excessively variable or not.  
To build the classifier, physicians Jay H. Shubrook and 

Figure 3. Example of distance traveled calculation. The CGM points are 
5 min apart, so there are 287 absolute differences to sum. As a partial 
example, consider the CGM values between 6:00 AM and 6:30 AM, 
inclusive: 146, 144, 140, 136, 136, 138, 140. Then, |146–144| + |144–140|  
+ |140–136| + |136–136| + |136–138| + |138–140| = 2 + 4 + 4 + 0 + 2 + 
2 = 14. For the entire day, distance traveled = 1496.

Figure 4. A hypothetical 24 h CGM chart constructed by duplicating 
the actual blood glucose values shown in Figures 1, 2, and 3. For 
this chart, MAGE = 157, excursion frequency = 11, and distance  
traveled = 3064.

Frank L. Schwartz were asked to evaluate 250 different 
24 h CGM charts from the 4 Diabetes Support System 

clinical research database and give their gestalt opinions 
as to whether each CGM chart exhibited excessive 
variability or not. Representative 24 h CGM charts 
demonstrating excessive and low glycemic variability are 
presented in Figure 5.

When both physicians agreed on whether or not a parti-
cular 24 h CGM chart exhibited excessive variability, their 
classification was coupled with the chart‘s measurements 
for use in training a machine learning classifier. This 
resulted in 218 cases of training data, which were input 
to Weka, a machine learning toolkit that facilitates the 
rapid development and evaluation of classifiers via a 
library of machine learning algorithms.23 Each training 
example input to Weka contained MAGE, excursion 
frequency, and distance traveled for 24 continuous hours, 
from midnight to midnight, along with the physicians’ 
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variability classification for that day. Different types of 
machine learning classifiers were trained and tested, using 
both 10-fold cross validation and a percentage-based split 
of 66% training, 34% testing. Ten-fold cross validation 
is a technique that randomly partitions the training data 
into 10 partitions, using nine to train the classifier and 
one to test. This process is repeated 10 times with a 
different partition used to test the classifier each time. 
The percentage-based split randomly partitions the data 
into two subsets: one contains 66% of the instances for 
training and the other contains the other 34% for testing.

Initially, three types of machine learning algorithms 
appeared to classify CGM charts most like the physicians. 
These were a naive Bayes classifier, a multilayer perceptron, 
and a logistic model tree. In brief, a naive Bayes classifier 
uses probabilistic reasoning, a multilayer perceptron 
is a type of artificial neural network, and a logistic 
model tree is a form of decision tree built using logistic 
regression. In evaluating the resultant classifiers, physicians 
identified their own personal classification consistency as 
a possible issue. While it is not hard to classify charts 
as distinct as those shown in Figure 5, charts with 
borderline or intermediate variability can be difficult to 
consistently categorize.

To select the best machine learning classifier, while 
accounting for consistency, a test was conducted as 
follows. The physicians were individually asked to classify 
each of 100 previously unseen daily CGM charts from 
the clinical diabetes research database twice, in random 
order. Each physician‘s classification was then compared 
to (a) his own second classification of the same chart; 
(b) the other physician‘s classification of the chart; (c) the 
output of the naive Bayes classifier; (d) the output of 
the multilayer perceptron; and (e) the output of the 
logistic model tree. In this test, average intraphysician 
consistency was 82%, with one physician consistently 
classifying 81 of 100 charts and the other consistently 
classifying 83 of 100 charts. For the 67 charts where both 
physicians were internally consistent, physicians agreed 
with each other 61 times, for an interphysician consensus  
of 91%.

Results
No new patient data were collected expressly for developing 
or evaluating the new glycemic variability metrics.  
This is a methods paper describing our novel approach  
to metric development and comparing the newly 
developed metrics with MAGE, which we consider to be 
the gold standard.

Figure 5. Representative 24 h CGM charts illustrating (A) excessive 
and (B) low glycemic variability. For (A), MAGE = 162, excursion 
frequency = 7, and distance traveled = 1730. For (B), MAGE = 59, 
excursion frequency = 0, and distance traveled = 672.

Excursion Frequency and Distance Traveled
Initially, we designed, implemented, and evaluated two 
new metrics of glycemic variability—excursion frequency  
(Figure 2) and distance traveled (Figure 3)—and compared 
these with MAGE (Figure 1). Following initial assessment 
of these metrics, both Dr. Schwartz and Dr. Shubrook felt 
that neither they nor MAGE adequately quantified the 
glycemic variability that they were visualizing on the 
daily CGM plots. Therefore, we investigated machine 
learning techniques to develop additional potential metrics. 

Machine Learning Classifiers
A multilayer perceptron, a logistic model tree, and a naive 
Bayes classifier were all tested against physician glycemic 
variability classifications of daily CGM charts. Table 1 
shows how the three machine learning classifiers matched 
the physicians’ classifications for 100 daily CGM charts. 
The number of possible matches is the number of charts 
for which physicians gave consistent and/or consensus 
classifications. The best result is for the naive Bayes 
classifier, which matched the physicians’ classifications 
85% of the time that they were internally consistent 
and in agreement with each other. The number of days 
of CGM data classified as excessively variable for a 
patient by the naive Bayes classifier was selected as the 
perceived variability (PV) metric.
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Correlation of Perceived Variability, Mean 
Amplitude of Glycemic Excursion, and Glycosylated 
Hemoglobin with GlycoMark
Since we had A1C and GlycoMark data in the 4 Diabetes 
Support System clinical research database, we compared 
how MAGE, PV, and A1C correlated with postprandial 
glucose excursions (GlycoMark ). Figure 6 plots MAGE 
and PV against GlycoMark for the 11 patients whose data 
were used in this study. Values shown are from the 
beginning of the 3-month data collection period. There is 
a linear relationship between both MAGE and PV with 
GlycoMark scores, demonstrating that both capture post-
prandial glucose excursions. Note, however, that the 
correlation between PV and GlycoMark is not statistically 
significant. Pearson correlation coefficients for MAGE, PV, 
and A1C with GlycoMark were -0.455 (significance, 0.034), 

-3.46 (significance, 0.115), and -0.598 (significance, 0.003), 
respectively.

Correlation of Changes in Perceived Variability, 
Mean Amplitude of Glycemic Excursion, and 
Glycosylated Hemoglobin with Changes in 
GlycoMark Over Time
Glycosylated hemoglobin and GlycoMark scores are also 
available in the 4 Diabetes Support System clinical 

Table 1.
Comparison of Physician and Machine Learning 
Algorithm Classification of Excessive Variability in 
Daily Continuous Glucose Monitoring Charts 

Comparison
Number of 
matches

Number of
possible 
matches

Percentage 
match

Physician 1 and naive 
Bayes

60 83 72

Physician 1 and multilayer 
perceptron

52 83 63

Physician 1 and logistic 
model tree

52 83 63

Physician 2 and naive 
Bayes 

68 81 84

Physician 2 and multilayer 
perceptron

63 81 78

Physician 2 and logistic 
model tree

64 81 79

Physician consensus and 
naive Bayes

52 61 85

Physician consensus and 
multilayer perceptron

47 61 77

Physician consensus and 
logistic model tree

46 61 75

Figure 6. Mean amplitude of glycemic excursion (MAGE) and 
perceived variability (vertical axis) are plotted against GlycoMark 
(horizontal axis). Scores have been normalized to between 0 and 1 to 
allow for direct comparison. PCC, Pearson correlation coefficient.

Figure 7. The change in MAGE and change in PV over a 90-day 
period are plotted against the change in GlycoMark. Scores have been 
normalized to between 0 and 1 to allow for direct comparison. PCC, 
Pearson correlation coefficient.

research database for patients at the end of the 3-month data 
collection period. Figure 7 plots the change in MAGE 
and PV from the beginning to the end of the 3-month 
data collection period against the change in GlycoMark 

scores. Over 3 months, the change in MAGE does not 
appear to vary with the change in GlycoMark, while the 
change in PV appears to reflect changes in GlycoMark. 
Again, for this preliminary study, the correlation between 
the change in PV and the change in GlycoMark is not 
statistically significant. Pearson correlation coefficients for 
change in MAGE, change in PV, and change in A1C with 
change in GlycoMark were -0.030 (significance, 0.931), 

-0.389 (significance, 0.237), and -0.756 (significance, 0.007), 
respectively.
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Discussion
We have developed new metrics to reflect aspects of 
glycemic variability that are not captured by MAGE.  
We describe a novel approach to incorporating physician 
perception of glycemic variability into an automated PV 
metric using machine learning algorithms. The resulting 
PV metric is very preliminary and based on only two 
physicians’ perceptions of glycemic variability. However, 
we plan to use multiple volunteer diabetes experts to 
interpret 24 h CGM plots to increase the robustness of 
our naive Bayes classifier. Once refined and validated, 
this metric could be incorporated into existing CGM 
system software to supplement A1C as a routine 
assessment of overall glucose control and risk for long-
term complications.

While work is ongoing to refine and evaluate the new 
metrics, it is clear that the naive Bayes classifier and 
other machine learning tools in the Weka toolkit provide 
a promising platform for understanding and measuring 
glycemic variability. To further develop the PV metric, 
we plan to (a) quantify additional aspects of variability, 
such as how rapidly blood glucose rises or falls during 
excursions, and correlate these measures with PGF2;  
(b) solicit additional diabetes experts to classify CGM plots 
as excessively variable or not, to acquire more training 
examples for machine learning algorithms; and (c) train 
and test additional machine learning algorithms.

Following further development, we will conduct in silica 
experiments on data from a larger patient population 
to determine which factors, in which combination, best 
agree with physician perception and best correlate 
with physiological markers of glycemic variability and 
oxidative stress, including PGF2. Results will be used 
to refine the new metric, which could potentially aid 
in identifying the role of glycemic variability in the 
pathogenesis of diabetes complications as well as 
providing a practical tool for clinical assessment.

Conclusions
New glycemic variability measurements have been 
developed to augment the capabilities of MAGE and to 
correspond to gestalt physician interpretation of daily 
CGM charts. Preliminary results for a novel machine 
learning approach to glycemic variability assessment are 
promising. The new PV metric could be incorporated 
into existing CGM software to potentially supplement 
A1C as a routine measure of overall glucose control. 
However, this work is a proof of concept, and the metric 

needs further refinement and evaluation before being 
introduced as a clinical tool. Additional work to enhance 
and validate the new metric is underway. Clinicians 
willing to participate in this research by giving their gestalt 
impressions of daily CGM charts, via an experimental 
Web site, are invited to contact Dr. Frank Schwartz 
(schwartf@ohio.edu) for additional information.
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