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Abstract— For people with type 1 diabetes, good blood glu-
cose control is essential to keeping serious disease complications
at bay. This entails carefully monitoring blood glucose levels and
taking corrective steps whenever they are too high or too low.
If blood glucose levels could be accurately predicted, patients
could take proactive steps to prevent blood glucose excursions
from occurring. However, accurate predictions require complex
physiological models of blood glucose behavior. Factors such
as insulin boluses, carbohydrate intake, and exercise influence
blood glucose in ways that are difficult to capture through
manually engineered equations. In this paper, we describe a
recursive neural network (RNN) approach that uses long short-
term memory (LSTM) units to learn a physiological model of
blood glucose. When trained on raw data from real patients, the
LSTM networks (LSTMs) obtain results that are competitive
with a previous state-of-the-art model based on manually
engineered physiological equations. The RNN approach can
incorporate arbitrary physiological parameters without the
need for sophisticated manual engineering, thus holding the
promise of further improvements in prediction accuracy.

I. INTRODUCTION AND MOTIVATION

People with type 1 diabetes (T1D) are faced with the
daunting task of continually monitoring their blood glucose
levels (BGLs) and correcting them whenever they are too
high (hyperglycemia) or too low (hypoglycemia). Achieving
and maintaining good blood glucose (BG) control is key to
avoiding serious disease complications [1]. If BGLs could
be accurately predicted 30 to 60 minutes in advance, pa-
tients could proactively prevent hyper- and hypoglycemia,
improving BG control and enhancing health and well-being.

The Artificial Pancreas project [2] has sparked interest
in BG prediction. This project aims to provide a closed-
loop control algorithm that inputs BGLs from a continuous
glucose monitoring (CGM) system and instructs an insulin
pump to deliver the right amount of insulin to keep BGLs
in range [3], [4]. There have been several research efforts to
predict BGLs of late [5]–[8]. However, the use of small or
simulated patient datasets has limited progress.

We have assembled a database containing over 1,600 days
of actual patient data through our work on intelligent decision
support for patients with T1D on insulin pump therapy [9]–
[14]. This data includes not only continuous BGLs from
sensors, but also factors known to influence BGLs, including
insulin, food, exercise, and sleep. As previously reported
[10], [11], we have already used this data with physiologic
models of BG dynamics to train patient-specific time series
prediction models within a support vector regression (SVR)
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framework. Evaluation showed that the trained BGL predic-
tion models outperformed our three diabetes experts [11].

An important part of our research is focused on the
identification of additional types of signals that could fur-
ther increase the performance and reliability of the BG
level prediction models. In particular, new portable sensing
technologies have been developed recently for providing
almost continuous measurements of an array of physiological
parameters that include heart rate, skin conductance, skin
temperature, and properties of body movements such as ac-
celeration. However, the impact that the sensor measurements
have on BG prediction performance will depend on the
proper modeling of their relations with the other variables in
the system. One approach would be to reengineer the current
physiological model, which captures only carbohydrates, in-
sulin, and glucose, to also incorporate the new physiological
parameters. Reengineering the physiological model would
require formulating other possibly nonlinear state transition
equations such that their predictions match observed blood
glucose behavior. This could be very time consuming and
cognitively demanding, while lacking in scalability: as new
types of physiological parameters become available, the
physiological model would have to be reengineered again.
Instead, we propose to leverage recent advances in unsu-
pervised feature learning and deep learning (UFLDL) in
order to build a platform that can seamlessly incorporate
any number of physiological variables. The core idea behind
many successful UFLDL methods is that complex highly-
varying functions (e.g. blood glucose) can be learned using
simple algorithms, by training on mostly unlabeled data [15].
While a trained UFLDL model is very complex, the learning
algorithm itself is usually very simple: the complexity of
the trained model comes from the data, not from the algo-
rithm [16]. Over the years, a number of approaches to BG
prediction have used RNNs, as reviewed in [17]. Previous
approaches use plain RNNs, which are difficult to train due
to vanishing gradients, a problem that is often compounded
by the limited size of the clinical data used in experimental
evaluations. In contrast, we propose an RNN architecture that
uses LSTM units, which are not affected by the vanishing
gradient problem. The LSTM architecture is trained and
evaluated on a dataset of 5 patients, containing approximately
400 days worth of BG levels, insulin, and meal event data.

II. ENGINEERED PHYSIOLOGICAL MODEL

A physiological model of blood glucose behavior is
a continuous dynamic model in which a state transition
function computes the next state of the system given the
current state and input variables. The overall blood glucose



Fig. 1. Physiological dependencies between input U (blue), state (green),
and output (violet) variables for carbs (C), insulin (I), and glucose (G).

dynamics is usually characterized into three compartments:
meal absorption dynamics, insulin dynamics, and glucose
dynamics [18]–[20]. For our physiological model from [11],
which is summarized here, we adapted the state transition
equations from [21] to better match published data and
feedback from a diabetes expert. The equations for the state
transition function use a set of parameters α and are shown
below for each of the three compartments.
1) Meal absorption dynamics (UC represents meal carbs):

• Cg1(t+ 1) = Cg1(t)−α1C ∗Cg1(t) +UC(t) [consumption]
• Cg2(t+1) = Cg2(t)+α1C ∗Cg1(t)−α2C/(1+25/Cg2(t))

[digestion]

2) Insulin dynamics (UI represents injected insulin):
• IS(t+ 1) = IS(t) − αfi ∗ IS(t) + UI(t) [injection]
• Im(t+ 1) = Im(t) + αfi ∗ IS(t) − αci ∗ Im(t) [absorption]

3) The general equation for the glucose compartment is
Gm(t+1)=Gm(t)+∆abs−∆ind−∆dep−∆clr+∆egp, where:

• ∆abs = α3C ∗ α2C/(1 + 25/Cg2(t)) [absorption]
• ∆ind = α1ind ∗

√
G(t) [insulin independent utilization]

• ∆dep = α1dep ∗ I(t) ∗ (G(t) + α2dep)[insulin dependent
utilization]

• ∆clr = α1clr ∗ (G(t) − 115) [renal clearance, only when
G(t) > 115)]

• ∆egp = α2egp ∗ exp(−I(t)/α3egp) − α1egp ∗G(t) [endoge-
nous liver production]

The glucose and insulin concentrations are computed deter-
ministically from their mass versions as follows, where bm
stands for the body mass and IS is the insulin sensitivity:

• G(t) = Gm(t)/(2.2 ∗ bm)
• I(t) = Im(t) ∗ IS/(142 ∗ bm)

Figure 1 shows the dependencies that the state transition
functions above induce among the state variables of the
engineered physiological model (EPM).

The state transition equations were used in an extended
Kalman filter (EKF) [22], which models the noise inherent
in the BGL sensor and meal data. The EKF model ran a state
prediction step every minute and a correction step every 5
minutes, corresponding to the sampling interval used by the
CGM system. The physiological model parameters α and the
state transition equations were adapted to match published
BGL behavior and feedback from our doctors, who were
shown graphs of the time-dependent behavior of the state
variables in the model. The EKF model was first used on its
own to make BG level predictions, by running it in prediction
mode only during the 30 or 60 minutes of the prediction
region, however results were not better than the simple t0
baseline that predicts the BG level stays the same. This was

not surprising, given that patients with diabetes can vary
significantly in how they respond to insulin or carbohydrate
intake. Therefore, a personalized model was built for each
patient by training a Support Vector Regression (SVR) model
[23] on a feature representation that was derived from the
state vector computed by the EKF on top of the physiological
model. This approach is described in detail in [11], where it
was shown to outperform the predictions of the three diabetes
experts participating in the study. In this section, we report
the results of the SVR prediction model using a simpler
tuning procedure and two different training scenarios.

A. Evaluation Dataset

We used the original evaluation dataset from [11], con-
taining 200 timestamps collected from 5 T1D patients, 40
points from each. The timestamps were sampled manually
to capture a diversity of situations: different times during
the day or night; close to or far from daily events; on the
rising, decreasing, or flat sections of the BG curves; around
or far from past or future local minima or maxima of the
BGL; or in the vicinity of inflection points. We call these 5
patients the test patients or the test dataset. Furthermore, 5
other patients from the same clinical study were selected to
provide data for tuning the model hyper-parameters. We call
these additional 5 patients the development patients or the
development dataset. For each patient, the data provided to
the system consists of blood glucose levels measured every 5
minutes by a CGM system, information about boluses (time,
type, and amount of insulin), the basal rate, and meals (time
and carbohydrate amount).

B. Experimental Evaluation

Some of the timestamps in the test dataset had insulin
or meal events in the prediction region, i.e. between the
prediction time t0 and the prediction horizon t0 + 30 or
t0+60 minutes in the future – there were 30 such points for
the 30 minute horizon and 65 for the 60 minute horizon.
Consequently, we re-evaluated the EPM-based prediction
model, which was introduced in [11] and summarized above,
in the following two scenarios:

1) WHAT-IF: In this scenario, insulin or meal events that
happened during the prediction region were still used as
inputs for the physiological model in that region. This is
how both the physiological model and the diabetes experts
were evaluated in [11]. For prediction points that had such
events, this could be seen as evaluating the model in a what-
if scenario, e.g. what would the BG level be 60 minutes from
now if the patient had a snack containing 100 grams of carbs
20 minutes from now.

2) AGNOSTIC: In this scenario, any insulin or meal events
that happened during the prediction region were ignored by
the physiological model.

For each point in the dataset, the SVR model was trained
on the previous week of data. The hyper-parameters of the
SVR were tuned separately for each point in [11], by using
one week of data before the training week. This tuning
procedure is computationally expensive and unfeasible in



a real-time setting. Therefore, we used instead the same
generic set of hyper-parameters for all points in the dataset,
by tuning the SVR on a patient from the development dataset.
Using a generic set of hyper-parameters also makes the SVR
evaluation consistent with the LSTM evaluation from the
next section, for which we used a similar tuning approach.

TABLE I
RMSE RESULTS FOR THE EPM-BASED SVR MODEL IN AGNOSTIC AND

WHAT-IF SETTINGS VS. t0 AND ARIMA BASELINES.

Horizon t0 ARIMA AGNOSTIC WHAT-IF

30 min 27.5 22.9 21.6 20.3
60 min 43.8 42.2 39.2 35.5

Table I shows the RMSE of the EPM-based SVR model in
the two evaluation settings, compared with a t0 baseline that
predicts the BG level stays the same, and an Auto Regressive
Integrated Moving Average (ARIMA) model trained on BG
levels using model identification as detailed in [11].

III. TRAINED PHYSIOLOGICAL MODEL

Figure 2 shows a recurrent neural network architecture
with one hidden layer that captures the same dependencies
as the EPM from Figure 1: the hidden state variables H at
time t + 1 depend recursively on the hidden state variables
at time t, as well as on the input variables U at time
t + 1 and the glucose value G at time t. As opposed to
the EPM approach where the dependencies are modeled
through manually engineered state transition equations, the
RNN approach models the same dependencies through the
weights of the connections between the input layer and the
hidden layer. Nonlinear behavior of the hidden state variables
is captured through the use of nonlinear activation functions
at the output of the hidden layer neurons. As a consequence
of the universal approximation theorem [24], with a sufficient
number of hidden neurons, the RNN architecture in Figure 2
is general enough to approximate the physiological model
from Section II, no matter what state transition equations
are used. A significant advantage of the RNN architecture
is that it can accommodate any new types of physiological
parameters, as sensor measurements for those parameters
become feasible to acquire. This would be done simply by
increasing the size of the input vector Ut+1 to contain the
new sensor measurements for the time interval [t, t+ 1).

The RNN architecture could be trained first to predict the
BG level at the next time step, i.e. only the first element
Gt+1 of the output layer shown in Figure 2. In the second
step, the RNN would be trained to use the physiological
dependencies captured by the hidden layer neurons to make
predictions at predefined time intervals, such as 30 and 60
minutes into the future. Correspondingly, the output layer
would contain two additional nodes, one for 30 and another
for 60 minute prediction. In the experiments reported in this
paper, we adopted a simpler approach in which the RNN is
trained in separate experiments to directly make either 30 or
60 minute predictions.

Fig. 2. An RNN architecture capturing similar dependencies between
hidden state variables (green), input variables (blue), and the output glucose
variable (violet). Thick arrows between layers represent full connections.
The inputs can be optionally connected to the output layer.

While RNNs are a powerful tool for time series modeling,
training them is not easy, mainly due to the vanishing
gradient problem [25], [26], which makes it difficult to learn
long-term dependencies. To alleviate this, we use long short-
term memory (LSTM) units in the hidden layer [27]. The
multiplicative gates used internally by LSTM units allow
them to store and access information over long periods of
time, effectively mitigating the vanishing gradient problem.
LTSM networks (LSTMs), and more generally gated RNNs,
are currently the most effective sequence models for practical
applications [16]. We use the standard LSTM unit as defined
in [28] and add a linear layer on top of the LSTM output in
order to predict the BG level. At each timestep, the input U
is a vector of 4 numbers: the previous BG level, the insulin
from boluses, the insulin from basal rate, and carbs. Given
that each LSTM node has 3 gates and one memory cell, the
total number of network parameters is 4 × |U | × |H| for
inputs to LSTM connections + 4 × |H| × |H| for recurrent
connections + 4× |H| bias parameters for LSTM + |H|+1
parameters for the output linear layer.

A. LSTM Training Procedure

As in the EPM-based SVR approach, for each of the 5
test patients, an LSTM model is trained for each test point,
using the patient history as training data. Network config-
urations and hyper-parameters were tuned on the separate
development patients, resulting in the following setup:

• A single LSTM layer, with 5 nodes.
• The BG levels are scaled by 0.01, whereas all other

input values are normalized in [0, 1].
• The target values at t0+T (where T is 30 or 60 minutes

prediction horizon) were defined as relative change with
respect to t0, i.e. BG(t0 +T )−BG(t0), instead of the
absolute values BG(t0 + T ).

• Missing BG levels are linearly interpolated. However,
interpolated BG levels are never used as prediction
targets during training.

• Backpropagation through time (BPTT) is done for 12
hours. This is also for how long in the past the LSTM
network will be unrolled at test time.



• For each example, the initial states of the first LSTM
in the unrolled network are set to zero.

• The mean square error objective is minimized using
RMSProp with a batch size of 500.

• Dropout, L2 regularization, and gradient clipping were
not used as they did not help on development data.

The number of training examples varies widely, from only
a few days for the first test points to more than two months
for the last test points. To address the insufficient number of
training examples for the early test points, training is done
in two steps: pretraining and fine-tuning.

During pretraining, 2 development patients are set aside
to be used for early-stopping. An LSTM model is then
pretrained on the remaining 3 development patients + the
other 4 test patients, using a learning rate of 0.01 and early
stopping with a tolerance of 2 epochs. The weights are
initialized using the Glorot uniform scheme [29].

After pretraining, a separate model is fine-tuned on the BG
level history for each test point. Let k be the index of the
current test point in the entire sequence of BG levels and K
be the length of the sequence of BG levels. The LSTM is first
trained with a learning rate of 0.001 for 5+ 15k/K epochs.
Training then continues with a learning rate of 0.0001 for
1 + 15k/K epochs. This means that the model is run for
at least 5 + 1 epochs, with an additional number of epochs
that increases linearly with the number of training examples
available for the test point. Thus, for test examples early in
the sequence, the initial weights will not be changed much,
which is desirable since the history is short and consequently
the number of training examples is too small to lead to good
parameter estimates. Whereas for a test example late in the
sequence of BG levels, the initial weights could be changed
more substantially, based on a much larger number of patient-
specific training examples.

The pretrained weights are used to initialize the parameters
only for the first test example in each patient. For each
subsequent test example, the weights are initialized with
those learned for the previous test example.

B. Experimental Evaluation

Table II compares the results of the LSTM model (av-
eraged over multiple runs) with the results of the EPM-
based SVR model, both in the AGNOSTIC setting. Results are
shown for all 200 points in the test dataset, as well as for the
last 20 and last 10 points in the dataset, for which training
data was not an issue. Overall, the trained physiological

TABLE II
RMSE RESULTS FOR THE ENGINEERED (EPM) AND TRAINED (TPM)

PHYSIOLOGICAL MODELS IN THE AGNOSTIC SETTING, ON ALL POINTS

VS. ONLY THE LAST 20 OR 10 POINTS.

All points Last 20 Last 10
Horizon EPM TPM EPM TPM EPM TPM
30 min 21.6 21.4 21.6 21.4 22.9 22.6
60 min 39.2 38.0 38.7 39.3 39.7 39.6

model performs comparatively with the SVR model that
used manually engineered physiological equations. We have
also trained a vanilla RNN model, using the same training
procedure from Section III-A. When evaluated on all the
points, the vanilla RNN obtained an RMSE of 22.5 for
the 30 minute horizon and 40.5 for the 60 minute horizon.
These RMSE values are worse than the corresponding LSTM
results of 21.4 and 38.0, thus justifying the use of LSTM
cells in the RNN model.

To determine the impact of the patient history on the RNN
performance, we also evaluated the LSTM approach on the
last 20 points in the dataset, varying the training history from
1 week, to 2 weeks, to 4 weeks, to the entire patient history.
Furthermore, to illustrate the importance of pretraining, we
also ran the same experiments without pretraining, where the
weights were initialized using the Glorot uniform scheme
[29] for each test point.

TABLE III
RMSE RESULTS FOR THE TPM MODEL ON THE LAST 20 POINTS, 60
MINUTE PREDICTIONS, FOR VARIOUS SIZES OF THE TRAINING DATA.

Pretraining 1 week 2 weeks 4 weeks all weeks
With 39.6 37.8 40.5 39.3

Without 45.8 43.8 41.9 41.5

The results in Table III show that both pretraining and the
history length have a substantial impact on the performance.
Pretraining is especially important for shorter history lengths.
Furthermore, when pretraining was used, training on more
than 2 weeks of patient history – the training history – was
detrimental to the system performance. This may be caused
by differences in the data distribution between recent weeks
and weeks farther from the test point. During the study,
patients received weekly recommendations from the doctor
regarding how to improve their BG control, which could have
changed the overall BG behavior.

TABLE IV
RMSE FOR THE ENGINEERED (EPM) AND THE TRAINED (TPM)

PHYSIOLOGICAL MODELS, ON ALL POINTS VS. THE LAST 20, WHEN

TRAINED ON ALL (TPM) VS. TWO WEEKS HISTORY (TPM2w ).

All points Last 20 points
EPM TPM TPM2w EPM TPM TPM2w

39.2 38.0 37.4±0.5 38.7 39.3 38.3±0.7

Based on the results from Table III, we evaluated the
LSTM approach on the entire dataset for 60 minute pre-
diction, using pretraining and 2 weeks of training. The
results for these experiments were averaged over 8 runs and
are shown in Table IV together with their 95% confidence
intervals. The results confirm what has been observed on the
last 20 points: training on 2 weeks gives better predictions
than training on the entire patient history. The relatively large
confidence intervals are due to the variability in the RNN
results, which we plan to investigate in future work.



IV. CONCLUSIONS AND FUTURE WORK

We presented a recursive neural network (RNN) approach
that uses long short-term memory (LSTM) units to learn
a physiological model of blood glucose. When evaluated
on raw data from real patients, the LSTM network obtains
results that are competitive with a previous SVR model based
on manually engineered physiological equations, a model
that has been shown to outperform physician predictions.

To account for the variability in the RNN results, we
averaged the results over multiple runs. In future work, we
plan to evaluate the RNN model on artificial data coming
from T1D simulators such as AIDA or T1DMS1, which we
expect to shed a light on the variability in the RNN results
and help us make it more stable.

In an ongoing clinical study, patients with T1D wear
sensor bands that measure parameters such as electrodermal
activity, temperature, and acceleration. Our next step is to
investigate the utility of these parameters for BG prediction
by incorporating the raw measurements directly into the
general RNN platform described in this paper.
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