
From Physician Queries to Logical Forms for
Efficient Exploration of Patient Data

Charles Chen, Sadegh Mirshekarian, Razvan Bunescu and Cindy Marling
School of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA

Abstract—We introduce a new question answering paradigm in
which users can interact with the system using natural language
questions or direct actions within a graphical user interface
(GUI). The system displays multiple time series characterizing the
behavior of a patient, and a physician interacts with the system
through GUI actions and questions, where answers may depend
on previous interactions. To find the answers automatically, we
propose parsing the questions into logical forms for execution
by an inference engine over the underlying database. The
semantic parser is implemented as an LSTM-based encoder-
decoder that models dependencies between consecutive answers
through multiple attention and copying mechanisms. To train
and evaluate the model, we created a dataset of semantic
parses of real interactions with the system, augmented with a
larger dataset of artificial interactions. The proposed architecture
obtains promising results, substantially outperforming standard
sequence generation baselines.

I. INTRODUCTION

Wearable sensors are being increasingly used to monitor

physiological parameters that are important for the management

of various medical conditions. In our work, for example,

patients with type I diabetes wear a subcutaneous sensor

that measures the interstitial blood glucose level (BGL) every

5 minutes. Sensor bands measure additional physiological

parameters, such as temperature, skin conductivity, and heart

rate. Patients may also self-report information about meals

or sleep, while an insulin pump records two types of insulin

delivery: a continuous stream of insulin (basal), and discrete

self-administered insulin dosages (boluses). The data acquired

from sensors and patients accumulates rapidly and leads to

data overload for the health care provider, who may interact

with the patient just a few times per year.

To help doctors more easily browse the large quantity of

patient data, we built PhysioGraph, a graphical user interface

(GUI) that shows a day-by-day plot of the time series of

measurements acquired from a patient and offers basic browsing

capabilities to navigate through the data. Doctors can click on

discrete events displayed in the GUI window in order to show

details such as the amount of insulin in a bolus or carbohydrates

in a meal. To the best of our knowledge, PhysioGraph is the first

interactive tool providing graphical visualization of aggregated

patient data for diabetes specialists. While the doctors found

PhysioGraph to be very useful, we soon realized that the system

could be improved substantially if it also allowed doctors to

ask questions in natural language (NL).

TABLE I
EXAMPLES OF INTERACTIONS AND LOGICAL FORMS.

Example 1
Click on Exercise event at 9:29am.
Click(e) ∧ e.type == Exercise ∧ e.time == 9:29am

Click on Miscellaneous event at 9:50am
Click(e) ∧ e.type == Misc ∧ e.time == 9:50am

Q1: What was she doing mid afternoon when her heart rate went up?
Answer(e) ∧Behavior(e1.value,Up) ∧Around(e.time, e1.time)

∧ e.type == DiscreteType ∧ e1.type == HeartRate
∧ e1.time == MidAfternoon()

Q2: What time did that start?
Answer(e(−1).time))

Example 2
Click on Bolus at 8:03pm.
Click(e) ∧ e.type == Bolus ∧ e.time == 8:03pm

Q3: What did she eat for her snack?
Answer(e.food) ∧ e.kind == Snack

II. TASK DEFINITION

Given a natural language question or statement, the task is to

translate its meaning into a logical form representation. Table I

shows sample inputs in context, paired with their logical forms.

This task presents a mix of features that distinguish it from

other question answering or semantic parsing tasks. First, all

events and measurements in the knowledge base are organized

in time series. Therefore, queries often use time expressions

and temporal relations. The GUI implicitly serves to anchor the

information needs in time, as many of the queries are relative

to the day shown in the GUI or the last event that was clicked.

Furthermore, the user can interact with the system 1) directly

within the GUI (e.g. mouse clicks); 2) through natural language

questions; or 3) through a combination of both, as shown in

Examples 1 and 2 in Table I. Although the result of every direct

interaction with the GUI can also be obtained using natural

language questions, sometimes it can be more convenient to

use the GUI directly, especially when all events of interest are

in the same area of the screen. Sometimes a click can be used

to anchor the system at a particular time during the day, after

which the doctor can ask short questions implicitly focused

on that region in time, as in Example 2, where a click on a

Bolus event is followed by a question about a snack, which

implicitly should be the meal immediately following the bolus.

The user interacts with PhysioGraph through a sequence

of questions or clicks. The logical form of a question, and

implicitly its answer, may depend on the previous interaction

371

2019 IEEE 13th International Conference on Semantic Computing (ICSC)

978-1-5386-6783-5/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSC.2019.00073

TABLE II
SAMPLE OF VOCABULARY TOKENS FOR LOGICAL FORMS.

Event Types
Physiological Parameters:

BGL, BasalRate, HeartRate, TemporaryBasal, Carbs, InfusionSet...
Life Events:

Bolus, Hypo, Misc, Meal, Exercise, Wakeup, Stressors, Illness...
Constants

Up, Down, On, Off, CurrentDate, Monday, Tuesday, ..., Sunday.
Functions

Interval(t1, t2), Before(t), Afternoon([d]), Morning([d])...
Predicates

Answer(e), Click(e), Low(e), After(t1, t2), Around(t1, t2)...
MidAfternoon(t), Night(t), Morning(t), Afternoon(t)...
Behavior(variable, direction):

whether variable increases(decreases), if direction is Up(Down)
Any(statements):

whether there is a set of variables that make statements true.
Commands

DoToggle, DoSetDate, DoSetT ime, DoClick.

with the system. Examples 1 and 2 in Table I are both of this

kind. In example 1, the pronoun “that" in question 2 refers to

the answer to question 1. In example 2, the snack refers to

the meal around the time of the bolus event that was clicked

previously. As can be seen from these examples, sequential

dependencies can be expressed as coreference between events

from different questions.

III. SEMANTIC PARSING DATASETS

A. Real Interactions

We recorded interactions with PhysioGraph in real time,

using data from 5 patients, each with around 8 weeks worth

of time series data. In each recording session, PhysioGraph

was loaded with data from one patient, and the physician was

instructed to explore the data in order to understand the patient

behavior as usual, by asking NL questions or interacting directly

with the GUI. Whenever a question was asked, a member of

our study team found the answer by navigating in PhysioGraph

and clicking on the corresponding event. Mouse clicks were

automatically translated into logical forms, whereas questions

were parsed into logical forms manually.

A subset of the Event Types, Constants, Functions, Predi-

cates, and Commands used in the vocabulary for logical forms

is shown in Table II. A life event or physiological measurement

stored in the database is represented as an event object e with

3 basic attributes: e.type, e.date, and e.time. Depending on

its type, an event object may contain additional fields. For

example, if e.type == Meal, then it has attributes e.food
and e.carbs. We use e(−i) to denote the event appearing in the

ith previous logical form (LF). If more than one event appears

in the previous LF, we use an additional index j to match the

event index in the previous LF. Coreference between events is

then represented using the equality operator, e.g. e == e(−1).
Overall, the dataset contains logical forms for 163 NL questions

and 74 mouse clicks.

TABLE III
EXAMPLES OF HOW ARTIFICIAL DATA ARE GENERATED.

Example types.
week_days→Monday | Tuesday | ... | Sunday
daily_intervals→morning | afternoon | evening | night
daily_intervals_logic→ Morning | Afternoon | Evening | Night
any_event→heart rate | bolus | blood glucose level
any_event_logic→HeartRate | Bolus | BGL

Example 1: a statement, involving referencing
Let’s go to [week_days]. → DoSetDate([$1])
Possible derivations:

• Let’s go to Monday. → DoSetDate(Monday)
• Let’s go to Tuesday. → DoSetDate(Tuesday)

Example 2: a combo statement capturing temporal dependence
[[let’s / please / we can] / can we] turn the [any_event] off[$1:./?]

DoToggle(Off, [$2 : any_event_logic])
. . . and the [any_event] too.

DoToggle(Off, [$1 : any_event_logic])
Possible derivations:

• please turn the bolus off. → DoToggle(Off,Bolus)
and the heart rate too. → DoToggle(Off,HeartRate)

• can we turn the blood glucose level off?
→ DoToggle(Off,BGL)

and the bolus too.→ DoToggle(Off,Bolus)

Example 3: a click, involving the special type clocktime
Click(e) ∧ e.type == [any_event_logic]∧e.time == [clocktime]
A possible derivation:

• Click(e) ∧ e.type == Bolus ∧ e.time == 12:36 PM

Example 4: a question, involving the special type range
is there [a/any] [valued_event] [more/less] than [range(-500,500)].
Answer(Any(d.value[$3 :>/<][$4]

∧d.type==[$2:valued_event_logic]))
One possible derivation:

• is there any heart rate less than 250.
Answer(Any(d.value < 250 ∧ d.type == HeartRate))

B. Artificial Interactions

Training a semantic parsing model requires substantially

more interactions than those recorded so far in PhysioGraph.

Similar to [1], we implemented an artificial data generator

that simulates interactions using sentence templates. To enable

the generation of a virtually unlimited number of interactions,

the template language was implemented with a context-free

grammar. Below we show a simplification of three sample

rules from the grammar:

〈S〉 → maximum heart rate on 〈P 〉 today?

〈P 〉 → the day before 〈P 〉
〈P 〉 → the Monday after

A sample derivation using these rules is "maximum heart rate

on the Monday after today?".

Our implementation allows for the definition of any number

of types as non-terminals and an arbitrary number of templates

as right hand sides of production rules for the starting symbol

S. The doctor-GUI interactions can be categorized into three

types: questions, statements, and clicks, where templates can

be defined for each type, as shown in Table III. Since the

sentence generator chooses each template randomly, the order

of sentences in the dataset will be random. However, given the

372

Fig. 1. Context-aware semantic parsing architecture. The complete previous generated LF is Y −1 = [Answer, (, e,), ∧, Around, (, e, ., time, OOV,), ∧, e, .,
type, =, DiscreteType]. The token 10am is copied from the input to replace the generated OOV token. The entity token e is copied from the previous LF to
replace the generated REF token.

importance of temporal dependencies between real interactions,

the implementation allows for more complex combo templates

where multiple templates are forced to come in a given

order. It is also possible to specify groups of templates, via

tagging, and to combine groups rather than individual templates.

Furthermore, each NL sentence template is paired with a LF

template, and the two templates are instantiated jointly, using a

reference mechanism to condition the logical form generation

on decisions made while deriving the sentence.

Table III shows examples of how artificial sentences and

their logical forms are generated given templates and types.

Most types are defined using context free rules. There are

however special types, such as clocktime and range, which

are dynamically rewritten as a random time and a random

integer from a given range, as shown in Examples 3 and 4,

respectively. Note that most examples use referencing, which

is a mechanism to allow for dynamic matching of terminals

between the NL and LF derivations. In Example 1, $1 in

the logical form template refers to the first type in the main

sentence, which is week_days. This means that whatever value

is substituted for week_days should appear verbatim in place

of $1. In case a coordinated matching from a separate list of

possible options is required, such as in Example 2, another

type can be selected. In Example 2, [$2:any_event_logic] will

be option i from the type any_event_logic when option i is

chosen in the main sentence for the second template, which

is [any_event]. We defined 82 templates and used them to

generate 1,000 interactions and their logical forms, comprising

312 mouse clicks and 688 NL queries.

IV. SEMANTIC PARSING BASELINES

As baselines, we use a basic sequence-generation model

with and without attention over the input tokens. The model

consists of Long Short-Term Memory (LSTM) [2] units in an

encoder-decoder architecture [3], composed of a bi-directional

LSTM for the encoder over the input sequence X and an

LSTM for the decoder of the output LF sequence Y . We use

Yt = y1, . . . , yt to denote the sequence of output tokens up to

position t. We use Ŷ to denote the generated logical form.

The initial state s0 is created by running the bi-LSTM

encoder over the input sequence X and concatenating the

last hidden states. Starting from the initial hidden state s0,

the decoder produces a sequence of states s1, . . . , sT , using

embeddings e(yt) to represent the previous tokens in the

sequence. A softmax is used to compute token probabilities at

each position as shown in Equation 1. In the attention version,

a context vector ct is computed for each position in the output

LF, using the original model from [3].

st = h(st−1, e(yt−1))

p(yt|Yt−1, X) = softmax(Whst[+Wcct]) (1)

The transition function h is implemented by the LSTM unit.

To train the models, we use “teacher forcing” [4] with the

following token generation loss:

Lgen(Y) = −
Y.l∑

t=1

log p(yt|Yt−1, X) (2)

where Y.l is the length of the current logical form.

V. CONTEXT-AWARE SEMANTIC PARSING

Our proposed semantic parsing model is shown in Figure 1.

Similar to the baseline models, we use a bi-LSTM to encode the

input and another LSTM as the decoder. Context-dependency

is modeled through attention and a copy mechanism for

coreference. The overall context vector ct is the concatenation

of the context vectors computed from three levels of attention:

over the current input, the previous input, and the previous

logical form. In order to handle out-of-vocabulary (OOV)

tokens and coreference (REF) between entities in the current

and the previous logical forms, we add two special tokens

OOV and REF to the vocabulary. A copying mechanism [5] is

then trained to learn which entity in the previously generated

logical form Ŷ −1 = {ŷj} is coreferent with the entity in the

373

current logical form by minimizing the following loss:

Lref (Y)=−
Y.l∑

t=1

Ŷ −1.l∑

j=1

log pr(Rj |sŶ −1

j , sYt) (3)

where sŶ
−1

j is the LSTM state at position j in Ŷ −1 and sYt
is the LSTM state for position t in Y , and Rj ∈ {0, 1} is a

label indicating whether ŷj is an entity referred to by yt in the

current logical form Y . We use logistic regression to compute

the coreference probability, i.e. pr(Rj = 1|sŶ −1

j , sYt) =

σ(wT
r [s

Ŷ −1

j , sYt]). A similar model is used to determine which

token in the current input X = {xj} is an OOV (Oj ∈ {0, 1})

by minimizing the following loss:

Loov(Y) = −
Y.l∑

t=1

X.l∑

j=1

log po(Oj |sXj , sYt) (4)

Finally, the model is trained to learn which token in the

vocabulary (including special tokens OOV and REF) should

be generated, by jointly minimizing the three losses:

L(Y)=Lgen(Y)+Loov(Y)+Lref (Y) (5)

At inference time, beam search is used to generate the LF

sequence [6]. During inference, if the generated token at

position t is OOV, we copy the token from the current input

X that has the maximum OOV probability po. Similarly, if

the generated entity token at position t is REF, we copy the

entity token from the previous LF Y −1 that has the maximum

coreference probability pr.

VI. EXPERIMENTAL EVALUATION

All models are implemented in Tensorflow using dropout for

regularization. For each dataset, 10% was used for tuning, 80%

for training, and 10% for testing. Upon tuning, the size of word

embeddings and LSTM states is set to 64, and the batch size is

set to 128. Optimization is performed using Adam [7], with an

initial learning rate set to 0.0001. We use an early-stop strategy

on the validation set. For evaluation on real interactions, all

three models are first pre-trained on the artificial dataset and

then fine-tuned using the real interactions training data.

TABLE IV
SEQUENCE-LEVEL ACCURACY ON THE TWO DATASETS.

Models Artificial Real

Sequence Generation 40.2 34.3

+ 1 attention level 61.6 48.6

+ 3 attention levels + OOV + REF 73.2 71.4

We use sequence level accuracy as the evaluation metric,

meaning that an output logical form is considered correct

if and only if all the generated tokens match the ground-

truth tokens. Table IV shows the sequence-level accuracy for

the two baselines and the proposed semantic parsing model.

The results show that the sequence generation baselines are

substantially improved by adding attention over the tokens in

the input NL question. Further improvements are obtained by

the full architecture, demonstrating the importance of modeling

TABLE V
EXAMPLES GENERATED ON REAL TEST INTERACTIONS. T INDICATES TRUE

LOGICAL FORMS AND S INDICATES SYSTEM LOGICAL FORMS.

Let’s look at the next day.
T&S:DoSetDate(CurrentDate+1)

What is the intensity of walking?
T&S:Answer(e.intensity) ∧ e.type==Exercise

∧ e.kind==Walking

Click(e) ∧ e.type==HypoEvent ∧ e.time==19:54pm
Click(e) ∧ e.type==HypoAction ∧ e.time==19:54pm
Does she usually just take sugar?
T:Answer(Cond(e.type==HypoAction=>e.food==Sugar))
S:Answer(Count(e.food==Sugar ∧ e.type==BGL))

context-dependency and out-of-vocabulary tokens. Table V

shows logical forms generated by the proposed full model on

real NL questions. The first two are entirely correct, whereas

the last one contains mistakes.

VII. CONCLUSION

We introduced a new question answering task where users

can express their information needs through a combination of

natural language questions and direct actions within a graphical

user interface. We created a dataset of real interactions between

physicians and a GUI tool showing patient data, and designed

a procedure for generating a much larger dataset of artificial

interactions that aims to preserve the major characteristics of the

real data. Experimental evaluations show that a new sequence

generation architecture that models context dependency through

multiple attention levels and copy mechanisms significantly

outperforms traditional sequence generation baselines.

ACKNOWLEDGMENTS

This work was partly supported by grant 1R21EB022356

from the National Institutes of Health. We would like to thank

Dr. Frank Schwartz for contributing real interactions with

PhysioGraph, Quintin Fettes and Yi Yu for their help with

recording and pre-processing the interactions, and Robin Kelby

for annotating logical forms. We would also like to thank the

anonymous reviewers for their useful comments.

REFERENCES

[1] J. Weston, A. Bordes, S. Chopra, and T. Mikolov, “Towards AI-complete
question answering: A set of prerequisite toy tasks,” International
Conference on Learning Representations, pp. 1–15, 2016.

[2] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[3] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” International Conference on
Learning Representations, pp. 1–15, 2015.

[4] R. J. Williams and D. Zipser, “A learning algorithm for continually running
fully recurrent neural networks,” Neural computation, vol. 1, no. 2, pp.
270–280, 1989.

[5] J. Gu, Z. Lu, H. Li, and V. O. Li, “Incorporating copying mechanism in
sequence-to-sequence learning,” Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
vol. 1, pp. 1631–1640, 2016.

[6] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level training
with recurrent neural networks,” International Conference on Learning
Representations, pp. 1–15, 2016.

[7] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, pp. 1–15, 2015.

374

