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Abstract

Accurate hypoglycemia detection would enable
people with type 1 diabetes (T1D) to treat this dan-
gerous condition promptly, improving health and
safety. This paper presents machine learning ex-
periments that aim to improve hypoglycemia de-
tection by leveraging data from noninvasive sen-
sors found in fitness bands. A middle-aged subject
with T1D provided blood glucose and fitness band
data for two months. Sensor data included heart
rate, galvanic skin response, and skin and air tem-
peratures. Statistical tests identified features de-
rived from this data that could differentiate hypo-
glycemic from non-hypoglycemic states. Support
vector machines (SVM) were then trained, using
only these features, to classify instances as hypo-
glycemic or non-hypoglycemic. An SVM with a
linear kernel was able to outperform two simple
baselines. Results show proof of concept; how-
ever, system performance was limited by the size
and nature of the dataset. Results are being used in
ongoing work to improve the performance of over-
all blood glucose prediction models that use blood
glucose, insulin, and life-event data.

1 Introduction and Motivation
For people with type 1 diabetes (T1D), hypoglycemia is
a major health concern. Hypoglycemia is defined by low
blood glucose levels, typically below 70 mg/dl. Initial symp-
toms, which vary from individual to individual, may include
confusion, dizziness, weakness, hunger, nausea, shaking or
sweating. If left untreated, severe hypoglycemia can lead
to seizures, coma, or death. For this reason, low blood glu-
cose levels are especially dangerous for individuals with hy-
poglycemia unawareness, or lack of symptoms, and for all
individuals with T1D while they sleep.

People with T1D are advised to treat their hypoglycemia,
as soon as they recognize it, by consuming a mixed-nutrient
snack containing from 15 to 20 grams of carbohydrate, such
as a granola bar or peanut butter crackers. This simple treat-
ment will often restore blood glucose levels to normal within
15 minutes. The key, then, is to recognize when treatment

is needed. People may recognize hypoglycemia by its symp-
toms; they may also learn of it through a continuous glucose
monitoring (CGM) system. CGM systems, available by pre-
scription, provide blood glucose readings every 5 minutes,
in real time. The readings are derived from the interstitial
fluid by sensors inserted just under the skin. While CGM data
provides valuable insight for managing blood glucose levels,
there are drawbacks to CGM systems. For one thing, mea-
surements based on interstitial fluid lag actual blood glucose
levels by approximately 10 minutes. There is some inherent
noise, or inaccuracy, in the readings as well; frequent calibra-
tion with finger sticks is required. Furthermore, the cost of
the CGM sensors may be prohibitive for some individuals.

With the recent advent of inexpensive, noninvasive, wear-
able physiological sensors, the opportunity arises to improve
the detection and/or prediction of hypoglycemia. The goal
is to be able to alert people as soon as possible to current or
impending hypoglycemia, so that they can take the actions
necessary to correct or prevent the problem.

The present work builds upon five years’ experience build-
ing machine learning models for blood glucose level predic-
tion. In past work, we have used features derived from CGM
data, finger sticks, insulin doses, and manually recorded
meals, sleep and exercise. A high-level overview of our past
work is available in [Marling et al., 2012]. In [Bunescu et al.,
2013], we introduced an adaptive model for blood glucose
level prediction that outperformed predictions made by three
diabetes experts, across a wide range of blood glucose lev-
els. Recognizing that the greatest clinical need was for accu-
rate predictions at low blood glucose levels, we reported our
first experiment with hypoglycemia prediction in [Plis et al.,
2014]. There, we could only predict 23% of hypoglycemic
episodes 30 minutes in advance. Hypothesizing that per-
formance could be improved by incorporating features from
newly available noninvasise sensors, in this paper we describe
experiments on building hypoglycemia detection models that
use data only from these sensors. In ongoing work, we lever-
age these results to improve the performance of the overall
blood glucose level prediction models.

2 Experimental Dataset
Data was contributed by a middle-aged male who has had
T1D since childhood. For two months, he wore a commer-
cially available fitness band along with his regularly pre-



scribed medical devices, and he reported meals, sleep and ex-
ercise via a smart phone. The fitness band, a Basis Peak, pro-
vided data for heart rate (HR), galvanic skin response (GSR),
and skin and air temperatures (ST and AT). The medical de-
vices, a Medtronic insulin pump and a Dexcom CGM system,
provided insulin and blood glucose data. He met with the au-
thors on a weekly basis to review and analyze the collected
data. The data was consolidated and displayed via custom-
built graphical software, which allowed us to visualize and
discuss it. We tried to identify visual patterns in the fitness
band data corresponding to hypoglycemia observed in the
CGM data.

Over the course of two months, there were 34 hypo-
glycemic episodes lasting 10 minutes or more. From each
episode, we selected the timestamp corresponding to the low-
est blood glucose level. The resulting 34 data points were
used in the machine learning experiments as positive exam-
ples. Negative examples were selected so as to maintain the
ratio of positive to negative data points among all of the data
collected, which was 1 to 37. Therefore, 34 × 37 = 1, 258
negative examples were randomly selected for inclusion in
the dataset. In selecting negative examples, points were ex-
cluded if hypoglycemia occurred within one hour or if there
was more than one hour of missing data within the past day.
Exclusions were intended to ensure that negative examples
were truly representative, but they may also have made the
classification task easier than it otherwise would have been.

3 Feature Engineering
Features were derived from the raw data using insights ob-
tained during data reviews. First, the difference between skin
and air temperature (ST-AT) was used to compute features,
rather than the two individual measures. Otherwise, cold tem-
peratures might appear to presage hypoglycemia, simply be-
cause the subject exercised outdoors during Winter. Features
were then implemented to capture physiological states over
the past 24 hours and the past hour. The following features
were implemented for each of HR, GSR and ST-AT:

1. Mean over the past 24 hours (Mean-24hr)

2. Standard deviation over the past 24 hours (SD-24hr)

3. Distance traveled per hour over the past 24 hours (DT-
24hr)

4. Mean over the past hour (Mean-1hr)

5. Standard deviation over the past hour (SD-1hr)

6. Distance traveled over the past hour (DT-1hr)

7. Difference between the current value and the value one
hour ago (Diff-1hr)

Above, distance traveled (DT) refers to the sum of the ab-
solute differences in value between each pair of consecutive
data points. Intuitively, DT may be thought of as stretching
the data curve out flat, as if it were a crumpled string, to see
how long it is. We included it among the features, because
we have found that, when applied to CGM data, it is a useful
measure of variability [Marling et al., 2011].

An additional feature combined HR, GSR and ST-AT:

8. Change score (CScore)

The change score is a measure of how much HR, GSR, and
ST-AT change over the past 5 minutes, in relation to how
much they change every 5 minutes for the past 3 hours. Only
increases in HR and GSR and decreases in ST-AT contribute
to the change score. The change score was inspired by, but
does not replicate, the measure used to detect nocturnal hypo-
glycemia in hospitalized patients by Schechter et al. [2012].

Because a patient may experience hypoglycemia at pre-
dictable times of the day, such as late afternoon, another
type of feature was introduced to account for time of day. A
Boolean feature was implemented for each of the four-hour
time intervals: [00:00, 04:00), [04:00, 08:00), [08:00, 12:00),
[12:00, 16:00), [16:00, 20:00), and [20:00, 00:00). For each
timestamp, the value of the interval feature containing that
timestamp is true, while the value of all other interval fea-
tures is false. While the choice of granularity for the time
intervals was somewhat ad hoc, smaller time intervals would
have resulted in too many features for the size of the dataset.
We chose generic time intervals, rather than patient-specific
ones (e.g. intervals that reference sleep or work times), al-
though such features could also be useful. Even though our
subject experienced hypoglycemia during all time intervals,
it was most frequent overnight and during late afternoons.

Statistical tests were run to see which, if any, of these basic
features could differentiate hypoglycemic episodes from non-
hypoglycemia. Welch’s t-test was used for the numeric phys-
iological features, while a χ2 test was used for the Boolean
time interval features. Since no statistically significant dif-
ference was observed for any basic feature at the 0.05 level,
new combination features were then implemented by mask-
ing each of the 22 physiological features by each of the 6
time interval features. Each of these 132 combination fea-
tures maintains the value of its physiological feature during
its specified time interval, but has a zero value during the
other 20 hours of the day. So, for example, the value of the
combination feature [00:00, 04:00) GSR SD-24hr is equal to
the SD of the GSR over the previous 24 hours if the point to
be classified has a timestamp between midnight and 4:00 AM
and is equal to 0 otherwise. Welch’s t-test showed statistically
significant differences at a p < 0.05 level for 36 of the com-
bination features, as shown in Table 1. Each example in the
dataset, then, consists of 36 features, plus a label designating
it as representative of hypoglycemia or not.

4 Machine Learning Experiments
Support Vector Machines (SVMs) were trained to classify
instances as hypoglycemic (positive) or non-hypoglycemic
(negative). SVMs are a state-of-the-art supervised learn-
ing algorithm that can effectively handle large numbers of
possibly overlapping features [Schölkopf and Smola, 2002;
Vapnik, 1995]. LibSVM [Chang and Lin, 2001] was used for
the implementation. The discriminant function computed by
the SVM is proportional to the margin, i.e. the distance be-
tween the example and the decision hyperplane, and can be
used as a measure of confidence in the system classification.
Once a threshold is selected (by default 0), examples with val-
ues at or above the threshold are classified as positive, while



Table 1: Statistically Significant Features for Hypoglycemia
Detection

Time
Interval

Physiological
Feature t p

[20:00, 00:00) CScore -7.842 <0.001
[16:00, 20:00) GSR SD-24hr -6.399 <0.001
[16:00, 20:00) GSR Mean-24hr -5.971 <0.001
[16:00, 20:00) GSR DT-24hr -5.933 <0.001
[12:00, 16:00) CScore -6.036 <0.001
[04:00, 08:00) GSR SD-24hr -5.244 <0.001
[04:00, 08:00) GSR Mean-24hr -5.174 <0.001
[04:00, 08:00) GSR DT-24hr -5.153 <0.001
[20:00, 00:00) ST-AT SD-1hr -5.119 <0.001
[20:00, 00:00) ST-AT SD-24hr -4.081 <0.001
[20:00, 00:00) HR SD-24hr -3.940 <0.001
[20:00, 00:00) ST-AT DT-24hr -3.893 <0.001
[20:00, 00:00) ST-AT Mean-24hr -3.882 <0.001
[20:00, 00:00) ST-AT Mean-1hr -3.786 <0.001
[20:00, 00:00) ST-AT DT-1hr -3.786 <0.001
[20:00, 00:00) HR DT-24hr -3.531 0.001
[20:00, 00:00) HR Mean-24hr -3.530 0.001
[20:00, 00:00) HR DT-1hr -3.424 0.001
[20:00, 00:00) HR Mean-1hr -3.424 0.001
[20:00, 00:00) HR SD-1hr -3.284 0.002
[20:00, 00:00) GSR Mean-24hr 2.630 0.010
[16:00, 20:00) ST-AT Mean-1hr 2.604 0.013
[16:00, 20:00) ST-AT DT-1hr 2.604 0.013
[20:00, 00:00) GSR DT-24hr -2.523 0.014
[20:00, 00:00) ST-AT Diff-1hr 2.458 0.016
[16:00, 20:00) HR DT-1hr 2.317 0.026
[16:00, 20:00) HR Mean-1hr 2.317 0.026
[16:00, 20:00) HR DT-24hr 2.256 0.030
[16:00, 20:00) HR Mean-24hr 2.255 0.030
[16:00, 20:00) HR SD-24hr 2.247 0.030
[16:00, 20:00) ST-AT Mean-24hr 2.244 0.031
[16:00, 20:00) ST-AT DT-24hr 2.239 0.031
[16:00, 20:00) ST-AT SD-24hr 2.206 0.033
[00:00, 04:00) GSR SD-24hr 2.106 0.042
[08:00, 12:00) GSR Mean-1hr -1.980 0.048
[08:00, 12:00) GSR DT-1hr -1.980 0.048

those with values below the threshold are classified as nega-
tive.

To use an SVM to detect hypoglycemia in practice, the
threshold would be selected to achieve a desired trade-off be-
tween sensitivity and specificity. For experimental purposes,
the behavior of the SVM across the entire spectrum of pos-
sible thresholds is examined. Since the label distribution is
skewed towards negative examples, it is useful to view re-
sults in terms of precision and recall. Note that “recall” is
equivalent with “sensitivity;” it is also known as the “true
positive rate.” “Precision” is also known as “positive predic-
tive value.” Specificity and overall accuracy would not be fair
metrics to use with this dataset; due to the large ratio of neg-
ative to positive examples, they would overstate the goodness

Figure 1: Precision-Recall Curve for the Linear SVM with 36
Features. Note that the y-axis has been truncated, as precision
is always very low (<0.15).

of performance.
To train and evaluate the SVM models, the 1,292 exam-

ples were grouped by day and then partitioned into folds for
25-fold cross-validation. We used 25 folds because the 34 hy-
poglycemic episodes occurred on 25 different days. Group-
ing the data by day ensures that the data used to train and to
test an SVM always comes from different days. Each fold
contains one day with hypoglycemic events, and a number of
days with no hypoglycemic events chosen such that the ratio
of negative to positive examples in the fold is close to the ob-
served ratio of 37 to 1. The kernel parameters were tuned for
each test fold on a separate validation fold. Because of the
imbalance in the number of positive and negative examples,
the weight parameter for positive examples was set to 37, the
ratio of negative to positive points. Linear, Gaussian, and
quadratic kernels were all used in early experiments. How-
ever, due to the relatively large number of features (36) with
respect to the small number of positive examples (34), the
Gaussian and quadratic kernels overfit and did not perform
well. Later experiments used only the linear kernel.

Initial results come from a linear SVM trained on all 36
features. The performance of this SVM is compared to that of
two simple baselines: random guessing and GSR threshold.
In the random guessing baseline, the probability of guessing
that a point is hypoglycemic is varied from 0 to 1, so that
recall also varies from 0 to 1. However, precision remains
constant at 1/38, since 1 in every 38 points is actually hypo-
glycemic. The GSR threshold is a more informed method of
classification. It was selected because GSR, also known as
skin conductance, is a measure of sweating, which is known
to happen during hypoglycemic episodes. The curves for
this baseline are calculated by varying the GSR value above
which a point is classified as hypoglycemic.

When an SVM with a linear kernel was trained using all 36
features shown in Table 1, performance exceeded both base-
lines. The precision-recall curve is shown in Figure 1. Note
that, because precision is quite low, the y-axis, which nor-



mally runs from 0 to 1, was truncated at 0.2, to remove un-
necessary white space and accentuate the region of interest.

To alleviate overfitting, the number of features was further
narrowed down in the next experiment using feature selection
inside the 25-fold cross validation loop. Features were greed-
ily selected from the original set of 36 discriminative features
to maximize the area under the precision-recall curve (AUC).
Pseudocode is provided in Figure 2.

for i = 1 to 25
{
// Fold i is the test fold. Folds
// (i+1 modulo 25) and (i+2 modulo 25)
// are development folds for tuning
// and feature selection. The other
// 22 folds are training folds.

Tune the C parameter with grid search

BestAUC = 0
NumFeatures = 36
FeaturePool = {all features}
ChosenFeatures = {}
Repeat {
for j = 1 to NumFeatures
{

Use ChosenFeatures + Feature j
Train and test, record AUC[j]

}
Choose Feature j with max AUC
if AUC[j] > BestAUC
{

Add Feature j to ChosenFeatures
Remove Feature j from FeaturePool
NumFeatures = NumFeatures-1
BestAUC = AUC[j]

}
} Until AUC[j] <= BestAUC

Train and test with tuned C and
ChosenFeatures

}

Figure 2: Pseudocode for 25-fold Cross Validation with
Greedy Forward Feature Selection.

Of the original 36 features, 21 were chosen for inclusion in
at least one of the 25 folds. The most commonly selected fea-
ture was chosen for inclusion in 14 folds. Table 2 shows the
features in order of how frequently they were selected. The
performance of the SVM with selected features is shown in
comparison to that of the SVM with all 36 features in Fig-
ure 3.

5 Discussion and Future Work
The results indicate that physiological sensor data could po-
tentially improve blood glucose level prediction, in general,
and hypoglycemia detection, in particular. However, in our
experiments, system performance was severely limited, due,
in large part, to the following factors:

Table 2: Features Chosen for at Least One Fold by Greedy
Forward Feature Selection

Time
Interval

Physiological
Feature

Number
of Folds

[04:00, 08:00) GSR SD-24hr 14
[12:00, 16:00) CScore 13
[16:00, 20:00) GSR SD-24hr 12
[20:00, 00:00) ST-AT SD-1hr 11
[00:00, 04:00) GSR SD-24hr 10
[08:00, 12:00) GSR Mean-1hr 9
[16:00, 20:00) ST-AT Mean-1hr 6
[20:00, 00:00) ST-AT Diff-1hr 4
[20:00, 00:00) CScore 3
[16:00, 20:00) GSR Mean-24hr 3
[16:00, 20:00) HR DT-1hr 3
[20:00, 00:00) ST-AT SD-24hr 2
[16:00, 20:00) ST-AT SD-24hr 2
[20:00, 00:00) GSR Mean-24hr 2
[20:00, 00:00) HR DT-24hr 2
[04:00, 08:00) GSR Mean-24hr 1
[04:00, 08:00) GSR DT-24hr 1
[08:00, 12:00) GSR DT-1hr 1
[16:00, 20:00) HR SD-24hr 1
[16:00, 20:00) ST-AT Mean-24hr 1
[16:00, 20:00) HR DT-24hr 1

Figure 3: Precision-Recall Curve for the SVM with Selected
Features vs. that of the SVM with All 36 Features

• The dataset was small and skewed toward non-
hypoglycemic events

• All of the data was acquired from a single patient

• Only features acquired from the physiological sensor
band were used

• Data was acquired while the patient led his normal, ev-
eryday life



Consider, first, that our small dataset contained only 34
hypoglycemic events. Clearly, more hypoglycemic events
would translate into more positive examples, which could im-
prove the performance of the machine learning model. How-
ever, each bout of hypoglycemia is a negative experience for
the person with diabetes, who therefore tries hard to avoid
such events.

Second, all of the data was acquired from a single subject,
although there is great variability among individuals with di-
abetes. Our subject was a middle-aged male who adhered
to best practices for diabetes management and had excellent
blood glucose control. One individual strategy he employed
was to exercise, by walking briskly, when his blood glucose
levels were high (hyperglycemia). He would do this in lieu
of, or in addition to, the more common strategy of taking
extra insulin to correct for hyperglycemia. This may have
confounded the ability to use GSR as an indicator of hypo-
glycemia. While GSR rises with hypoglycemia, it also rises
with exercise.

Third, we intentionally used only features based on phys-
iological sensor data in order to test the usefulness of these
sensors. We also collect CGM, insulin, and patient-entered
life-event data for use in blood glucose prediction models. A
patient may enter life events that impact blood glucose via
their smart phone. For example, they may enter that they are
beginning to exercise, feeling stressed, going to sleep, or eat-
ing. While this paints a broader picture of the world around
the patient, it can be burdensome for the patient and is sub-
ject to inaccuracies and omissions. In future work, we plan
to explore how wearable, unobtrusive sensors can augment,
validate, or even eliminate patient life-event data entry as in-
dicators of the physiological state of the patient.

Schechter et al. [2012] used only physiological sensors
to detect nocturnal hypoglycemia in hospitalized adolescents
with diabetes. Their goal was to replace the expensive, in-
vasive CGM sensors currently in use with inexpensive, non-
invasive sensors. They reported a sensitivity of 100% with
a specificity of 85.7%. One of the physiological parameters
they measured was tremor, for which we did not have a sen-
sor. Shaking, like sweating, is a symptom of hypoglycemia.
Their sensors, however, were not all mobile, and their patients
were all in bed in a controlled hospital environment through-
out the experiment. Results have not yet been extended to the
outpatient environment, but near-term feasibility increases as
fitness bands continue to improve the number, type and ac-
curacy of included sensors. In the meantime, our patient led
his normal, everyday life as we collected data. He worked
a demanding job, enjoyed an active sex life, flew across time
zones on airplanes, overate at family celebrations, and missed
or delayed meals when pressed at work.

Attempts to model blood glucose levels date back to the
1960s [Boutayeb and Chetouani, 2006]. While no definitive
model exists yet, it should be noted that early efforts were hin-
dered by the lack of CGM data, which first became available
in 1999. Most blood glucose models developed to date are
mathematical formalisms of physiological processes. AIDA
is an early, freely available model [Lehmann and Deutsch,
1992]. Another influential, but proprietary, model was devel-
oped at the University of Virginia [Kovatchev et al., 2009].

These models are commonly used to simulate diabetes pa-
tients when actual patient data is unavailable. Work more in
line with our own approach was reported by Duke [2009],
who combined a physiological model with Gaussian process
regression. The clinical importance of solving this prob-
lem, combined with the high level of technical challenge,
has led to an uptick in recent research [Jensen et al., 2013;
Zecchin et al., 2013; Wang et al., 2014].

A major impediment to progress in solving this problem
is the lack of actual patient data upon which to build mod-
els and experiment. Patient privacy concerns and regulations,
including The Health Insurance Portability and Accountabil-
ity Act of 1996 (HIPAA), make it difficult for researchers to
share data. We are currently collecting data from two addi-
tional subjects, and we have Institutional Review Board (IRB)
approval to collect data from up to 30 more for our blood glu-
cose prediction research. We are asking subjects, during the
informed consent process, for permission to de-identify and
share the data we collect. As future work, we plan to orga-
nize one or more workshops for researchers interested in this
problem to come together and explore different approaches to
blood glucose prediction using this common dataset.

Feature engineering is an essential part of our machine
learning approach to hypoglycemia detection. While the re-
sults reported in this paper indicate the potential utility of
noninvasive physiological sensors for modeling blood glu-
cose behavior, it is unclear whether the current set of man-
ually designed features is optimal. Given the small number
of hypo events in our dataset, trying more features raises the
likelihood of finding spurious correlations with the label. As
we collect more data, we plan to explore the use of other
information available from the fitness band, including sleep
state and step count, as well as other formulations of HR,
GSR, ST and AT. In future work, we plan to leverage recent
advances in unsupervised feature learning and deep learning
in order to automatically learn the complex dependencies be-
tween physiological parameters and blood glucose.

6 Summary and Conclusion
Hypoglycemia is a major health and safety concern for people
with type 1 diabetes. Continuous glucose monitoring systems
aid in hypoglycemia detection, but have drawbacks, employ-
ing invasive sensors with inherent noise. This paper reports
on preliminary machine learning experiments that aim to im-
prove hypoglycemia detection by leveraging data from non-
invasive physiological sensors found in commercially avail-
able fitness bands. A middle-aged subject with T1D provided
CGM, fitness band, insulin, and life-event data, under nor-
mal daily living conditions, for two months. The fitness band
outputs sensor data for continuous heart rate, galvanic skin
response, skin temperature, and air temperature.

Statistical tests identified 36 features derived from this
sensor data that could differentiate hypoglycemic from non-
hypoglycemic states. Using these features, support vector
machines were trained to classify instances as hypoglycemic
(positive) or non-hypoglycemic (negative). In an initial ex-
periment, an SVM with a linear kernel using all 36 features
was able to outperform two simple baselines. In an experi-



ment designed to alleviate overfitting, the number of features
was narrowed down using greedy feature selection. Results
show proof of concept that physiological sensor data from
fitness bands can provide discriminative features for hypo-
glycemia detection. However, system performance was lim-
ited by the size and nature of the dataset.

The results are being utilized in ongoing work to improve
the performance of overall blood glucose prediction models
that also use CGM, insulin, and life-event data. In addition to
incorporating new features derived from noninvasive physio-
logical sensors in these models, we also plan to explore the
automatic discovery of physiological dependencies by lever-
aging unsupervised feature learning and deep learning algo-
rithms. Finally, to help alleviate the lack of available patient
data, we plan to collect and de-identify blood glucose, in-
sulin, life-event and physiological sensor data from up to 30
additional patients. We look forward to sharing this data with
other researchers interested in solving this difficult and clini-
cally important problem.
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