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Abstract

The ability to produce surprising outputs is a corner-
stone of creative behavior. In this paper we propose
deep learning architectures that are trained in an adver-
sarial setting to learn patterns of expectations and sur-
prise from data. We introduce benchmark datasets of
geometrical shapes that represent well defined patterns
of violations of expectations, and use them to verify em-
pirically that the separation between learning of expec-
tations and learning of surprise is essential for achieving
good generalization performance.

Introduction and Motivation
Deep generative models based on Generative Adversar-
ial Networks (GAN) (Goodfellow et al. 2014), Varia-
tional Aute-Encoders (VAE) (Kingma and Welling 2014;
Rezende, Mohamed, and Wierstra 2014), and Transform-
ers (Vaswani et al. 2017) have achieved impressive suc-
cess in domains ranging from image generation, to music
composition, to text generation. The ability of these models
to generate highly realistic samples in very diverse modal-
ities is made possible by their capacity to efficiently learn
high dimensional distributions from large amounts of train-
ing samples. Once trained, the models generate new sam-
ples through a random sampling procedure, such as sam-
pling a vector of values from a Gaussian to use as input to
the GAN’s generator, or sampling the next word to generate
according to the distribution computed by a Transformer-
based language model. When trained on raw representations
of real world objects or artifacts, this one-model sampling
procedure preserves the structural constraints of the training
domain, generating very realistic samples in terms of how
they look (e.g. images of faces), read (e.g. prompt-based
text generation), or sound (e.g. symbolic music). The gen-
erated outputs are also new, in the sense that they do not
match any object from the training data, and the model can
be used to generate a virtually infinite number of new out-
puts simply through its random sampling procedure. While
generated samples are new, they cannot be said to be origi-
nal or surprising. Being sampled from the learned distribu-
tion, they still resemble objects from the training data to a
very large extent. As such, while impressive at generating
objects that closely resemble, but do not reproduce exactly,

the training samples, current approaches to training genera-
tive models are severely limited in their ability to generate
novel or surprising outputs. Given the importance of nov-
elty and surprise in the design (Yannakakis and Liapis 2016)
and evaluation (Grace and Maher 2015) of creative artifacts,
this significantly limits the utility of generative models in the
area of computational creativity.

To increase the likelihood of surprise, one could eschew
the model distribution and sample from a different distri-
bution or entirely at random. However, this results in out-
puts that are ”frequently more frightening than pleasing”,
due to the lack of control over the ”structure / novelty trade-
off” (Todd and Werner 1999). Furthermore, a very high
level of surprise can be detrimental to the aim of generating
outputs that are aesthetically pleasing. This effect is suc-
cinctly captured by Wundt’s inverted U-curve, which was
later adopted by Berlyne (1971) and others to express the
dependency between the hedonic value of a stimulus (e.g.
model output) and the novelty of the stimulus as a func-
tion that rises to a peak and then falls. Recognizing the
necessity of a mechanism to control the generation of sur-
prise while still observing domain-specific structural con-
straints, Bunescu and Uduehi (2019) introduced a general
architecture for two-model sampling, wherein an audience
model is trained to learn patterns of expectations, while a
composer model learns patterns of surprise, or violations of
expectations. By separating the audience learning of expec-
tations from the composer learning of surprise patterns, the
proposed Composer-Audience (CA) architecture can gener-
ate outputs that confound audience expectations with high
probability. This was confirmed in experimental evalua-
tions, where LSTM-based instantiations of the CA architec-
ture were shown to successfully learn patterns of expectation
and surprise from distributions of binary sequences.

In this paper, the two-model idea is taken one step closer
to computational creativity by using it to learn patterns of ex-
pectations and surprise from images of geometric shapes. To
this aim, we introduce two GAN-based architectures where
the communication of expectations from the audience to the
composer is achieved either in the feature space through ad-
ditive composition, or in the parameter space through norm
constraints. Additionally, we establish connections with
the domain of style transfer and embed an image-to-image
translation module into a third GAN-based CA architecture.



Figure 1: General GAN-based CA architecture.

For evaluation purposes, we create benchmark datasets of
geometrical figures that capture well defined types of ex-
pectations, i.e. empty polygons with 3, 4, and 5 sides, and
arrows with various polygons for their heads, and the corre-
sponding surprise, i.e. polygons with one missing side or a
grey interior, and arrows with circle or half-circle heads. Ex-
periments demonstrate that the new GAN-based two-model
sampling architectures are effective at learning patterns of
expectations and surprise in both types of figures. The new
GAN-based models are also simpler and more broadly ap-
plicable than the style transfer-based instantiations.

Task Definition and Datasets
Overall, the task is to train two generative models: an audi-
enceGena that learns a distribution of geometric figures (the
expectation), and a composer Genc that learns to confound
particular expectations in a well-defined, structured way (the
surprise). As detailed in the next section and shown in the
generic architecture from Figure 1, both the audience and
the composer will be trained within the GAN framework as
generators that take as input a vector z of random Gaussian
values and produce as output an image denoted as Gena(z)
and Genc(z), respectively.

To make the discussion of expectation and surprise more
concrete, in Figure 2 we show training samples from each of
the three datasets used in the experimental evaluation. The
top section shows a CA dataset where the audience is trained
to generate polygons with 3, 4, and 5 sides of various relative
sizes and orientations. This is the expectation distribution,
with samples shown in the row labeled Gena. The audience
model is trained first, and then kept fixed during the train-
ing of the composer model. At training time, the composer
has access only to a trained audience producing polygons
with 3 and 4 sides, and is trained to generate the same kind
of polygons, but with a missing side. This is the surprise
distribution, with samples shown in the row labeled Genc.
The training is unpaired, e.g. the composer is not given the
complete triangle corresponding to the incomplete triangle
that it is trained to generate; given that the vertices of the
polygons in the training data were generated at random, the
corresponding complete triangle is very likely to not even be
present in the dataset on which the audience was trained. At
test time, the composer is given access to an audience model

Figure 2: Samples from the 3 datasets used for training the
CA models. Top: from complete polygons to polygons with
one missing side; Middle: from white polygons to grey poly-
gons; Bottom: from arrows with polygon heads to arrows
with full circle or half circle heads.

Figure 3: The within-distribution generalization (left) and
out-of-distribution generalization (right) expected from a
successful CA architecture.

producing a new type of expectation distribution: polygons
with 5 sides. Even though the composer has not seen any
pentagons during training, the generalization task is consid-
ered successful if the composer can produce the same kind
of surprise for pentagons too, i.e. generate the same pen-
tagon as the audience, but with one missing side, as shown
in the right section of Figure 3.

The middle section of Figure 2 shows samples from a sec-
ond dataset where the audience distribution is the same as in
the first dataset, i.e. polygons with 3, 4, and 5 sides. How-
ever, the composer is tasked with learning to confound the
expectation of a white interior by training solely on trian-
gles and quadrilaterals that are colored with random shades
of gray. As in the first experiment, the composer is deemed
successful if it generalizes to pentagons, a type of polygons
that it has never seen at training time, i.e. when used with
an audience model that was trained to generate white pen-
tagons, the composer should apply the same surprise pattern
and generate gray pentagons.

The bottom section of Figure 2 shows samples from the
third dataset, where the audience is trained on a distribution
of arrows with 4 types of heads: square, diamond, triangle,
and inverted triangle. The arrows can appear at any orien-
tation, with a tail always the same length, whereas the size
of the head can vary. The composer confounds the head
expectations by replacing the polygon shaped head gener-
ated by the audience with either a full circle or half circle
head, at random. At training time, the composer sees only
square, diamond, and triangle heads, as they are generated
by the audience model. At test time, the composer needs to



thwart the audience expectations by replacing the previously
unseen inverted triangle heads with full or half circles.

In Figure 3 we show the two kinds of generalization per-
formance that are expected from a CA architecture to be
deemed successful. Taking the first dataset as an exam-
ple, given a random Gaussian vector z, the audience model
generates a triangle or a quadrilateral and the composer
generates the same polygon, but with a missing side, as
shown in the first two columns in the figure. Thus, the
composer preserves the polygon expectation from the au-
dience, but also surprises the audience by missing one side.
We call this within-distribution generalization, because the
composer generates surprise for types of polygons (3 and 4
sides) that it has seen at training time. In contrast, the right-
hand side of Figure 3 shows examples of out-of-distribution
(OOD) generalization. For the first dataset, this requires the
composer to generate surprise by missing an edge from pen-
tagons generated (expected) by the audience, in the context
where pentagons were never used to train the composer.

Connections to Other Tasks The CA’s generation of sur-
prising features while preserving overall expectations, as
illustrated by the within-distribution generalization exam-
ples from Figure 3, bears similarities with the mappings
performed by unsupervised image-to-image translation and
style transfer models, such as CoGAN (Liu and Tuzel
2016), CycleGAN (Zhu et al. 2017), Augmented Cycle-
GAN (Almahairi et al. 2018), or MUNIT (Huang et al.
2018), to name just a few. There are however fundamen-
tal differences between learning to surprise in CA models
and image-to-image translation. A CA model generates an
output image from scratch, e.g. a Gaussian sample, whereas
style transfer models use an existing image as input. The CA
model’s ultimate objective is to generate truly novel outputs
by confounding the expectations of an audience not seen by
the composer during training, as shown in the OOD gener-
alization examples from Figure 3, whereas image-to-image
translation is traditionally aimed for within-distribution gen-
eralization. CycleGAN, for example, documents its limita-
tions on OOD samples and geometric transformations. The
requirement that CA architectures learn patterns of surprise
that generalize to OOD audiences means they can benefit
from domain shift invariance, e.g. Adversarial Discrimina-
tive Domain Adaptation (Tzeng et al. 2017), or OOD in-
variance, e.g. Invariant Risk Minimization (Arjovsky et al.
2020) (but see Rosenfeld et al. (2021) for limitations).

GAN-based Architectures for Surprise
Figure 1 shows the proposed generic GAN-based approach
for the CA architecture. The audience model, shown at the
top, is instantiated as a prototypical GAN: a standard Gaus-
sian vector za is used as input to a Generator network Gena
that outputs an image x̂a, whereas a Discriminator network
Disca takes real images xa and generated images x̂a as in-
put and is trained to determine whether they are fake or real.
The composer GAN, shown at the bottom, has a similar ar-
chitecture, with one important difference: its Generator net-
work Genc uses the expectations computed by the audience
generator Gena. Analogous to the kind of expectations that

Figure 4: Additive layer-based communication of expecta-
tions from the audience (left, shaded) to the composer.

are engineered by composers in their music , here we use
the term expectation in its broader sense to refer to values
that are more likely to appear than other values, according
to an audience model. These values can refer to the audi-
ence model outputs, layers, or even parameters.

There can be many implementations of this generic archi-
tecture, depending on how expectations are communicated
between the audience and the composer generators. Here,
we introduce 3 instantiations:

1. Layer based expectations: The composer uses all the lay-
ers computed by the audience generator.

2. Parameter based expectations: The composer is con-
strained to be close to the audience parameters.

3. Output based expectations: The composer uses the out-
put computed by the audience generator.

In both the layer-based and parameter-based instantiations,
the composer generator is set to have the same architecture
as the audience generator, i.e. a sequence of transposed
convolution layers. The layer-based version is shown in
Figure 4, where we chose to communicate expectations by
adding at every layer lk the audience output of the convolu-
tion operation to the corresponding convolution output from
the composer. The resulting sum is then passed through the
usual batch normalization operation, followed by the appli-
cation of a nonlinear activation function. Note that the addi-
tion can theoretically be implemented at any of 3 distinct
places, each with a potentially different behavior: before
convolution, before normalization, or before activation. The
summation is used only in the composer, whereas the audi-
ence processes the input as if it were run separately, on its
own. Given an input latent vector zc, this means that the
composer has access to what the audience would have pro-
duced for that input, at every layer. An alternative is to use
the summation also as input to the normalization operator in



Figure 5: Output-based communication of expectations
from the audience generator (left, shaded) to the composer.

the audience generator, however this was less effective dur-
ing evaluations, likely due to the audience parameters being
used on distributions unseen during training.

In the parameter-based version, we consider that the audi-
ence expectations are captured through its parametersW a

k at
every layer k. While the composer’s job is to learn patterns
of surprise from data, it is still required to preserve many of
the expectations produced by the audience, e.g. it still needs
to produce the same kind of shapes as the audience model.
We implement this by initializing the composer generator
as W c

k = W a
k and then fine-tuning the composer while re-

quiring that its parameters do not diverge too much from the
audience. This is done by imposing a constraint on the L2

norm of the difference between parameters, i.e. by adding
the term λ||W c

k −W a
k ||2 to the GAN objective function.

In the output-based version shown in Figure 5, the com-
poser accesses the audience expectations only as they are
produced in its final output image. This is implemented by
passing the audience output to an image-to-image translation
network that is trained to output the composer distribution.

Connections to Related Work In the LSTM-based CA
architecture of Bunescu and Uduehi (2019), audience expec-
tations are communicated to the composer LSTM using the
output probability distribution of the audience LSTM at each
time step. As such, it can be seen as using an Output-based
style of communicating expectations. Todd and Werner
(1999) survey evolutionary approaches to music composi-
tion where a composer’s fitness function is guided by judge-
ments that are elicited from a critic every time a new gener-
ation of composer models or composer outputs is to be gen-
erated. The critic can be a human (unfeasible), rule-based
(brittle, fixed aesthetic criteria), learned (from a human critic
decisions), or co-evolved with the composer to prefer songs
that violate its current expectations. The surprise preference
is encoded directly in the fitness function as a difference be-
tween the probabilities of the expected and observed notes.
With the sole exception of the critic initialization of expecta-
tions, which are calculated from a collection of simple folk
tune melodies, this evolutionary composer-critic approach
generates ”musical sequences” entirely from scratch, evolv-
ing its own, largely unconstrained aesthetics that ”the hu-
man user would find worthless”. In contrast, our composer-
audience approach to generation of surprise is entirely data-
driven: structural constraints and expectations are learned
from the audience dataset, whereas patterns of surprise re-
flect the hedonic values implicit in the composer dataset.
As such, the CA model learns the aesthetics manifest in the
data, be it human or machine generated. Todd and Werner
(1999) mention the potential utility of modeling expectation-

violation with respect to not only the exposure to previ-
ous songs, but also relative to the expectations engendered
within the current song. This parallels the long- vs. short-
term distinction proposed by Pearce, Conklin, and Wiggins
(2004) for the statistical prediction of monophonic music.
While modern techniques such as self-attention (Vaswani et
al. 2017) may obviate the need for explicit short-term mod-
els for prediction, we believe within-output expectations are
still important for the task of generating surprise.

Experiments and Discussion
We implement1 the image-to-image component of the
Output-based approach using the Augmented CycleGAN.
For the audience and composer generators in the Layer-
based and Param-based approaches, we use an architecture
that starts with 3 transposed convolution layers, followed
by 6 ResNet blocks, and ending with 2 more transposed
convolution layers. Since a CycleGAN requires training of
two generators, the Output-based models require double the
number of parameters when compared with the Layer and
Param based models. LSGAN loss is used during training.
To make the audience identifiable between training and test-
ing of the composer, we use a one-hot vector as input to
encode the type of shape (e.g. 3, 4, or 5 sides).

As described in the previous section, an audience model is
trained first, and then kept fixed while training the composer
model, so that the audience expectations do not change.
Samples of this separate training of the audience and com-
poser models are shown in Figure 6 for each of the three
datasets. On the missing side surprise task, the Layer-based
composer obtains the best OOD generalization, as it is able
to successfully remove a random edge from pentagons, a
type of polygon that it has not seen during training. The Out-
put and Param based composers achieve this OOD general-
ization with various degrees of success, sometimes remov-
ing more than one edge. On the gray interior surprise task,
the best OOD generalization is obtained by the Output-based
composer, whereas the Layer and Param based approaches
have difficulties in preserving the structural expectations, i.e.
the actual polygon shape, generated by the corresponding
audience model. Finally, on the arrowhead surprise task, all
three types of composer models appear to work well, with
the Layer-based model slightly edging the other two mod-
els in terms of the quality of circle and half-circle heads it
generates for both within and out of distribution evaluations.

To determine the importance of keeping the audience
model fixed during composer training, in Figure 7 we show
samples from experiments where the audience expectations
are allowed to change when training the composer. For the
Layer-based approach, this means that the audience param-
eters change when the GAN loss is backpropagated through
both the audience generator Gena and the composer gen-
erator Genc. The analogue for the Param-based approach
was to remove the L2 regularization term λ||W c

k − W a
k ||2

from the GAN objective, which means that the composer pa-
rameters are not longer required to be close to the audience
parameters. The samples from Figure 7 show that in this

1https://github.com/uoseremen/ComposerAudienceGAN



Figure 6: Samples from the audience model Gena, and the
corresponding samples from the Layer, Param, and Output
based composer models Genc. Top: missing side surprise;
Middle: gray interior surprise; Bottom: arrowhead surprise.

setting the composer output fails to preserve the structural
expectations produced by the corresponding audience. For
the polygon datasets, this means that the composer does not
follow the polygon shape expected by the audience, whereas
for the arrow dataset, the composer does not preserve the tail
direction expected by the audience model.

Overall, the experiments with the 3 geometric shapes
datasets show that, when the audience and composers are
trained separately, the Layer and Output based instantiations
of the generic GAN architecture are largely successful at
learning patterns of expectation and surprise.
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