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ABSTRACT
A recommender system that optimizes its recommendations solely

to fit a user’s history of ratings for consumed items can create a

filter bubble, wherein the user does not get to experience items from

novel, unseen categories. One approach to mitigate this undesired

behavior is to recommend items with high potential for serendipity,

namely surprising items that are likely to be highly rated. In this

paper, we propose a content-based formulation of serendipity that

is rooted in Bayesian surprise and use it to measure the serendipity

of items after they are consumed and rated by the user. When cou-

pled with a collaborative-filtering component that identifies similar

users, this enables recommending items with high potential for

serendipity. To facilitate the evaluation of topic-level models for

surprise and serendipity, we introduce a dataset of book reading

histories extracted from Goodreads, containing over 26 thousand

users and close to 1.3 million books, where we manually annotate

449 books read by 4 users in terms of their time-dependent, topic-

level surprise. Experimental evaluations show that models that use

Bayesian surprise correlate much better with the manual annota-

tions of topic-level surprise than distance-based heuristics, and also

obtain better serendipitous item recommendation performance.
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1 INTRODUCTION
Recommender systems offer personalized, ranked lists of user-

relevant items, easing the cognitive overload caused by the ever

growing number of items available to users. Adapting techniques

from information retrieval, machine learning, and data mining, rec-

ommender systems have a long and rich history, ranging from clas-

sical approaches [31, 32] to modern methods based on advances in

deep learning and dense representations of users and items [15, 38].

Traditionally, recommender systems optimize their output using

content-based (CB) signals and collaborative filtering (CF) infor-

mation, either separately or in combination [26]. Content-based

approaches recommend items that are similar to previously con-

sumed liked items, whereas collaborative filtering methods seek to

find items that were liked by similar users. By constantly optimiz-

ing for these two objectives, recommender systems can create filter
bubbles [11, 30] where a user is insulated from topics or points of

view that are different from the ones they have already been ex-

posed to. This phenomenon is further exacerbated by the feedback

loop between the item ranking model and the passive user reaction

to the recommended items [24], where the ⟨item, rating⟩ pair is
used as a new sample to update the ranking model, thus reinforcing

historical user preferences. A widely used concept for alleviating

filter bubbles is that of diversity, where recommender systems are

encouraged to generate recommendation sets containing dissimilar

items [8]. Increasing diversity can be done by post-hoc reranking of

recommended items, using approaches such as maximal marginal

relevance [6, 40]. Additionally, diversity measures can be incorpo-

rated alongside relevance criteria in the objective function and used

during training and inference [13, 37, 39], inter alia. All these meth-

ods alleviate the filter bubble by seeking to model and optimize for

diversity directly. An alternative strategy is to optimize for mea-

sures that have an indirect, but strong positive effect on diversity.

Such a measure is serendipity, where the aim is to recommend items

that surprise the user in a positive way [1, 2, 7, 19, 21, 23, 27, 29, 33].

In this paper, we introduce a formal characterization of topic-level

serendipity based on Bayesian surprise, and evaluate its various

implementations on a new dataset of book reviews that have been

manually annotated with surprise labels.

Reflecting a definition of serendipity as the occurrence of an

event that is both surprising and valuable, in Sections 2 and 3 we

introduce a content-based, post-factum measure of serendipity that

uses Bayesian surprise [17] and user ratings to capture the two def-

initional aspects of serendipity. However, by itself, the serendipity
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component can estimate serendipity only after an item has been

consumed and rated. Subsequently, recommendation of serendipi-

tous items is enabled by integrating the measurement of topic-level

serendipity with a collaborative filtering component that is tasked

with identifying similar users who consumed serendipitous items in

the past. Computing Bayesian surprise requires maintaining a prob-

ability distribution over user preferences and updating it every time

an item is consumed and rated. Correspondingly, in Section 3 we

describe a number of online learning algorithms that were adapted

to work in a non-stationary setting where user preferences can

drift over time. These are supplemented in Section 4 with methods

that estimate surprise using distances between point estimates of

preference vectors at consecutive times steps in the user’s time

series of consumed items. For evaluation, in Section 5 we introduce

a dataset derived from Goodreads [36] in which users are associated

time series of books and ratings, and where books are manually

annotated as to whether they present topic-level surprise at the

time they appeared in the user’s time series. The experiments in

Section 6 show that methods that rely on Bayesian surprise are

better at predicting topic-level serendipity.

2 TASK DEFINITION
We assume there is a set of books, or more generally a set of items
I. There is also a set of 𝐾 topics, and for each book item 𝑖 ∈ I
there is a corresponding topic distribution 𝜽𝑖 = [𝜃𝑖,1, 𝜃𝑖,2, ..., 𝜃𝑖,𝐾 ],
where

∑
𝑘 𝜃𝑖,𝑘 = 1. Furthermore, there is a set of users U who

consume items over time. For a given user 𝑢 ∈ U, let the vector

p𝑡 (𝑢) = [𝑝𝑡,1, 𝑝𝑡,2, ..., 𝑝𝑡,𝐾 ] capture his set ofuser preferences over
the𝐾 topics at time 𝑡 , where 𝑝𝑡,𝑘 represents the user’s preference for

topic 𝑘 at time 𝑡 (the argument𝑢 was left implicit). User preferences

are unbounded and can be positive or negative, corresponding

to the user liking or disliking that topic, respectively. At a time

step 𝑡 , upon consuming item 𝜽𝑖 , the user experiences a reward 𝑟𝑡 ,
which expresses how much he

1
liked (positive reward) or disliked

(negative reward) that item. Henceforth, to simplify notation, we

use 𝜽𝑖 to denote either item number 𝑖 or the item consumed by the

user at time step 𝑖 , where the user is evident from the context. To

recommend items with high serendipity, we rely on the following

two components:

(1) Item Surprise: Estimate the amount of surprise 𝑆𝑢𝑟 (𝑢, 𝑡)
that the book 𝜃𝑡 generated for a user 𝑢 who has consumed

and rated the books ⟨𝜃1, 𝑟1⟩, ..., ⟨𝜃𝑡−1, 𝑟𝑡−1⟩, and ⟨𝜃𝑡 , 𝑟𝑡 ⟩, in
this order.

(2) User Similarity: Given user 𝑢 at time step 𝑖 and another

user 𝑣 at time step 𝑗 , estimate how different the two users are

in terms of their preferences, as a distance 𝑑 (⟨𝑢, 𝑖⟩, ⟨𝑣, 𝑗⟩).
Given the two components above, recommending serendipitous

items to a user 𝑢 at a time step 𝑖 + 1 will be done in a collaborative

filtering manner by identifying users 𝑣 who at a time step 𝑗 in

their past are similar in terms of their preferences to user 𝑢 and

furthermore who, at their next time step 𝑗 + 1, consumed an item

that was positively rated and that also resulted in a high level of

surprise, hence serendipitous. This recommendation procedure is

detailed in Algorithm 1, as follows. In line 1, the algorithm searches

in the entire database of users 𝑣 and their time series of consumed

1
The user gender was sampled at random by tossing a coin.

Algorithm 1: FindSerendipity(𝑢, 𝑖)
Input: A reference user 𝑢 and a time step 𝑖 .

The preference distance threshold 𝜏𝑑
(hyperparameter).

The number 𝑁 of most similar users to consider

(hyperparameter).

Output: A pair ⟨𝑣, 𝑗⟩ similar to ⟨𝑢, 𝑖⟩ where item 𝑗 + 1 has
high serendipity for user 𝑣 .

1 Let 𝑇 = the top set of 𝑁 pairs ⟨𝑣, 𝑗⟩ most similar to ⟨𝑢, 𝑖⟩ ;
/* 𝑁 lowest 𝑑 (⟨𝑢, 𝑖⟩, ⟨𝑣, 𝑗⟩) */

2 Let 𝑆 = {⟨𝑣, 𝑗⟩ ∈ 𝑇 | 𝑑 (⟨𝑢, 𝑖⟩, ⟨𝑣, 𝑗⟩) < 𝜏𝑑 ∧ 𝑟 𝑗+1 > 0} ;
/* high similarity and positive rating */

3 Let ⟨𝑣, 𝑗⟩ = argmax

⟨𝑣,𝑗 ⟩∈𝑆, 𝑣≠𝑢
𝑆𝑢𝑟 (𝑣, 𝑗 + 1) ; /* next item with

maximum surprise */

4 return ⟨𝑣, 𝑗⟩ ; /* return null pair if 𝑆 is empty */

items 𝑗 to find the 𝑁 users whose preferences upon consuming

item 𝑗 were most similar with user𝑢’s preferences upon consuming

item 𝑖 . This set is further filtered in line 2 to keep only those users

whose similarity is not below a predefined threshold and who rated

positively the next item. Of these users, line 3 identifies the one

whose next item resulted in the largest amount of surprise, which

is returned in line 4.

To instantiate the algorithm above, we need to specify how to

compute the topic-level surprisemeasure 𝑆𝑢𝑟 (𝑢, 𝑡) and the user pref-
erence distance 𝑑 (⟨𝑢, 𝑖⟩, ⟨𝑣, 𝑗⟩). To estimate the surprise 𝑆𝑢𝑟 (𝑢, 𝑡)
we investigate two types of approaches:

• Online learning: In this approach (Section 3), the preference
vector p𝑡 (𝑢) is updated at every step to minimize the rating

loss (𝑟𝑡−𝑟𝑡 )2 incurred from predicting a rating 𝑟𝑡 at that time

step.We consider linear reward estimation models 𝑟𝑡 = p𝑇 𝜽𝑡 ,
where p can be seen as the parameters and 𝜽𝑡 the input

features at time 𝑡 . Bayesian surprise 𝑆𝑢𝑟 (𝑢, 𝜽𝑡 ) will then
be calculated as the KL divergence between the preference

distributions at times 𝑡 and 𝑡 − 1, whereas
• Basic model: In this approach (Section 4), simple weighted

averages of topic distributions and heuristic distances to com-

pute preference vectors p𝑡 (𝑢) and surprise values 𝑆𝑢𝑟 (𝑢, 𝑡),
respectively.

In all approaches, the preference distance 𝑑 (⟨𝑢, 𝑖⟩, ⟨𝑣, 𝑗⟩) will be
computed simply as the L2 norm of the difference between the

two preference vectors p𝑖 (𝑢) and p𝑗 (𝑣), i.e., 𝑑 (⟨𝑢, 𝑖⟩, ⟨𝑣, 𝑗⟩) =����p𝑖 (𝑢) − p𝑗 (𝑣)����
2
.

In the Goodreads dataset, readers provide ratings that are on a

scale of 1 to 5 stars. These ratings are projected onto the [−2, 2]
interval by subtracting 3 stars from the raw star values (henceforth,

we use the terms reward and rating interchangeably). Using the

linear reward estimationmodel, training sequential learningmodels

to fit a label in [−2, 2] is approached as an online linear regression

(LR) task. In this context, we define the post-factum serendipity
of item 𝜃𝑡 for user 𝑢 as the product between the rating 𝑟𝑡 and the
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surprise 𝑆𝑢𝑟 (𝑢, 𝑡) that 𝜃𝑡 triggered for 𝑢:

𝑆𝑒𝑟 (𝑢, 𝑡) = 𝑟𝑡 × 𝑆𝑢𝑟 (𝑢, 𝑡) (1)

Given that all surprise measures described in Section 3 below are

positive and a positive reward corresponds to a raw rating strictly

greater than 3 stars, the definition abovemapswell to the conceptual

definition of serendipity as an event that is both surprising, i.e., large

𝑆𝑢𝑟 (𝑢, 𝑡), and valuable, i.e., 𝑟𝑡 > 0. Looking back at Algorithm 1, by

only selecting items 𝑗 +1with positive rating (line 3) that maximize

surprise (line 4), the procedure can be seen as returning an item

with high serendipity value for 𝑣 . Since 𝑣 itself was selected to

have similar preferences with user 𝑢, the collaborative filtering

expectation is that item 𝑗 + 1 will be serendipitous for user 𝑢 as

well.

3 ONLINE LEARNING OF NON-STATIONARY
USER PREFERENCES

We assume that at each time step 𝑡 a user’s preference vector has a

multivariate normal distribution p𝑡 ∼ N(𝝁𝑡 , Σ𝑡 ). In this section, we
describe online learning algorithms that take as input the preference

distribution at the previous time step p𝑡−1 ∼ N(𝝁𝑡−1, Σ𝑡−1), the
topic vector for the current item 𝜽𝑡 , and the user’s rating 𝑟𝑡 , and

update the preference distribution to p𝑡 ∼ N(𝝁𝑡 , Σ𝑡 ) in order to

minimize the squared distance between the predicted rating 𝑟𝑡 and

the true rating 𝑟𝑡 . Under a Bayesian interpretation, p𝑡−1 is the prior
preference distribution whereas p𝑡 is the posterior distribution

upon observing item 𝜽𝑡 and rating 𝑟𝑡 . Bayes rules is indeed how the

posterior distribution is derived in the Bayesian linear regression

approach described in Section 3.1 below.

Under the framework of Bayesian surprise of Itti and Baldi [17],

the surprise elicited by the item 𝜽𝑡 from user 𝑢 is defined as the

distance between the posterior and prior distributions, measured

using KL divergence [20]:

𝑆𝑢𝑟 (𝑢, 𝑡) = 𝐾𝐿 (N (𝜇𝑡 , Σ𝑡 ) | |N (𝜇𝑡−1, Σ𝑡−1)) (2)

In Sections 3.1 and 3.2 we introduce adaptations of Bayesian linear

regression and adaptive regularization of weights (AROW) for the

estimation of non-stationary user preference distributions, which

will enable calculating Bayesian surprise as defined above. Note that

these methods will require the rating 𝑟𝑡 to compute the posterior

distribution, which means surprise will be measured post-factum,

andmay be caused by both novel topic distributions and unexpected

ratings (a different definition using only the covariance matrices is

left for future work). A post-factum definition of surprise is also

used in the NLMS approach from Section 3.3.

3.1 Variance Bounded Bayesian Linear
Regression

The first sequential learning model that we consider for updating

the user preference distribution is that of Bayesian linear regression

[4]. Under a Bayesian treatment of linear regression, at the begin-

ning 𝑡 = 0 of a user’s reading history, its preference vector is dis-

tributed according to a zero-centered Gaussian prior p0 ∼ N(0, 𝛽𝐼 ).
Due to the choice of a conjugate Gaussian prior distribution, it can

be shown that the posterior at the next time step will be Gaussian

as well according to the following update rules (section 3.3 in [4]):

Σ−1𝑡+1 = Σ−1𝑡 + 𝛽𝜽𝑇𝑡 𝜽𝑡 and 𝝁𝑡+1 = Σ𝑡+1
(
Σ−1𝑡 𝝁𝑡 + 𝛽𝜽𝑇𝑡 𝑟𝑡

)
(3)

The original Bayesian LR model is intended for a stationary set-

ting where the true model that generates the data and their labels

does not change over time. However, in a recommendation setting,

users change their preferences over time, which requires the LR

model to be flexible enough to allow for sometimes drastic changes

in its parameters, depending on how much the true user prefer-

ences changed. Using the original Bayesian LR model in such a

non-stationary setting is then going to be suboptimal due to the fact

that once the parameter co-variance Σ gets close to 0, the parame-

ters change very little. To alleviate this issue, we introduce variance
bounded Bayesian LR that ensures the variance of each parameter is

at least 𝜏𝑣 , where 𝜏𝑣 > 0 is a hyperparameter. At every update step,

we take the current covariance matrix Σ𝑡 , perform an eigenvalue

decomposition Σ𝑡 = 𝑈𝑡Λ𝑈
𝑇
𝑡 , where Λ = 𝑑𝑖𝑎𝑔(𝜆1, ..., 𝜆𝐾 ) is the diag-

onal matrix of positive eigenvalues. Then all eigenvalues are clipped

to be at least 𝜏𝑣 and used in a new diagonal matrix of clipped eigen-

values Λ𝑣 = 𝑐𝑙𝑖𝑝 (Λ, 𝜏𝑣) = 𝑑𝑖𝑎𝑔(𝑚𝑎𝑥 (𝜆1, 𝜏𝑣), ...,𝑚𝑎𝑥 (𝜆𝐾 , 𝜏𝑣)). We

use Λ𝑣 to compute a new covariance matrix 𝑆𝑡 = 𝑈𝑡Λ𝑣𝑈
𝑇
𝑡 , which

is then employed as usual in the Bayesian LR update equations, as

shown below.

Σ𝑡 = 𝑈𝑡Λ𝑈
𝑇
𝑡 −→ Λ𝑣 = 𝑐𝑙𝑖𝑝 (Λ, 𝜏𝑣) −→ 𝑆𝑡 = 𝑈𝑡Λ𝑣𝑈

𝑇
𝑡 (4)

Σ−1𝑡+1 = 𝑆
−1
𝑡 + 𝛽𝜽𝑇𝑡 𝜽𝑡 and 𝝁𝑡+1 = Σ𝑡+1

(
𝑆−1𝑡 𝝁𝑡 + 𝛽𝜽𝑇𝑡 𝑟𝑡

)
(5)

3.2 Adaptive Regularization of Weights for
Regression

The Adaptive Regularization of Weights (AROW) algorithm [9] is

an online optimization procedure for confidence-weighted learning

of linear classifiers [10]. The original formulation of AROW is:

𝜇𝑡 , Σ𝑡 = argmin

𝜇,Σ
𝐶 (𝜇, Σ) (6)

where the objective function 𝐶 (𝜇, Σ) is written as:

𝐾𝐿 (N (𝜇, Σ) | |N (𝜇𝑡−1, Σ𝑡−1)) +
𝑙 (𝑟𝑡 , 𝜇𝑇 𝜃𝑡 )

2𝑟1
+
𝜃𝑇𝑡 Σ𝜃𝑡

2𝑟2
(7)

The two hyperparameters 𝑟1 and 𝑟2 quantify the trade-off between

the prediction accuracy and the confidence in the new parameters.

By minimizing the first term (Bayesian surprise), the new param-

eters are encouraged to stay close to the current values. In the

original AROW, the loss 𝑙 was set to be the squared hinge loss for

classification.

We adapt AROW for regression by replacing the original squared-

hinge loss with the squared error loss 𝑙 (𝑟𝑡 , 𝜇𝑇 𝜃𝑡 ) = (𝑟𝑡 − 𝜇𝑇 𝜃𝑡 )2.
Furthermore, whereas the hyperparameters 𝑟1 and 𝑟2 were set to be

equal in [9], in our experiments they are tuned separately. In a non-

stationary setting it is especially important that 𝑟2 is independent

from 𝑟1, to allow the parameters to vary more freely when the user

changes his preferences.

To solve for the parameters 𝜇, Σ that minimize equation (1), we

use a derivation analogous to [9] by writing the KL term explicitly

and decomposing the loss in two parts depending on 𝜇 and Σ, i.e.,
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𝐶 (𝜇, Σ) = 𝐶1 (𝜇) +𝐶2 (Σ):

𝐶1 (𝜇) =
1

2

(𝜇𝑡−1 − 𝜇)𝑇 Σ−1𝑡−1 (𝜇𝑡−1 − 𝜇) +
1

2𝑟1
(𝑟𝑡 − 𝜇𝑇𝑡 𝑥𝑡 )2 (8)

𝐶2 (Σ) =
1

2

log

𝑑𝑒𝑡 Σ𝑡−1
𝑑𝑒𝑡 Σ

+ 1

2

𝑇𝑟 (Σ−1𝑡−1Σ) +
1

2𝑟2
𝑥𝑇𝑡 Σ𝑥𝑡 (9)

By settings the gradients of Equations 8 and 9 to zero, we obtain

the following online update equations:

𝜇𝑡 = 𝜇𝑡−1 +
(𝑟𝑡 − 𝜇𝑇𝑡−1𝑥𝑡 )Σ𝑡−1𝑥𝑡
𝑟1 + 𝑥𝑇𝑡 Σ𝑡−1𝑥𝑡

(10)

Σ𝑡 = Σ𝑡−1 −
Σ𝑡−1𝑥𝑡𝑥𝑇𝑡 Σ𝑡−1

𝑟2 + 𝑥𝑇𝑡 Σ𝑡−1𝑥𝑡
(11)

Note that by keeping 𝑟1 and 𝑟2 separate, this formulation is different

from the AROW version in [35].

3.3 Normalized Least Mean Square
We also experiment with normalized least mean square (NLMS) [3],

a more stable version of the well known least mean square (LMS)

algorithm for regression, where the learning rate is divided by the

squared norm of the feature vector:

𝒑𝑡 = 𝒑𝑡−1 +
𝜂

𝜽𝑇𝒕 𝜽𝒕
(𝑟𝑡 − 𝒑𝑇𝑡−1𝜽𝒕 )𝜽𝒕 (12)

𝑆𝑢𝑟 (𝑣, 𝑡) = | |𝒑𝑡+𝑘−1 − 𝒑𝑡−1 | | (13)

Note that NLMS only updates a point estimate 𝒑𝑡 = 𝝁𝑡 of the
preference vector, therefore it cannot be used to compute Bayesian

surprise. Instead, we define the surprise at time 𝑡 as the the norm

of the difference between the preference vectors at times 𝑡 − 1 and
𝑡 + 𝑘 − 1, where 𝑘 ≥ 1 is a time horizon hyper-parameter. When

the time horizon is given the default value 𝑘 = 1, this measure

can be seen as capturing the impact that the item 𝜃𝑡 had on the

preference vector update. Larger values of 𝑘 are meant to model

the fact that the impact of an item item 𝜃𝑡 may become clearer only

after multiple NLMS updates. While it may appear that preference

vectors from the "future" are used, this future is only relative to

a point 𝑡 in the past for a user 𝑣 and it is not an issue as long as

it is done only for finding similar users 𝑣 and their post-factum

surprising items in the collaborative filtering step from Algorithm 1

(no future information is used for the reference users 𝑢 during

evaluation).

4 BASIC MODEL FOR SURPRISE AND USER
PREFERENCES

A simpler approach is to decouple the rating from surprise and

define surprise as a distance𝑑 between an item 𝜽𝑡 and the previously
consumed items summarized in a topic history vector 𝒉𝑡−1:

𝑆𝑢𝑟 (𝑢, 𝑡) = 𝑑 (𝜽𝑡 ,𝒉𝑡−1) where 𝒉𝑡−1 =
1

𝑡 − 1

𝑡−1∑︁
𝑧=1

𝜽𝑧 (14)

Here, 𝒉𝑡−1 embeds the history of items into an average topic dis-

tribution vector aimed at expressing the topics that the user has

consumed so far. We also tried using an exponential decay hyper-

parameter that is meant to give lower weight to items seen farther

away in the past, and thus better accommodate a non-stationary

setting, however the best results were obtained with the simpler,

and perhaps more stable, topic average.

In terms of the actual distance function 𝑑 , we discovered that

the Euclidean distance 𝑑 (𝜽𝑡 ,𝒉𝑡−1) = | |𝜽𝑡 − 𝒉𝑡−1 | | did poorly at

identifying surprising items because it was often dominated by

many topics that were in common between different items, even

when they had small probabilities. Instead, to calculate surprise we

use the topic that stands out the most with respect to the maximum

topic probability so far:

𝑑 (𝜽𝑡 ,𝒉𝑡−1) = | |𝜽𝑡 −𝒎𝑡−1 | |∞ = max

1≤𝑘≤𝐾

(
𝜃𝑡,𝑘 −𝑚𝑡−1,𝑘

)
where 𝑚𝑡−1,𝑘 = max

1≤𝑧≤𝑡−1
ℎ𝑧,𝑘 (15)

The vector𝒎𝑡−1 = [𝑚𝑡−1,𝑘 ]𝑘=1..𝐾 stores for each topic𝑘 the largest

probability with which it was seen across all the books read so far

by the user 𝑢.

The preference vector is computed in the basic model as the

weighted average of the topic distributions seen by the user, using

their ratings as weights:

𝒑𝑡 =
1

𝑡 − 1

𝑡−1∑︁
𝑧=1

𝑟𝑧𝜽𝑧 (16)

Here too we tried using an exponentially decaying weights for past

items, however best performance was obtained using the simple

weighted average.

5 TOPIC-LEVEL SURPRISE AND SERENDIPITY
DATASET

We use as raw data source the Goodreads dataset [36], which con-

sists of over 15M reviews for about 2M books from around 465K

users. For lack of access to the actual book contents, we associate

each book ID with an artificial book content that is created by con-

catenating all its English reviews and trimming to a maximum of

10K tokens. We extract a main set of 1,294,532 Books and their re-

views by considering only books with at least 50 tokens. We create

a smaller subset LDABooks for training an LDA topic model using

only the 303,832 books that contained at least 1,000 tokens in their

book content. Furthermore, we extracted a main set of 26,374 Users

by considering only those who read and rated at least 100 different

items from the Books set. While this may lead to selection bias,

it was done to minimize the chance of including users with miss-

ing book ratings, based on the assumption that users who submit

many ratings are more likely to report every book they read on

Goodreads. Overall, the reading histories of these Users contain

1,043,437 unique books.

5.1 Manual Annotation of Topic-Level Surprise
To enable evaluation of the various serendipity models introduced

above, we sampled a set of 4 reference users with reading histories

that appeared to be diverse, in order to increase the likelihood of

finding books that are topic-level surprising. For every book in a

user’s reading history, we read through the book content (concate-

nated reviews) in order to (a) manually create a list of the major
topics for that book; and (b) use that list and the book content to

create a short summary of the book. Sometimes the accumulated

book content was too small to get a clear idea of the book topics,
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Table 1: Reference users statistics. The total number of books
for each user is 15more than the number ofmanually labeled
books.

User 1 User 2 User 3 User 4 Total

Books read 140 114 137 118 509

Manually labeled books 125 99 122 103 449

Surprising books 10 13 14 17 54

as such we queried Goodreads and Amazon for additional reviews

that were then added to the book content field.

For each of the 4 reference users, we manually annotate the

books in their reading history with binary surprise labels. We skip

the first 15 books, as these will be used as a burn-in set to learn a

more stable estimate of the user’s initial preference vector. Starting

with position 16 in the time series of books, we compare its list

of major topics and the book summary with a running summary

of the topics of the books read so far, as well as their summaries.

If the current book has topics that have not appeared in the pre-

vious books, or that were only tangentially addressed in previous

books, then the book is labeled as topic-level surprising. Note that

topic-level surprise is only one of many types of surprise, some of

which are even independent of content, e.g. the user discovering a

book by accident [12]. Table 1 shows annotation statistics for each

reference user, including the number of surprising books. Overall,

this is a time consuming, cognitively demanding annotation exer-

cise. Although the total number of books that are manually labeled

for surprise is not small, the requirement and difficulty of annotat-

ing each book with respect to the previously read books limited

the annotation of book reading histories to only 4 users. To facili-

tate reproducibility and future progress in this area, we make the

code and the dataset publicly available at https://github.com/Ton-

moy/surprise-and-serendipity.

6 EXPERIMENTAL EVALUATION
We train a Latent Dirichlet Allocation (LDA) [5] topic model with

𝐾 = 100 topics on the LDABooks set, and use it to generate the

input topic distributions for all Books. We evaluate a total of 6

models: (1) Bayesian linear regression BLR(𝛽 , 𝜏𝑠 , 𝜏𝑑 , 𝑁 ); (2) vari-

ance bounded Bayesian linear regression vbBLR(𝛽 , 𝜏𝑣 , 𝜏𝑠 , 𝜏𝑑 , 𝑁 );

(3) AROW regression AROW(𝑟1, 𝑟2, 𝜏𝑠 , 𝜏𝑑 , 𝑁 ); (4) normalized least

mean square NLMS(𝜂, 𝜏𝑠 , 𝜏𝑑 , 𝑘 , 𝑁 ), (5) the hybrid combination

AROW+vbBLR; and (6) the basic model Basic(𝜏𝑠 , 𝜏𝑑 , 𝑁 ). The hy-

perparameters for each model are indicated between parentheses

and are tuned using a leave-one-out setup: if reference user 𝑢 ∈ 𝑈
is the current test user, then we select the hyperparameter values

that lead to the best average 𝐹1 on the other 3 users in 𝑈 − {𝑢}.
This is repeated 4 times, in order to get test results on all reference

users. For each method, user preference vectors 𝒑𝑡 (𝑢) are created
for every user 𝑢 in Users at every time step 𝑡 in their time series of

books. To compute precision and recall for the task of serendipity

recommendation, we use the procedure shown in Algorithm 2 for

each reference user. We use a similar procedure for evaluating only

for surprise recommendation by removing the tests for positive

ratings from Algorithms 1 and 2.

Algorithm 2: EvaluateSerendipityForUser(𝑢)
Input: A reference user 𝑢; 𝜏𝑠 is the surprise threshold;

𝑚𝑆𝑢𝑟 (𝑢, 𝑖 + 1) is true iff item 𝑖 + 1 was manually

labeled as surprising for 𝑢.

Output: The Precision (𝑃 ), Recall (𝑅), and F1 measure (𝐹1)

for reference user 𝑢.

1 𝑡𝑝, 𝑡𝑛, 𝑓 𝑝, 𝑓 𝑛 ← 0;

2 for each item 𝑖 in user 𝑢’s time series do
3 if ⟨𝑣, 𝑗⟩ = FindSerendipity(𝑢, 𝑖) is not null then
4 if 𝑆𝑢𝑟 (𝑣, 𝑗 + 1) > 𝜏𝑠 then
5 if𝑚𝑆𝑢𝑟 (𝑢, 𝑖 + 1) and 𝑟𝑖+1 > 0 then 𝑡𝑝 ← 𝑡𝑝 + 1

else 𝑓 𝑝 ← 𝑓 𝑝 + 1
6 else
7 if𝑚𝑆𝑢𝑟 (𝑢, 𝑖 + 1) and 𝑟𝑖+1 > 0 then 𝑓 𝑛 ← 𝑓 𝑛 + 1

else 𝑡𝑛 ← 𝑡𝑛 + 1
8 𝑃 = 𝑡𝑝/(𝑡𝑝 + 𝑓 𝑝), 𝑅 = 𝑡𝑝/(𝑡𝑝 + 𝑓 𝑛), 𝐹1 = 2𝑃𝑅/(𝑃 + 𝑅);
9 return 𝑃, 𝑅, 𝐹1

The surprise recommendation results are listed in Table 2 and

show the AROW model outperforming all other models, achieving

an average F1 of 56.5%. The Basic model has the lowest average F1

of 42.7%. The results also show that models that utilize Bayesian sur-

prise outperform other models by a considerable margin. The last

two rows show the random baseline performance using either a sur-

prise probability of 0.5, or the ratio of surprising books observed in

the data. The serendipity recommendation performance is reported

in Table 3. Because AROW obtained the best surprise recommenda-

tion performance and vbBLR the best serendipity recommendation,

we also evaluated a hybrid AROW+vbBLR combination, where

AROW is used for computing surprise, and vbBLR is used for iden-

tifying the most similar users in Algorithm 1. This combination

outperforms all other models, obtaining an average F1 of 37.0%.

The Basic model’s performance is very unstable; while it obtains

competitive performance on the first 3 users, on user 4 all the book

items that it recommends as serendipitous are wrong, leading to

no true positives and consequently zero F1. A possible reason is be-

cause the hyperparameters that obtain the best performance when

tuned on the first 3 users are not suitable for user 4. However, even

tuning on the user 4 itself lead to a very low F1 of around 13%.

Error analysis for the best models reveals that most errors are

caused by (a) reviewers writing about topics that are unrelated to

the book content, such as movies made based on the book, or books

written by the same author; and (b) LDA creating irrelevant topics

based on character names and other proper names.

7 BEYOND-ACCURACY RECOMMENDATION
METRICS

McNee et al. [25] observed that focusing solely on the accurate

ranking of items that are known or expected by users misses other

important aspects that can further amplify user satisfaction. Cur-

rently, the recommender systems literature ([14, 18, 22], inter alia)
recognizes five major non-accuracy aspects: serendipity, unexpect-

edness, novelty, diversity, and coverage. As discussed in Section 1,

diversity refers to how dissimilar generated recommendations are,

https://github.com/Ton-moy/surprise-and-serendipity
https://github.com/Ton-moy/surprise-and-serendipity
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Table 2: Surprising item recommendation performance (%) evaluated across 449 manually annotated books from 4 reference
users.

User 1 User 2 User 3 User 4 All

P R F1 P R F1 P R F1 P R F1 Avg F1

BLR 30.0 60.0 40.0 50.0 69.2 58.1 64.3 64.3 64.3 55.6 58.8 57.1 54.9

vbBLR 23.1 60.0 33.3 50.0 69.2 58.1 64.3 64.3 64.3 52.3 64.7 57.9 53.4

AROW 30.0 60.0 40.0 61.5 61.5 61.5 64.3 64.3 64.3 62.5 58.8 60.0 56.5
NLMS 30.0 60.0 40.0 34.6 69.2 46.2 50.0 35.7 41.7 33.3 64.7 44.0 43.0

Basic 20.0 30.0 24.0 44.4 61.5 51.6 66.7 42.9 52.2 54.5 35.3 42.9 42.7

Random (𝑝 = 0.5) 8.0 50.0 13.8 13.1 50.0 20.8 11.4 50.0 18.6 16.5 50.0 24.8 19.5

Random (𝑝 = 𝑃/𝑇 ) 8.0 8.0 8.0 13.1 13.1 13.1 11.4 11.4 11.4 16.5 16.5 16.5 12.3

Table 3: Serendipitous item recommendation performance (%), across 449 manually annotated books from 4 reference users.

User 1 User 2 User 3 User 4 All

P R F1 P R F1 P R F1 P R F1 Avg F1

BLR 13.8 57.1 22.2 30.8 80.0 44.4 22.7 41.7 29.4 22.7 50.0 31.3 31.8

vbBLR 16.7 71.4 27.0 30.0 90.0 45.0 20.0 41.7 27.0 30.0 60.0 40.0 34.8
AROW 14.3 57.1 22.9 31.3 50.0 38.5 23.8 41.7 30.3 22.7 50.0 31.3 30.8

NLMS 12.1 57.1 20.0 18.8 33.3 24.0 15.4 36.4 21.6 17.9 50.0 26.3 23.0

Basic 16.1 71.4 26.3 32.0 72.7 44.4 44.4 33.3 38.1 0.00 0.00 0.00 27.2

AROW+vbBLR 19.2 71.4 30.3 31.8 70.0 43.8 22.7 41.7 29.4 35.3 60.0 44.4 37.0
Random (𝑝 = 0.5) 5.6 50.0 10.1 11.1 50.0 18.2 9.8 50.0 16.4 10.7 50.0 17.6 15.6

Random (𝑝 = 𝑃/𝑇 ) 5.6 5.6 5.6 11.1 11.1 11.1 9.8 9.8 9.8 10.7 10.7 10.7 9.3

whereas coverage reflects the degree to which they cover the entire

spectrum of available items. The remaining three concepts, namely

serendipity, unexpectedness, and novelty, have been variously de-

scribed using multiple definitions that often result in substantial

overlap, subsumption, and sometimes even identity, between their

conceptual domains. For example, noting that there is no consensus

on the definition of serendipity, Kotkov et al. [19] investigate eight

definitions, starting from a common view where serendipity has

three components – relevance, novelty and unexpectedness, each of

which has multiple variations. Novelty typically refers to a user be-

ing unfamiliar with a recommended item [28], a desirable property

that is lacking when recommendation lists contain only items that

are popular or well-known [16]. At the same time, Oh et al. [28]

note that sometimes novel recommendations are equated with di-

versified recommendations, whereas other approaches define novel

items more broadly as any item that widens a user’s interests. Defi-

nitional ambiguity aside, other than serendipity, unexpectedness is

most related to our notion of surprise. Li and Tuzhilin [22] define

the unexpectedness of an item as the distance between that item and

the closure of all previously consumed items, computed in a latent

embedding space, which is conceptually similar to how surprise is

defined in the basic approach from Section 4. A hybrid utility func-

tion is then defined as a linear combination of the item’s predicted

rating and its unexpectedness. In contrast, we define serendipity as

a multiplicative combination of the post-factum, actual item rating

with its estimated Bayesian surprise, and use collaborative filtering

to identify items with high potential for serendipity.

8 CONCLUSION AND FUTUREWORK
We introduced a method for recommending serendipitous items

where serendipity is defined in terms of Bayesian surprise. To facil-

itate its computation, we proposed adaptations of online learning

algorithms for the non-stationary setting of user preferences. Ex-

periments show that methods rooted in Bayesian surprise obtain

superior results. Future work includes an expanded dataset, non-

linear models, deep topic modeling, and surprise measures that go

beyond topic-level. Since Bayesian linear regression can be obtained

as a special case of the Kalman filter, an intriguing future direction

is adapting a Kalman filter for continual online learning [34] of the

non-stationary user preferences.
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