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Abstract— This paper presents algorithms to simultaneously
compute the optimal assignments and formation parameters for
a team of robots from a given initial formation to a variable
goal formation (where the shape of the goal formation is given,
and its scale and location parameters must be optimized). We
assume the n robots are identical spheres. We use the sum
of squared travel distances as the objective function to be
minimized, which also ensures that the trajectories are collision
free. We show that this assignment with variable goal formation
problem can be transformed to a linear sum assignment problem
(LSAP) with pseudo costs that we establish are independent of
the formation parameters. The transformed problem can then
be solved using the Hungarian algorithm in O(n3) time. Thus
the assignment problem with variable goal formations using
this new approach has the same O(n3) time complexity as
the standard assignment problem with fixed goal formations.
Results from simulations on 200 and 600 robots are presented to
show the algorithm is sufficiently fast for practical applications.

I. INTRODUCTION

Teams of robots often have to move from one formation to

another as they perform exploration, coverage, and surveil-

lance tasks [1]. Such application scenarios are becoming

increasingly common as the cost of robots continues to

drop. This paper presents algorithms to compute the optimal

assignments and formation parameters for a team of robots

from a given initial formation to a variable goal formation;

here by variable goal formation we mean the desired shape

of the goal formation is given, and its scale and location

parameters can be varied. We use a minimum sum of squared

distances objective to ensure that the resulting trajectories are

collision free. Teams of unmanned aerial vehicles (UAVs)

or ground mobile robots often need to change formations in

order to navigate through narrow passages in an environment

with obstacles. Most work uses a single predefined goal

formation [1] for the team of robots or selects from a set of

predefined formations based on the route. Such approaches

do not exploit the additional flexibility for the goal formation

that is often possible — the formation could be scaled or its

location may be changed to optimize the objective function.

While efficient algorithms for variable formations with fixed

assignments are presented in [2], there is only limited prior

work where both the assignment and the variable formation

are considered simultaneously [3]. This is precisely the gap

that this paper addresses. Further, we show that this variable
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goal formation problem can be transformed to a linear sum

assignment problem (LSAP) [4], which can then be solved

using the Hungarian algorithm in O(n3) time, just like the

standard assignment problem with a fixed goal formation.

The algorithms presented here can also benefit an emerg-

ing novel application: the programming of large teams of

mobile robots [5] or UAVs [6] to create animated light shows

with LEDs mounted on the robots. Here the synchronized

robot formations create visual images for entertainment.

Recently Intel has demonstrated large fleets of its Shooting

Star drones (numbering 300–500 drones) for such visual

performances [7]. The quadrotor drones have LED lights that

change color and intensity to create appealing 3D displays.

The robots must be assigned goal locations and moved

to them along generated collision-free trajectories. These

algorithms would also benefit nanosatellite swarm formations

requiring reconfiguration [8].

Another application domain these algorithms are designed

to address is droplet-based lab-on-chip systems for point-

of-care medical diagnostics. In these light-actuated digital

microfluidic (LADM) systems, discrete droplets of chemicals

are optically actuated using moving patterns of projected

light to perform chemical reactions by repeatedly moving

droplets to mixing formations (e.g., [9], [10], [11], [12]).

By modeling the droplets as robots, we can address the

automated coordination of droplets on the LADM chip,

including determining goal formations that can fit within

specified regions of the chip.

II. RELATED WORK

Multi-robot assignment and trajectory planning: Multi-

robot assignment and task allocation has been an area of

active research; see Gerkey and Mataric [13] and Dias et

al. [14] for surveys. We first review assignment of multiple

robots to fixed formations. Kloder and Hutchinson [15]

developed a representation for collision-free path planning

of multiple unlabeled robots translating in the plane between

two given formations. They represent a formation by the

coefficients of a complex polynomial whose roots represent

the robot configurations. Turpin, Michael, and Kumar [16]

presented an algorithm for generating robot assignments and

trajectories for a team of robots moving from an initial

formation to a fixed goal formation. The robots are assumed

to be identical with equal radii. They show that by mini-

mizing the sum of the squares of velocities, the generated

trajectories have constant velocities and the resulting as-

signment guarantees that there is no collision between the

robots, under certain initial separation conditions; we build



on this result. MacAlpine, Price, and Stone [17] developed a

collision-avoiding assignment algorithm that minimizes the

maximum robot travel distance for fixed goal formations.

Morgan et al. [8] developed a distributed auction algorithm

for spacecraft swarm assignment and collision-free trajectory

optimization. Recently Preiss et al. [18] presented an assign-

ment and trajectory optimization algorithm for quadrotors

in the presence of obstacles and downwash constraints. It

uses a spatial grid to generate discretized trajectories and

subsequently refines them into continuous trajectories.

Variable formations with fixed assignments: Derenick

and Spletzer [2] presented the first algorithm to find optimal

parameters for variable goal formations; however it assumes

the robot assignment is given. The scale, orientation, and

translation are all treated as parameters. Using second-order

cone programming techniques for solving the optimization

problem, they show that the theoretical complexity of the

algorithm is O(n1.5), and linear in practice.

Assignment for variable formations: Akella [3] pre-

sented the first algorithms for simultaneously solving the

assignment problem and optimizing the formation parameters

for variable goal formations. Here scale and translation are

considered, although separately. The problem minimizes the

completion time, and is solved as a linear bottleneck assign-

ment problem (LBAP). Since the LBAP solution depends

on the order of the costs rather than their actual values,

computational geometry techniques are used to find the

optimal solution.

Formation changes in the presence of obstacles:

Alonso-Mora et al. [19] present algorithms to find convex

regions within the free space of an environment with obsta-

cles, and then use a centralized method for navigating a team

of robots in formation. The obstacles may be static and/or

dynamic. Sequential convex programming is used to find the

optimal parameters for the formation. The individual robots

then use a local planner to avoid any further collision and

account for the dynamics.

III. THE ASSIGNMENT WITH VARIABLE GOAL

FORMATION PROBLEM

Let there be n identical spherical robots with equal ra-

dius R. The initial positions of the robots are given by

pi = (pix, piy, piz)
⊤, i = 1, . . . , n. Let the initial formation

be represented by P = (p⊤

i ), an n× 3 matrix. The desired

shape is given by n positions sj = (sjx, sjy, sjz)
⊤, j =

1, . . . , n, defined in a local frame such that s1 = (0, 0, 0)⊤

and with axes parallel to the global frame. Let the desired

shape formation be represented by S = (s⊤i ), an n × 3
matrix. The goal formation, which is to be computed based

on the optimality criterion, consists of goal positions qj =
(qjx, qjy, qjz)

⊤, j = 1, . . . , n. Let the goal formation be

represented by Q = (q⊤

j ), an n × 3 matrix. A translation

vector d = (dx, dy, dz)
⊤ is defined such that q1 = d. The

robots are assumed to move on straight line paths in an

obstacle-free environment. The objective is to simultaneously

assign the robots from the initial formation P to the goal

formation Q and to find the parameters describing the goal

formation. Further, trajectories need to be generated such that

there are no collisions between the robots.

Selecting the cost as the sum of squared distances enables

generation of trajectories that are collision free under the

condition that the separation of robots in the initial formation

and the goal formation is at least 2
√
2R, as shown in [16].

Furthermore, the trajectories are such that the robots move

with constant velocities, and all robots simultaneously start

and reach their goal positions.

The objective of the paper is to develop an algorithm to

compute the optimal assignments and formation parameters

while also ensuring that the trajectories are collision free. An

illustrative example is shown in Fig. 1.

The following subsections describe the goal formation pa-

rameters considered, and their corresponding cost functions.

A. Variable Scale

The goal formation positions can be written in terms of

the scale parameter, α ∈ (0,∞), as:

qj = αsj + d (1)

The cost cαij is given by the squared distance between the

initial position pi and the goal position qj , which in turn is

a function of the scale parameter α.

cαij = ||pi − qj ||22 = (pi − αsj − d)⊤(pi − αsj − d)

= (pi − d)⊤(pi − d)− 2α(pi − d)⊤sj + α2s⊤j sj
(2)

B. Variable Translation

For variable translation d, the formation positions are:

qj = sj + d (3)

The cost cdij is given by:

cdij = ||pi − qj ||22 = (pi − sj − d)⊤(pi − sj − d)

= p⊤

i pi + s⊤j sj − 2p⊤

i sj − 2(pi − sj)
⊤d+ d⊤d

(4)

C. Variable Scale and Translation

For variable scale α and translation d, the formation

positions are given by:

qj = αsj + d (5)

Fig. 1. Illustrative example with ten robots. The circular robots are in two
parallel rows in their initial formation. The desired formation shape is a
star. The objective is to compute the optimal assignment and the optimal
parameters (scale, translation) of the goal formation (indicated by the star
with red lines). The assignments are shown by dotted lines. For clarity, the
robots are not depicted at their goal positions.



The cost cαdij is given by:

cαdij = ||pi − qj ||22 = (pi − αsj − d)⊤(pi − αsj − d)

= p⊤

i pi + α2s⊤j sj − 2αp⊤

i sj + 2αs⊤j d

− 2p⊤

i d+ d⊤d

(6)

IV. SIMULTANEOUS ASSIGNMENT AND GOAL

FORMATION PARAMETER OPTIMIZATION

The problem of simultaneously computing the optimal

assignment and formation parameters for multiple robots,

while minimizing the sum of squared distances, can be posed

as the following optimization problem:

Minimize C =

n
∑

i=1

n
∑

j=1

cijxij

subject to

n
∑

i=1

xij = 1 j = 1, . . . , n

n
∑

j=1

xij = 1 i = 1, . . . , n

xij = {0, 1} i, j = 1, . . . , n

(7)

The variables cij represent the cost of assigning robot i to

position j, and are functions of the formation parameters

such as α,d, depending on the requirements. The binary

variables xij represent the assignment of the ith robot to the

jth goal position. Let the assignment matrix be X = (xij).
We first establish some preliminary results.

We now show that even though the costs cij are functions

of the formation parameters, the optimization problem stated

in (7) can be transformed to a Linear Sum Assignment Prob-

lem (LSAP). We derive a modified (pseudo) cost function for

the LSAP, the solution to which results in the same optimal

assignment as the original problem. The pseudo cost function

is identical for goal formations with variable scale, variable

translation, and combined variable scale and translation.

Lemma 1: The double summation of the form
∑n

i=1

∑n

j=1 aixij , where the ai, i = 1, . . . , n are

constants depending only on the index i, is a constant.

Proof: The double summation can be simplified, using
∑n

j=1 xij = 1 from (7), as:

n
∑

i=1

n
∑

j=1

aixij =

n
∑

i=1

ai

n
∑

j=1

xij

=

n
∑

i=1

ai = constant.

(8)

Lemma 2: The double summation of the form
∑n

i=1

∑n

j=1 bjxij , where the bj , j = 1, . . . , n are

constants depending only on the index j, is a constant.

Proof: Similar to Lemma 1, the double summation can

be simplified as:

n
∑

i=1

n
∑

j=1

bjxij =

n
∑

j=1

bj

n
∑

i=1

xij

=

n
∑

j=1

bj = constant.

(9)

Lemma 3: The double summation
∑n

i=1

∑n

j=1 xij is

equal to n.

Proof: From Lemma 1,

n
∑

i=1

n
∑

j=1

xij =

n
∑

i=1

1 = n (10)

A. Variable Scale

The objective function is based on minimization of the

sum of squared distances, and is a function of the scale

parameter α and assignment X:

Cα(α,X) =
n
∑

i=1

n
∑

j=1

cαijxij

The coefficients cαij are given by (2). The cost Cα is:

Cα(α,X) =

n
∑

i=1

n
∑

j=1

[

(pi − d)⊤(pi − d)xij

−2α(pi − d)⊤sjxij + α2s⊤j sjxij

]

= d2pd + 2αd⊤s+ α2d2s + 2α

n
∑

i=1

n
∑

j=1

(

−p⊤

i sjxij

)

(11)

with the following constants derived using Lemmas 1 and 2:

d2pd =

n
∑

i=1

n
∑

j=1

(pi − d)⊤(pi − d)xij

=

n
∑

i=1

(pi − d)⊤(pi − d)

d2s =

n
∑

i=1

n
∑

j=1

s⊤j sjxij =

n
∑

j=1

s⊤j sj

s =

n
∑

i=1

n
∑

j=1

sjxij =

n
∑

j=1

sj

The plot in Fig. 2 shows the cost curves for all permu-

tations of the example of Fig. 3. The optimal assignment

corresponds to the lowest cost curve. Note that the cost

curves do not intersect for positive values of α.

Lemma 4: If two different assignments X1 = (x1
ij) and

X2 = (x2
ij) have the same cost value at some value of α > 0,

they have the same costs at all values of α.

Proof: Consider the two different assignments, X1 =
(x1

ij) and X2 = (x2
ij) with the corresponding cost functions



Cα(α,X1) and Cα(α,X2). The two cost functions intersect

at some value of α. Leaving aside the trivial case when α =
0, simplifying the equation Cα(α,X1) = Cα(α,X2) shows

that these two curves intersect when:
n
∑

i=1

n
∑

j=1

(

−p⊤

i sjx
1
ij

)

=
n
∑

i=1

n
∑

j=1

(

−p⊤

i sjx
2
ij

)

(12)

Since (12) is independent of α, the equation Cα(α,X1) =
Cα(α,X2) will be true at any value of α. Hence the two cost

curves are identical. (If X1 is the optimal assignment, then

X2 is also optimal with the same cost.)

The above lemma establishes that an optimal cost curve

does not intersect with a non-optimal one since intersection

of an optimal cost curve with another cost curve implies

coincidence of the two curves. Coincidence of cost curves

can potentially lead to multiple optimal solutions. One ex-

ample scenario with multiple optimal solutions is when all

pi are perpendicular to all sj (e.g., pi = (pix, 0, 0)
⊤ and

sj = (0, sjy, 0)
⊤). Here the cost curves are equal for all the

assignments; any assignment would be optimal.

Corollary 5: The optimal assignment at a positive value

of α is the optimal assignment at any positive value of α.

Proof: Since an optimal cost curve does not intersect

with a non-optimal curve for α > 0, it is optimal over the

entire range of its formation parameter α. It is therefore

sufficient to compute the optimal assignment at any positive

value of α.

Further, a new assignment problem can be formulated with

pseudo costs obtained solely from the assignment-dependent

component of (11). The pseudo cost function is given by:

K(X) =

n
∑

i=1

n
∑

j=1

κijxij

where κij = −p⊤

i sj

(13)

The costs κij are constants and hence, the cost function

K(X), along with the constraints given in (7), forms an

LSAP. Let the optimal assignment obtained, using the Hun-

garian algorithm, be X∗ with optimal pseudo cost K∗. Once

the optimal assignment is obtained, the values of xij can be

substituted in the original cost function.

Fig. 2. Plot of cost curves Cα(α,X) for all the permutations of assignment
X = (xij) for the three-robot example of Fig. 3.

PSEUDO-COST-ASSIGNMENT(P,S, n)

1 // P = (p⊤

i ) is n× 3 matrix for initial positions

2 // S = (s⊤i ) is n× 3 matrix for desired shape positions

3 for i = 1 to n

4 for j = 1 to n

5 κij = −p⊤

i sj
6 (X∗,K∗) = HUNGARIAN-LSAP(κij)
7 return (X∗,K∗)

Convexity of the cost function: At the optimal assign-

ment X∗, the cost is given by:

Cα(α,X∗) = d2pd + 2αd⊤s+ 2αK∗ + α2d2s (14)

The function is a quadratic with a positive leading coefficient.

Hence, it is convex. The globally optimal scale parameter,

α∗, is obtained by evaluating the value at which the derivative

of Cα(α,X∗) vanishes.

α∗ = −K∗ + d⊤s

d2s
(15)

The globally optimal cost is then given by Cα(α∗,X∗).

VARIABLE-SCALE-FORMATION(P,S,d, n)

1 (X∗,K∗) = PSEUDO-COST-ASSIGNMENT(P,S, n)
2 Compute α∗ from (15)

3 return ( α∗, X∗)

Computational complexity: The optimal assignment X∗

and pseudo cost K∗ can be obtained in O(n3) using the

Hungarian algorithm. The optimal scale α∗ can be com-

puted in O(nw) time where w is the dimensionality of

the workspace. Therefore the computational complexity of

solving the variable scale formation problem is O(n3).

An example assignment with variable scale formation

problem for n = 3 robots and its optimal assignment are

shown in Fig. 3.

Fig. 3. An example assignment with variable scale formation problem with
three robots. The radius R of the robots is 0.5 units. The initial formation
of the robots is P = ((−6,−6), (−4,−6), (−2,−6)). The desired shape
is S = ((0, 0), (−2,−4), (3,−4)). The translation parameter d = (0, 4)⊤

is given. The optimal value of α is 1.9111, which corresponds to the lowest
cost curve in Fig. 2. The goal formation positions are qj = αsj + d.



B. Variable Translation

The objective is a function of the translation parameter d

and the assignment X:

Cd(d,X) =

n
∑

i=1

n
∑

j=1

cdijxij

The coefficients cdij are given by (4). The cost Cd is:

Cd(d,X) =

n
∑

i=1

n
∑

j=1

[

p⊤

i pixij + s⊤j sjxij − 2p⊤

i sjxij

−2(pi − sj)
⊤dxij + d⊤dxij

]

= d2p + d2s + nd⊤d− 2(p− s)⊤d

+ 2

n
∑

i=1

n
∑

j=1

(

−p⊤

i sjxij

)

(16)

where the following constants are derived using Lemmas 1,

2, and 3:

d2p =
n
∑

i=1

n
∑

j=1

p⊤

i pixij =
n
∑

i=1

p⊤

i pi

p =

n
∑

i=1

n
∑

j=1

pixij =

n
∑

i=1

pi

Using (16) and reasoning similar to Lemma 4, we can show

that the cost surfaces for two different permutations of the

assignment will not intersect for any value of d, unless
∑n

i=1

∑n

j=1 p
⊤

i sjxij is equal for the two assignments; in

this case the cost surfaces coincide for the two permutations

at all values of d. Using arguments similar to Corollary 5,

it is sufficient to solve for the optimal assignment at any

feasible value of d. The optimal assignment corresponds to

the lowest cost Cd(d,X) surface.

The pseudo cost function for this LSAP is the same as

that for the variable scale and is given in (13).

Convexity of the cost function: At the optimal assign-

ment X∗, the cost is given by:

Cd(d,X∗) = d2p + d2s + 2K∗ − 2(p− s)⊤d+ nd⊤d (17)

The Hessian of Cd(d,X
∗) is a symmetric matrix with all

positive and identical eigenvalues, and therefore is positive

definite. The cost function is hence convex. The globally

optimal translation parameter d∗ can now be obtained by

evaluating the value at which the derivative of Cd(d,X∗)
vanishes.

d∗ =
(p− s)

n
(18)

The optimal cost is given by Cd(d∗,X∗). Similar to the

variable scale formation problem, the computational com-

plexity of solving the variable translation formation problem

is also O(n3). An example of the optimal assignment for

variable translation formation for n = 4 robots is shown in

Fig. 4.

Fig. 4. An example assignment with variable translation formation problem
with four robots. The radius R of the robots is 0.5 units. The desired
shape is a rectangle, specified by S = ((0, 0), (0,−6), (10,−6), (10, 0)).
The initial formation is P = ((0, 4), (0, 1), (0,−1), (0, 4)). The optimal
translation parameter is d = (−5, 3)⊤. The goal formation positions are
qj = sj + d.

VARIABLE-TRANSLATION-FORMATION(P,S, n)

1 (X∗,K∗) = PSEUDO-COST-ASSIGNMENT(P,S, n)
2 Compute d∗ from (18)

3 return (X∗, d∗)

C. Variable Scale and Translation

The objective function is a function of the scale parame-

ter α, the translation parameter d, and the assignment X:

Cαd(α,d,X) =

n
∑

i=1

n
∑

j=1

cαdij xij

The coefficients cαdij are given by (6). Therefore

Cαd(α,d,X) =

n
∑

i=1

n
∑

j=1

(

p⊤

i pixij + α2s⊤j sjxij − 2αp⊤

i sjxij

+2αs⊤j dxij − 2p⊤

i dxij + d⊤dxij

)

= d2p + α2d2s + nd⊤d+ 2αs⊤d

− 2p⊤d+ 2α

n
∑

i=1

n
∑

j=1

(

−p⊤

i sjxij

)

(19)

We can show, using (19) and reasoning similar to Lemma 4,

that the 4D cost surfaces for two different permutations of the

assignment will not intersect for any positive value of α or

any value of d, unless
∑n

i=1

∑n

j=1 p
⊤

i sjxij is equal for the

two assignments; in this case the cost surfaces coincide for

the two permutations at all values of α and d. The optimal

assignment for the variable scale and translation formation

can therefore be solved by evaluating at any feasible (α,d).
The pseudo cost function for this LSAP is same as that for

variable scale and is given in (13).



Convexity of the cost function: At the optimal assign-

ment X∗, the cost is:

Cαd(α,d,X∗) = d2p+α2d2s+2αK∗−2p⊤d+2αs⊤d+nd⊤d

(20)

The Hessian of the cost function is symmetric with eigen-

values {2n, 2n, d2s + n±
√

(d2s + n)2 − 4sd}, where

sd =

n
∑

i=1

n
∑

j=i+1

||si − sj ||2

All of the eigenvalues are nonnegative, implying a positive

semidefinite Hessian matrix and so, a convex cost function.

The globally optimal scale and translation parameters, α∗

and d∗, can now be obtained by evaluating the value at which

the gradient of Cαd(α,d,X∗) vanishes.

α∗ =
p⊤s+ nK∗

s⊤s− nd2s

d∗ =
(p− α∗s)

n

(21)

The optimal cost is given by Cαd(α∗,d∗,X∗). Similar to the

variable scale formation problem, the computational com-

plexity of solving the combined variable scale and translation

formation problem is also O(n3).

VARIABLE-SCALE-TRANSLATION-FORMATION(P,S, n)

1 (X∗,K∗) = PSEUDO-COST-ASSIGNMENT(P,S, n)
2 Compute α∗ and d∗ from (21)

3 return (α∗, d∗, X∗)

D. Invariance of the Optimal Assignment

Theorem 6: The optimal assignment for a given initial

formation and a desired shape is invariant, and independent

of the goal formation’s scale and/or translation parameters.

Proof: The VARIABLE-SCALE-FORMATION,

VARIABLE-TRANSLATION-FORMATION, and VARIABLE-

SCALE-TRANSLATION-FORMATION algorithms all use the

same PSEUDO-COST-ASSIGNMENT algorithm to compute

the optimal assignment. The PSEUDO-COST-ASSIGNMENT

algorithm depends only on the initial formation P and the

desired shape S.

The optimal formation parameters are computed by opti-

mizing the appropriate cost function given in (14), (17), or

(20). This also implies that for a given initial formation and

desired shape, we need to compute the optimal assignment

just once initially. Then given the feasible α, d ranges, we

can compute the optimal formation rapidly in time linear in

the number of robots.

V. TRAJECTORY GENERATION AND COLLISION

AVOIDANCE

The robots move with constant velocity straight-line trajec-

tories such that they start simultaneously and reach their re-

spective goal positions simultaneously at some final time tf .

Let the maximum allowable speed for the robots be v. The

final time is then given as:

tf = max
i=1,2,...,n

||pi − qφ(i)||2
v

.

where φ(i) denotes the index of the goal position to which

robot i is assigned, i.e., j such that xij = 1. The constant

velocity trajectories xi(t) are then given as:

xi(t) = pi +

(

qφ(i) − pi

tf

)

t, t ∈ [0, tf ].

These trajectories, for an assignment that minimizes the sum

of squared distances, are collision-free under the following

separation conditions, defined in [16]:

||pi − pj ||2 > 2
√
2R (22)

||qi − qj ||2 > 2
√
2R, i, j = 1, 2, . . . , n, i 6= j. (23)

Since the initial positions of the robots are given, the user

has to ensure that the distance between them is greater

than 2
√
2R, as specified in (22). For the variable translation

formation, the condition in (23) becomes ||si − sj ||2 >

2
√
2R. Thus, the user needs to ensure that the distance

between the shape positions meets the requirement.

For the case when the scale is variable, the separation

condition for the goal positions, assuming si 6= sj , can be

written as:

α||si − sj ||2 > 2
√
2R

or, α > αmin

where αmin =
2
√
2R

min ||si − sj ||2
∀i, j = 1, . . . , n, i 6= j.

In general, practical applications restrict the permissible

values of the parameters. For example, a limit has to be

placed on the maximum value of scale; limits for the trans-

lation parameters also need to be specified so that the goal

formation does not lie outside the workspace. The following

constraints can then be specified:

d ∈ [d1,d2], α ∈ [max (αmin, α1), α2]

where d1,d2, α1, α2 are limits on the parameters specified

according to the application. As the objective function is

convex and quadratic and the parameter constraints are

linear, the minimization of the cost function (20) can be

solved as a convex quadratic program (QP). Further, the

KKT conditions (see e.g., [20]) provide the necessary and

sufficient conditions to find the globally optimal solution.

VI. EXAMPLES

Our first example demonstrates the algorithm’s ability to

perform assignment with variable goal formations for a large

number of robots, motivated by entertainment applications

using UAVs [6], [7]. A formation of 600 identical robots

of radius 0.25 units was initially set up as a rectangular

grid (Fig. 5). The first desired shape consisted of the letters

UNCC, where each letter has 150 constituent robots. Then

the next desired shape was changed to ICRA. Computation

of the optimal solution for the first formation change took

about 45 seconds while the second took about 80 seconds.

These computations were on a standard laptop (Intel i7-

7700HQ, 2.80GHz CPU with 16GB RAM) using MATLAB

with no performance optimization. The variable formation



Fig. 5. Simulation of 600 robots moving from an initial formation to two successive goal formations for an assignment problem with variable scale
and translation. The left column shows the formations, while the right column additionally shows the robot paths to the next formation for the computed
assignments. (a) Initial formation of the robots in a rectangular grid. (b) Intermediate snapshot of the robots moving towards the UNCC goal formation.
(c) The robots at the UNCC goal formation. (d) Intermediate snapshot of the robots moving towards the second goal formation of ICRA. (e) The robots at
the ICRA goal formation.

parameters were scale α and translation d = (dx, dy)
⊤. The

asymptotic complexity of the algorithm does not depend on

the dimension of the parameter space, and is dominated by

the complexity of the Hungarian algorithm used to solve the

LSAP with the pseudo costs.

In environments with obstacles and narrow passages,

robots may need to change their formations to efficiently

pass through, as shown in [19]. Depending on the shape and

size of the narrow passages, the desired shape is selected

and a valid range of formation parameters is determined.

Fig. 6 illustrates such a scenario, where 200 robots initially

in cylindrical formation change to a spherical formation to

pass through an opening in the wall. The feasible range of

scales is decided by the aperture of the opening and the

range of the translation parameter is determined by feasible

locations for the goal formation. It took around 2 seconds to

solve the problem.

The supplemental video contains animated simulations of

both the above examples.



Fig. 6. A variable scale and translation example with 200 robots where the
robot formation changes to pass through the circular opening in the wall.
(Top) Initial cylindrical formation and desired spherical shape of the robot
formation. (Bottom) An intermediate formation, the goal formation, and
final location of the formation after passing through the circular opening.

VII. CONCLUSION

This paper presents algorithms to compute the optimal

assignments and formation parameters for a team of robots

from a given initial formation to a variable goal formation;

here variable formation means that the desired shape of the

formation is given, and its scale and location parameters

must be optimized. We used the sum of squared robot travel

distances as the objective function to be minimized. For the

case of n identical spherical robots separated by 2
√
2R at

their initial and goal positions, this objective ensures that the

trajectories are collision free. We showed that the assignment

with variable goal formation problem can be transformed to

a linear sum assignment problem, which can be solved using

the Hungarian algorithm. Thus using the presented approach,

the assignment problem with variable scale and translation

goal formations has the same O(n3) time complexity as the

assignment problem with fixed goal formations. Results from

simulations on 200 and 600 robots show the algorithm is

sufficiently fast for practical applications.

Our algorithm assumes that the environment is free of ob-

stacles. One future direction is to compute the valid ranges of

formation parameters in an environment with obstacles and

optimize over them. Extension of the current kinematic robot

model to dynamics models will also be explored. Future work

also includes characterizing the variable goal formation when

allowing rotation of the desired shape. Experiments on a team

of robots are also planned.
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