Background 0000 Proposed formulation

Illustrative example 0000000

Conclusions 0000

Optimal design of parallel manipulators based on their dynamic performance

Jagadeesh Kilaru Murali K. Karnam Saurav Agarwal Sandipan Bandyopadhyay

Department of Engineering Design Indian Institute of Technology Madras Chennai - 600 036

Background	
0000	
Objective	

Objectives

- Quantification of dynamic performance of a parallel manipulator
- ▶ Optimisation of dynamic performance, using the above

・ロ> < 団> < 豆> < 豆> < 豆> < 豆

Background ●000	Proposed formulation	
Objective		

Objectives

- Quantification of dynamic performance of a parallel manipulator
- ▶ Optimisation of dynamic performance, using the above

▲□▶ <□▶ < Ξ▶ < Ξ▶ < Ξ · のQ · ·</p>

Background	Proposed formulation	Illustrative example	Conclusions
Objective			0000

Better productivity

- ▶ Reduced mass of the manipulator
- Smaller actuators
- ▶ Reduced power requirements

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 めんゆ

Background o●oo	Proposed formulation	Illustrative example	Conclusions 0000
Objective			

- Better productivity
- ▶ Reduced mass of the manipulator
- Smaller actuators
- ▶ Reduced power requirements

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三目 - 釣�?

Background 0000	Proposed formulation	
Objective		

- Better productivity
- ▶ Reduced mass of the manipulator
- Smaller actuators
- ▶ Reduced power requirements

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 めんゆ

Background 0●00	Proposed formulation	
Objective		

- Better productivity
- ▶ Reduced mass of the manipulator
- Smaller actuators
- ▶ Reduced power requirements

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 めんゆ

Background	Illustrative example	
0000		
Objective		

- ▶ Generalised Inertia Ellipsoid (Asada *et al*, 1983)
- ▶ Dynamic manipulability (Yoshikawa *et al*, 1985)
- ▶ The concept of dynamic isotropy (Ma *et al*, 1990)
- ► The dynamic capability equations for non-homogeneous task space (Bowling *et al*, 2000)
- ▶ Dynamic performance indices for 3-DoF parallel manipulators (Gregorio *et al*, 2002)
- ▶ Dynamically optimal design considering anisotropic properties like input efforts/power and task space requirements (Zhao *et al*, 2013)

▲□▶▲□▶▲■▶▲■▶ ▲□▶ ▲□▶

Background	Illustrative example	
0000		
Objective		

- ▶ Generalised Inertia Ellipsoid (Asada *et al*, 1983)
- ▶ Dynamic manipulability (Yoshikawa *et al*, 1985)
- ▶ The concept of dynamic isotropy (Ma *et al*, 1990)
- ► The dynamic capability equations for non-homogeneous task space (Bowling *et al*, 2000)
- ▶ Dynamic performance indices for 3-DoF parallel manipulators (Gregorio *et al*, 2002)
- ▶ Dynamically optimal design considering anisotropic properties like input efforts/power and task space requirements (Zhao *et al*, 2013)

▲□▶▲□▶▲豆▶▲豆▶ ▲□▶

Background	Illustrative example	
0000		
Objective		

- ▶ Generalised Inertia Ellipsoid (Asada *et al*, 1983)
- ▶ Dynamic manipulability (Yoshikawa *et al*, 1985)
- ▶ The concept of dynamic isotropy (Ma *et al*, 1990)
- ► The dynamic capability equations for non-homogeneous task space (Bowling *et al*, 2000)
- ▶ Dynamic performance indices for 3-DoF parallel manipulators (Gregorio *et al*, 2002)
- ▶ Dynamically optimal design considering anisotropic properties like input efforts/power and task space requirements (Zhao *et al*, 2013)

▲□▶ ▲□▶ ▲ => ▲ => ● <</p>

Background	Illustrative example	
0000		
Objective		

- ▶ Generalised Inertia Ellipsoid (Asada *et al*, 1983)
- ▶ Dynamic manipulability (Yoshikawa *et al*, 1985)
- ▶ The concept of dynamic isotropy (Ma *et al*, 1990)
- ▶ The dynamic capability equations for non-homogeneous task space (Bowling *et al*, 2000)
- ▶ Dynamic performance indices for 3-DoF parallel manipulators (Gregorio *et al*, 2002)
- ▶ Dynamically optimal design considering anisotropic properties like input efforts/power and task space requirements (Zhao *et al*, 2013)

|▲□▶||4週▶||4厘▶||4厘▶|||厘||9000

Background	Illustrative example	
0000		
Objective		

- ▶ Generalised Inertia Ellipsoid (Asada *et al*, 1983)
- ▶ Dynamic manipulability (Yoshikawa *et al*, 1985)
- ▶ The concept of dynamic isotropy (Ma *et al*, 1990)
- ► The dynamic capability equations for non-homogeneous task space (Bowling *et al*, 2000)
- Dynamic performance indices for 3-DoF parallel manipulators (Gregorio *et al*, 2002)
- ▶ Dynamically optimal design considering anisotropic properties like input efforts/power and task space requirements (Zhao *et al*, 2013)

Background	Illustrative example	
0000		
Objective		

- ▶ Generalised Inertia Ellipsoid (Asada *et al*, 1983)
- ▶ Dynamic manipulability (Yoshikawa *et al*, 1985)
- ▶ The concept of dynamic isotropy (Ma *et al*, 1990)
- ► The dynamic capability equations for non-homogeneous task space (Bowling *et al*, 2000)
- ▶ Dynamic performance indices for 3-DoF parallel manipulators (Gregorio *et al*, 2002)
- Dynamically optimal design considering anisotropic properties like input efforts/power and task space requirements (Zhao *et al*, 2013)

Sandipan Bandyopadhyay, Department of Engineering Design, Indian Institute of Technology Madras. Optimal design of parallel manipulators based on their dynamic performance [IFToMM World Congress, 2015]

< /⊒ ► < ⊒ ►

SOC

Background		
0000		
Objective		

▶ Intrinsic vs. extrinsic

- Incorporating three disparate objects M, C, G
- ▶ Local vs. global: restriction to feasible regions
- ▶ Dimensional vs. non-dimensional indices
- ▶ Homogeneous vs. non-homogeneous task space
- Computational complexities
- ▶ Actaul vs. theoretical link model

Background		
0000		
Objective		

- ► Intrinsic vs. extrinsic
- Incorporating three disparate objects M, C, G
- ▶ Local vs. global: restriction to feasible regions
- ▶ Dimensional vs. non-dimensional indices
- ▶ Homogeneous vs. non-homogeneous task space
- Computational complexities
- ▶ Actaul vs. theoretical link model

・ロ> < 団> < 豆> < 豆> < 豆> < 豆

Background		
0000		
Objective		

- ▶ Intrinsic vs. extrinsic
- Incorporating three disparate objects M, C, G
- ▶ Local vs. global: restriction to feasible regions
- ▶ Dimensional vs. non-dimensional indices
- ▶ Homogeneous vs. non-homogeneous task space
- Computational complexities
- ▶ Actaul vs. theoretical link model

・ロ> < 団> < 豆> < 豆> < 豆> < 豆

Background		
0000		
Objective		

- ▶ Intrinsic vs. extrinsic
- Incorporating three disparate objects M, C, G
- ▶ Local vs. global: restriction to feasible regions
- Dimensional vs. non-dimensional indices
- ▶ Homogeneous vs. non-homogeneous task space
- Computational complexities
- ▶ Actaul vs. theoretical link model

・ロ> < 団> < 豆> < 豆> < 豆> < 豆

Background		
0000		
Objective		

- ▶ Intrinsic vs. extrinsic
- Incorporating three disparate objects M, C, G
- ▶ Local vs. global: restriction to feasible regions
- ▶ Dimensional vs. non-dimensional indices
- ▶ Homogeneous vs. non-homogeneous task space
- Computational complexities
- ▶ Actaul vs. theoretical link model

(ロ) (日) (日) (王) (王) (王) (100)

Background		
0000		
Objective		

- ▶ Intrinsic vs. extrinsic
- Incorporating three disparate objects M, C, G
- ▶ Local vs. global: restriction to feasible regions
- ▶ Dimensional vs. non-dimensional indices
- ▶ Homogeneous vs. non-homogeneous task space
- Computational complexities
- ▶ Actaul vs. theoretical link model

Background		
0000		
Objective		

- ▶ Intrinsic vs. extrinsic
- Incorporating three disparate objects M, C, G
- ▶ Local vs. global: restriction to feasible regions
- ▶ Dimensional vs. non-dimensional indices
- ▶ Homogeneous vs. non-homogeneous task space
- Computational complexities
- ▶ Actaul vs. theoretical link model

・ロ> < 団> < 豆> < 豆> < 豆> < 豆

	Proposed formulation	Conclusions
	•0000	
Proposed formulation		

New contributions:

- ▶ Combination of dimensional and non-dimensional indices
- ► Restriction to the safe working zone (SWZ): extension of local indices to global
- ▶ Intrinsic formulation motivated by physical intuitions, but validated empirically
- ▶ Applicable to non-homogeneous task space

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

	Proposed formulation	
	00000	
Proposed formulation		

New contributions:

- ▶ Combination of dimensional and non-dimensional indices
- Restriction to the safe working zone (SWZ): extension of local indices to global
- ▶ Intrinsic formulation motivated by physical intuitions, but validated empirically
- ▶ Applicable to non-homogeneous task space

・ロ> < 団> < 豆> < 豆> < 豆> < 豆

	Proposed formulation	
	00000	
Proposed formulation		

New contributions:

- ▶ Combination of dimensional and non-dimensional indices
- ► Restriction to the safe working zone (SWZ): extension of local indices to global
- Intrinsic formulation motivated by physical intuitions, but validated empirically
- ▶ Applicable to non-homogeneous task space

(ロ) (日) (日) (王) (王) (王) (100)

	Proposed formulation	Conclusions
	•0000	
Proposed formulation		

New contributions:

- ▶ Combination of dimensional and non-dimensional indices
- ► Restriction to the safe working zone (SWZ): extension of local indices to global
- ► Intrinsic formulation motivated by physical intuitions, but validated empirically
- ▶ Applicable to non-homogeneous task space

	Proposed formulation	Conclusions
	00000	
Proposed formulation		

► A particle of constant mass m, moving in Rⁿ, has the simplest possible *inertia matrix*:

$$M = mI_{n \times n}, \ m \in \mathbb{R}^+$$

- The n DoF are completely *decoupled*
- ▶ The inertia is identical in *all* directions, i.e., the inertia is *isotropic*
- If the m above is *small*, then the system responds fast

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 - のへで

	Proposed formulation	Conclusions
	00000	
Proposed formulation		

► A particle of constant mass m, moving in Rⁿ, has the simplest possible *inertia matrix*:

 $\boldsymbol{M} = m \boldsymbol{I}_{n \times n}, \ m \in \mathbb{R}^+$

• The n DoF are completely decoupled

- ▶ The inertia is identical in *all* directions, i.e., the inertia is *isotropic*
- If the m above is *small*, then the system responds fast

	Proposed formulation		
0000	00000	0000000	0000
Proposed formulation			

► A particle of constant mass m, moving in Rⁿ, has the simplest possible *inertia matrix*:

 $\boldsymbol{M} = m \boldsymbol{I}_{n \times n}, \ m \in \mathbb{R}^+$

- The n DoF are completely *decoupled*
- ▶ The inertia is identical in *all* directions, i.e., the inertia is *isotropic*
- If the m above is *small*, then the system responds fast

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

	Proposed formulation		
0000	00000	0000000	0000
Proposed formulation			

► A particle of constant mass m, moving in Rⁿ, has the simplest possible *inertia matrix*:

$$\boldsymbol{M} = m \boldsymbol{I}_{n \times n}, \ m \in \mathbb{R}^+$$

- The n DoF are completely *decoupled*
- ▶ The inertia is identical in *all* directions, i.e., the inertia is *isotropic*
- If the m above is *small*, then the system responds fast

	Proposed formulation	Conclusions
	00000	
Proposed formulation		

Local indices : intrinsic measures for n-DOF system

► Index µ₁ (dynamic isotropy index) is formulated to measure isotropy of mass matrix (M) as,

$$\mu_1(\boldsymbol{M}) = \frac{n^2}{\kappa(\boldsymbol{M})}, \quad 0 \le \mu_1(\boldsymbol{M}) \le 1$$

where, $\kappa(\boldsymbol{M}) = \left(\frac{1}{\lambda_1} + \dots + \frac{1}{\lambda_n}\right) (\lambda_1 + \dots + \lambda_n).$

• Index μ_2 (inertia index) is formulated to measure the maximum inertia using M as,

$$\mu_2(\boldsymbol{M}) = \max_i \{\lambda_i(\boldsymbol{M})\}, \ i = 1, \dots, n.$$

・ロ> < 団> < 豆> < 豆> < 豆> < 豆

	Proposed formulation	
	00000	
Proposed formulation		

Local indices : intrinsic measures for n-DOF system

► Index µ₁ (dynamic isotropy index) is formulated to measure isotropy of mass matrix (M) as,

$$\mu_1(\boldsymbol{M}) = \frac{n^2}{\kappa(\boldsymbol{M})}, \quad 0 \le \mu_1(\boldsymbol{M}) \le 1$$

where, $\kappa(\boldsymbol{M}) = \left(\frac{1}{\lambda_1} + \dots + \frac{1}{\lambda_n}\right) (\lambda_1 + \dots + \lambda_n).$

 Index µ₂ (inertia index) is formulated to measure the maximum inertia using *M* as,

$$\mu_2(\boldsymbol{M}) = \max_i \{\lambda_i(\boldsymbol{M})\}, \ i = 1, \dots, n.$$

▲□▶ ▲ □ ▶ ▲ □ ▶

Sac

	Proposed formulation	
	00000	
Proposed formulation		

Global indices : intrinsic measures for n-DoF system

Local indices are extended to global indices over a subset of the workspace, such as the SWZ:

► Global isotropy index:

$$\bar{\mu}_1(\boldsymbol{M}) = \frac{\int_V \mu_1(\boldsymbol{M}) dv}{\int_V dv}$$

▶ Global inertia index:

$$ar{\mu}_2(oldsymbol{M}) = \max_V(\mu_2(oldsymbol{M})) = \max_V\left(\max_i\{\lambda_i(oldsymbol{M})\}
ight)$$

A B > A B >

Sac

	Proposed formulation	
	00000	
Proposed formulation		

Global indices : intrinsic measures for n-DoF system

Local indices are extended to global indices over a subset of the workspace, such as the SWZ:

► Global isotropy index:

$$\bar{\mu}_1(\boldsymbol{M}) = \frac{\int_V \mu_1(\boldsymbol{M}) dv}{\int_V dv}$$

▶ Global inertia index:

$$ar{\mu}_2(oldsymbol{M}) = \max_V(\mu_2(oldsymbol{M})) = \max_V\left(\max_i\{\lambda_i(oldsymbol{M})\}
ight)$$

+ 3 + 4 3 +

Sac

Background	Proposed formulation	Illustrative example	
	00000		
Proposed formulation			

Formulation of the optimisation problem

$$\begin{array}{l} \text{Minimise} \begin{cases} f_1(\boldsymbol{x}) = -\bar{\mu}_1 \\ f_2(\boldsymbol{x}) = \bar{\mu}_2 \end{cases} \\ \text{subject to: } g_i(\boldsymbol{x}) \leq 0, \\ x_j \in [a_j, b_j], \quad j = 1, \dots, m. \end{cases}$$

- ▲口▶ ▲母▶ ▲臣▶ ▲臣▶ 三 のへで

ground Proposed formulation 00000 Illustrative example •000000 Conclusions 0000

Sar

3-RRR planar parallel manipulator (PPM)

3-RRR planar parallel manipulator (PPM)

Kinematic details of 3-<u>R</u>RR planar parallel manipulator (PPM)

Commercial prototype developed at Systemantics India Pvt. Ltd.

(日本)

		Illustrative example	
		000000	
3-RRR planar parallel ma	anipulator (PPM)		

Link modelling

◆□ ▶ <□ ▶ < Ξ ▶ < Ξ ▶ ○ 2 ○ ○ </p>

 Background
 Proposed formulation
 Illustrative example
 Conclusions

 0000
 0000
 0000
 0000

 3-RRR planar parallel manipulator (PPM)
 Conclusions
 0000

Results: Pareto front

Sandipan Bandyopadhyay, Department of Engineering Design, Indian Institute of Technology Madras. Optimal design of parallel manipulators based on their dynamic performance [IFToMM World Congress, 2015]

Sac

		Illustrative example	
		000000	
3-RRR planar parallel ma	anipulator (PPM)		

Comparison of designs from Pareto plot and existing design

Design	$\bar{\mu}_1$	$\bar{\mu}_2$	$\tau_p(\text{Nm})$	$ au_p(\mathrm{Nm})$
point		$(kg-m^2)$	u = 1 m/s	u = 1.5 m/s
a	0.58	0.12	8.30	19.08
b	0.78	0.17	9.20	19.92
с	0.84	0.43	12.33	27.74
Existing	0.48	1.19	16.48	37.67

Sandipan Bandyopadhyay, Department of Engineering Design, Indian Institute of Technology Madras.

< <p>I

▲ @ ▶ ▲ ■ ▶

- ∢ ⊒ ▶

Sac

Optimal design of parallel manipulators based on their dynamic performance [IFToMM World Congress, 2015]

 Background
 Proposed formulation
 Illustrative example
 Conclusions

 0000
 0000
 0000
 0000
 0000

 3-RRR planar parallel manipulator (PPM)
 Conclusions
 0000
 0000

Validation via inverse dynamic simulations

Sandipan Bandyopadhyay, Department of Engineering Design, Indian Institute of Technology Madras. Optimal design of parallel manipulators based on their dynamic performance [IFToMM World Congress, 2015]

Sac

		Illustrative example	
0000	00000	0000000	0000
3-RRR planar parallel ma	anipulator (PPM)		

Torque plots: u = 1.0 m/s

Background	Proposed formulation	Illustrative example	
0000	00000	000000●	
3-RRR planar parallel manipulator (PPM)			

Torque plots: u = 1.5 m/s

Background 0000	Proposed formulation	Conclusions •000
Conclusions		

Discussions: advantages

- Intrinsic indices are used for global enhancement of performance, which seem to agree with extrinsic results
- ▶ Dimensional inhomogenity is taken care of, to a large extent
- ▶ No further validation is required, as the analysis is confined to the SWZ

Sandipan Bandyopadhyay, Department of Engineering Design, Indian Institute of Technology Madras. Optimal design of parallel manipulators based on their dynamic performance [IFToMM World Congress, 2015]

Sar

∢ ⊒ ▶

Background 0000	Proposed formulation	Conclusions •000
Conclusions		

Discussions: advantages

- ▶ Intrinsic indices are used for global enhancement of performance, which seem to agree with extrinsic results
- Dimensional inhomogenity is taken care of, to a large extent
- ▶ No further validation is required, as the analysis is confined to the SWZ

Sandipan Bandyopadhyay, Department of Engineering Design, Indian Institute of Technology Madras. Optimal design of parallel manipulators based on their dynamic performance [IFToMM World Congress, 2015]

434434

Sar

Background	Proposed formulation	Conclusions
0000	00000	•000
Conclusions		

Discussions: advantages

- ▶ Intrinsic indices are used for global enhancement of performance, which seem to agree with extrinsic results
- ▶ Dimensional inhomogenity is taken care of, to a large extent
- No further validation is required, as the analysis is confined to the SWZ

Sandipan Bandyopadhyay, Department of Engineering Design, Indian Institute of Technology Madras. Optimal design of parallel manipulators based on their dynamic performance [IFToMM World Congress, 2015]

Sar

4 B b

Background 0000	Proposed formulation	$ \begin{array}{c} Conclusions \\ 0 \bullet 00 \end{array} $
Conclusions		

Discussions: disadvantages/limitations

Computationally intensive for large degree-of-freedom systems

- ▶ Considers only the inertia terms, and not the potential ones
- ▶ May suffer from dimensional inhomogenity, in cases where actuators are of mixed type

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 豆 りへで

Background 0000	Proposed formulation 00000	$ \begin{array}{c} {\rm Conclusions} \\ {\rm 0}{\scriptstyle \bullet}{\rm 00} \end{array} $
Conclusions		

Discussions: disadvantages/limitations

- Computationally intensive for large degree-of-freedom systems
- ▶ Considers only the inertia terms, and not the potential ones
- ► May suffer from dimensional inhomogenity, in cases where actuators are of mixed type

- • □ • • @ • • 至 • • 至 • 至 • の • @

Background 0000	Proposed formulation	Conclusions o●oo
Conclusions		

Discussions: disadvantages/limitations

- Computationally intensive for large degree-of-freedom systems
- ▶ Considers only the inertia terms, and not the potential ones
- ▶ May suffer from dimensional inhomogenity, in cases where actuators are of mixed type

Sandipan Bandyopadhyay, Department of Engineering Design, Indian Institute of Technology Madras. Optimal design of parallel manipulators based on their dynamic performance [IFToMM World Congress, 2015]

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ♪

Sar

Background 0000	Proposed formulation	Conclusions 0000
Conclusions		

Thank you for your attention!

Questions/comments?

Sandipan Bandyopadhyay, Department of Engineering Design, Indian Institute of Technology Madras. Optimal design of parallel manipulators based on their dynamic performance [IFToMM World Congress, 2015]

Sar

Background 0000	Proposed formulation	Conclusions 000●
Conclusions		

Sample results: design point a

Design	Existing	Design
	Design	point: a
l (mm)	500	307
$r (\mathrm{mm})$	500	500
a (mm)	150	136
b (mm)	1000	938
$\alpha_{mid} \ (deg)$	68	62

Sandipan Bandyopadhyay, Department of Engineering Design, Indian Institute of Technology Madras. Optimal design of parallel manipulators based on their dynamic performance [IFToMM World Congress, 2015]

(日) (同) (日) (日)

JAG.