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Abstract or the search for time-optimal motions for a single rob

([51,[34]). An example application is the coordination c

Sthe motions of large numbers of AGVs along specified pa:

with kinodynamic constraints along_specified pqths. T.he}n harbors and airports ([2]). We must satisfy kinemat
presented approach generates continuous velocity prOf'leéonstraints, such as avoiding collisions between robots i

that avoid collisions and minimize the_cpmpletlon time forWith moving obstacles, and dynamics constraints, such
the robots. The approach identifies collision segments alongeIOCity and acceleration bounds. on the robot motiol

eabcht rolbotstﬁa'th alrlm.d' then é)ptlm|ges fthe mot|onst Oth:eBy identifying the collision segments along a robot’s pa
robots along Iheir cotlision and ColliSION-Iree SEgMENS. FOr 5,y \yhen it can enter and exit its collision segments, '

each path segment for each robot, the minimum and maxi-

. . ) ) can combine the collision avoidance constraints for pairs
mum possible traversal times that satisfy the dynamics COMobots to formulate a mixed integer nonlinear programmi

strfaints are computed by solving the corresppr_lding m_'o'(MINLP) problem. Since the resulting nonconvex MINLI
point boundary value problems. Then the collision aVo'd'formulation is difficult to solve, we use two related mixe
ance constraints for pairs of robots can be combined to for-integer linear programming (MILP) formulations. tire-

mulate a mixed integer nonlinear programming (MINLP) proved instantaneouand setpointformulations, that pro-

tprobl;em. Slr;ce th: T\?’nCOTVte);Ml.NLg.rTOdeI II'S OIIffICLIItvide schedules that are lower and upper bounds on the ¢
0 Solve, we describe two related mixed Integer inear pro-,, | ¢4 ytion. We illustrate the approach using robots mc

gramming (MILP) formulations that provid_e schedules thateleol as double integrators, and demonstrate its applica
are lower and upper bognds on the optimum; the UPPEL, honholonomic car-like robots with dynamics constrain
bound schedule is a continuous velocity schedule. The ap-
proach is illustrated with robots modeled as double inte-1.1 Related Work
grators subject to velocity and acceleration constraints. An

implementation that coordinates 12 nonholonomic car-likeMultiple Robot Coordination: - The problem of motion
robots is described. planning for multiple robots is to have each robot mo

from its initial to its goal configuration, while avoiding col-
1 Introducti lisions with obstacles or other robots ([18]). This proble
ntroduction is highly underconstrained, and Hopcroft, Schwartz, a
Coordinating multiple robots with kinodynamic con- Sharir [12] showed that even a simplified two-dimensior
straints, i.e. simultaneous kinematic and dynamics concase of the problem is PSPACE-hard. Recent efforts h.
straints ([8]), in a shared workspace without collisions hadocused on probabilistic approaches. A potential field re
applications in manufacturing cells ([28]), AGV coordina- domized path planner was applied to multiple robot pla
tion in harbors and airports ([2]), and air traffic control Ning ([3]), and probabilistic roadmap planners have be
([24]). The general problem requires finding the trajectorydeveloped for multiple car-like robots ([38]) and manipul:
(path and velocity profile) of each robot such that a specitors ([30]).
fied objective, such as the task completion time, total time, A slightly more constrained version of the problem is ol
or energy consumption, of the system is minimized. tained when all but one of the robots have specified traj
We present here an approach to generate continuous vtories. This is the problem of planning a path and veloc
locity profiles for multiple robots with specified paths and for a single robot among moving obstacles ([27], [14]). 1
dynamics constraints so their motions are collision-free andplan the motions of multiple robots, Erdmann and Lozar
minimize the task completion time. This is in contrast Perez [9] assign priorities to robots and sequentially sea
to prior work that mostly addressed either the collision-for collision-free paths for the robots, in order of priority, i
free path or trajectory coordination of several robots with-the configuration-time space.
out considering dynamics constraints ([23],[20],[36],[1]), If the problem is further constrained so that the paths
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the robots are specified, one obtains a path coordination Initial Goal
problem. O’Donnell and Lozano-Perez [23] developed a a,
method for path coordination of two robots. LaValle and

Hutchinson [20] addressed a similar problem where each

robot was constrained to a specified configuration space by b3 a2 1
roadmap. The work most closely related to ours is that 2
of Simeon, Leroy, and Laumond [36]. They perform path Goal Initial

coordination for a very large number of car-like robots in

the plane, where robots with intersecting paths can be partfFigure 1: Example with two translating robots with two co
tioned into smaller sets. A more constrained version of thidiSion zones.

problem is the trajectory coordination problem where theso that the completion time of the set of robots is minimiz:
trajectory (path and velocity) of each robot is specified. Preand their motions are collision free and satisfy their dyna
vious work on trajectory coordination has focused almosics constraints. We assume that the start and goal config
exclusively on dual robot systems ([4], [7], [35]). Akella tions of each robot are collision-free, and that the specif
and Hutchinson [1] recently developed an MILP formula- paths for the robots are free of static obstacles. We furt
tion to coordinate large numbers of robots with specifiedassume that each robot moves forward along its path w
trajectories by changing only robot start times. out retracing its path.

Trajectory Planning: There is a large body of work on
the time optimal control of a single manipulator. Bobrow,
Dubowsky, and Gibson [5] and Shin and McKay [34] devel- Each robot4; is given a pathy;, which is a continuous
oped algorithms to generate the time-optimal velocity pro-mapping[0,1] — ¢/, LetS; = [0,1] denote the set
file of a manipulator along a specified path. Algorithms of parameter values; that place the robot along the pat
for minimum-time trajectory generation for a manipulator ;. Thecoordination spacéor n robots is defined a§ =
with dynamics and actuator constraints have also been de$; x Sz x --- x S,,. A feasible coordination is a schedul
veloped ([29], [33]). Trajectory planning directly inthe2  ¢(t) : Rt — Sinwhich s;,,;; = (0,0,...,0) andsgeq =
dimensional state space that considers both kinematic and, 1, ..., 1) and the robots do not collide. Note that the|
dynamic constraints is callddnodynamic planningDon- is a 1-to-1 mapping betweerand the path length.

ald et al. [8] developed a polynomial time approximation A collision pair CP;;(s;,s;), wheres;,s; € [0,1]
algorithm for kinodynamic planning for a single robot to is defined as a pair of configurationy; (s;),v;(s;))
generate near time-optimal trajectories. Fraichard [11] dewhere robotA; and robotA; collide, i.e., A;(v;(s:)) N

scribes a trajectory planner for a car-like robot with dy- 4;(v;(s;)) # 0. A collision segmentfor robot
namics constraints moving along a given path. Recen4; is a contiguous interval[sffaf’t,sfnd] over which
work on randomized kinodynamic planning includes the 4; collides with some Aj;. That is, Vs; €
use of rapidly exploring random trees ([21]) and probabilis-[sstart | send] Js; such thatd(v;(s;)) NA(y;(s;)) # 0.
tic roadmaps ([15]). An ordered pair of maximal contiguous interval
Air Traffic Control:  Conflict resolution among multiple  ([s5%er*, s¢n9] [s5tart s¢nd]) in the coordination spacé
aircraft in a shared airspace ([37], [32], [24]) is closely re-constitute acollision zoneCZ;; if and only if any point
lated to multiple robot coordination. Tomlin, Pappas, andin one interval results in a collision with at least on
Sastry [37] synthesized safe conflict resolution maneuverpoint in the other interval (Figure 1). That i¥s;, €
for two aircraft using speed and heading changes. Koseck@start s¢nd] Js; e [s5%97t s¢nd] such thatA(v;(s;)) N
et al. [16] use potential field planners to generate conflictA(V,(sj)) # 0, andVs; € [sitart send] Js; €
. ! J P 9 7
resolution maneuvers. Schouw_enaars etal. [3_2] developqg?mt’ s¢nd) such thatd (v (s;)) N A(v;(s;)) # 0.
an MILP formulation for fuel-optimal path planning of mul- . -
. ) : : : In Figure 1, the collision zones aff1, as), [bs, b4]), and
tiple vehicles by using a discretized system model. Pal- . : . o
: = . - (lag, a4], [b1,b2]). A maximal interval that is not within
lottino, Feron, and Bicchi [24] generate optimal conflict- L . .
N . : any collision zone is called eollision-free segmentEach
free paths to minimize the total flight time and solve cases ) : . .
robot’s path is decomposed into one or more collision st

when either instantaneous velocity changes or heading an- -
ments and collision-free segments.
gle changes are allowed.

2.2 Optimal Control Problem For A Single Robot

2 Problem Overview Consider a robotd moving along a path segment. Le
x(t) represent its statey(¢) be the controly be the path of

Given a set of: robots A4, . . ., A, with specified paths, A, J(x, u) be the objective function, angx) andg(u) be
the goal is to find the control inputs along the specified pathshe inequality constraints on the state variables and cont

2.1 Paths and Collision Zones
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respectively. Then the optimal control problem, to compute3.1 MILP Formulation
the minimum and maximum segment traversal time for the We now present a mixed integer linear programmi

robot subject to its dynamics and path constraints, can bﬁ\/IILP) formulation for the instantaneous model. L

written as: be the time when robot; begins moving along itsth seg-
ment andr;; be the traversal time faod; to pass through

Minimize J ; g
(e, ) segmentk. Let AT*™ and AT/** represent the mini-

subject to: mum and maximum traversal time fgt; between the start
x = f(x,u) point of segment and the start point of segmeht+ 1.
g(x) <0 For the instantaneous mod@77;'** = co. The minimum

time for A; to traverse a segment of lengsh. at its max-

a(u) <0 imum velocCity v; ymaz 1S AT = Sk /Vimaz. The com-
x(0) = Xstare pletion timeC,,,. for the set of robots is greater than ¢
X(AT) = Xena equal to the completion time of each robot. Consider rob
X €7 A; andA; with a shared collision zone whekeandh are

their respective collision segments. A sufficient conditic
The minimum time control problem ha&x,u) = AT, for collision avoidance is tha#l; and.A; are not simultane-
and the maximum time control problem hd¢x,u) =  ously in their shared collision zone. Thatig, > ;1)
—AT whereAT = [>T 1dt is the time to traverse the seg- (WhenA; exits segmenk beforeA; enters segmerit) or
ment. Feasible robot motions that give a minimum and di+ = tj(n+1) (When.A; exits segment before.A; enters
maximum of the objective over each segment are obtaine§é9ment). These disjunctive constraints are converted

by solving two TPBVPs (two-point boundary value prob- Standard form ([22]) by introducing;», & binary vari-
lems) for each segment. able that is 1 if robot4; goes first along itgth segment

and 0 if robotA4; goes first along it&ith segment, and/,
2.3 Coordinating Multiple Robots a large positive number. The resulting collision avoidan
Now consider the multiple robot system in which eachconstraints to ensure the two robots and.A; are not si-
robot has a specified path and dynamics constraints. Th@ultaneously in their shared collision zone are:
goal is to coordinate these robots to minimize a specified  tjn — titk+1) + M (L — dijkn) > 0
objective; in this paper it is the global completion time. The  tik — tj(n+1) + Mdijen =0
path of _ee_lch robot is decomposed into .COH.'S'On segm_ents The constraints for all robots are combined to form tl
and collision-free segments. The coordination of multiple. -
. . .~ “instantaneous MILP formulation:
robots can then be modeled as a mixed integer nonlinear
programming (MINLP) problem, with each robot satisfy-  Minimize C,,qz
ing the traversal time constraints and collision avoidance subject to:
constraints over each of its segments. Since this MINLP  C,,,... > t; 105t + Ti tast for i=1,...,n
problem with nonconvex constraints is difficult to solve, we ;.4 1y = ti. + 7
obtain schedules that provide a lower bound and an upper AT/ > 7, > ATV
pound on the optimal so!ution by solving two relatgd mixed  ¢;5 — t;1) + M (1 = 6ijen) >0
integer linear programming (MIL.P) problems. We |IIustrate_ tik — ti(ht1) + MOijen >0
this approach using the double integrator model from opti- ¢, > 0
mal control ([6]). dijen € {0,1}
This approach easily incorporates multiple moving ob-
stacles with known trajectories. Each moving obstacle is The collision avoidance constraints are conservative
treated like a robot with a known velocity profile whose col- Not allowing two robots to simultaneously be in their co

lision constraints are included in the MILP formulations. ~ lision zone, and in some cases lead to solutions that
not truly optimal. When a robot has overlapping collisic

3 Instantaneous Model zones w_ith more than one robot, we subdivide its overle
ping collision segments into several subsegments. Ther

We first consider a simplified model, thestantaneous Vant pairs of subdivided collision zones are used to genel

mode] where each robot moves only at its highest speedollision avoidance constraints.

Umaz, @Nd can instantaneously start or stop with infinite ac- The instantaneous model for multiple robot coordinatis

celeration. The discontinuous velocity schedule providedtan be viewed as jb shop scheduling problemwhich is

by the instantaneous model is a lower bound to the optimaNP-hard ([26]). By reduction, the instantaneous model 1

continuous velocity schedule. robot coordination is NP-hard.
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Figure 2: MinimumAT'. Case (a): Velocity reaches, ... Figure 3: MaximumAT. Case (a): Velocity can decreas
Case (b): Velocity cannot reaeh, ... to zero. Case (b): Velocity cannot decrease to zero.
4 Continuous Velocity Model (b) If  2mae—Yitars=Vons 5 g > [Weng=Verarel

We now consider generating a schedule with continuous
velocity profiles for the robots consistent with their max-
imum velocity and acceleration bounds. To find the min-
imum and maximum times taken by a robot to traverse a
segment, we solve two TPBVPs over the segment. We il-
lustrate this procedure using tleuble integratormodel
from classical optimal control ([6]).

ATmrL'n _ Umiddle — Ustart + Umiddle — Vend

am,ax amam

1 1
wherev,iddie = 5(21)2“1” + 202, +4Samas)?

2. MaximumAT (Figure 3):

4.1 Single Robot on a Segment (@) If S > Chtaretvona) = Amaz — o,
A single robot moving along a path segment can be mod- 2 3 2 2
. S . : 1 (VsrareHVena) 1 [(Veng=Vstars)]
eled as a double integrator with inequality constraints on (0) If g g Tends > § > g Pmeniants,

the control input (acceleration) and the velocity state vari-

able. The minimum time control of the double integrator

model is well known ([6]) and we have extended this to ob- ATmer = (etart =Umiddie) 4 (Vend—Vuniaare)
tain the maximum time control. Basically the solutions to wherev,,iqae = %(zvgtm+2vgnd_45amm)%
these TPBVPs have a bang-bang or bang-off-bang control

structure. LetS be the length of the segmemhT be the 4.2  Continuous Velocity MINLP Formulation
time taken to traverse the segment, angd,.; andv.,q be
the velocities at the segment endpoints. The minim\im
and maximumAT each have two different cases, depen

ing on whethelS is sufficiently long for the robot to reach thely |ntrodqcedqonllnear colnstralnts. we t.herer\lelrﬁlLf;
Umaz (2€r0) for the minimum (maximum) time case. Note mulate a mixed integer nonlinear programming (

02 2 . . . . model for generating a minimum time continuous velo
that if W > S, there is no feasible solution since g g

the distanea’s t hort f toasibl locit il ity schedule. We have the usual completion time and c
€ distance IS too short for a feasible velocily profiie. lision avoidance constraints. The traversal time constrai

Since the robot velocities are variables in the minimu
g-and maximum time control for a robot over a segme

1. Minimum AT (Figure 2): are more complicated. Lef yma, andvima. be the max-
) ) ) ) imum acceleration and velocity of robgt;. Let v, rep-
(@ If > ”m"*v_“ng;ﬁ”mam_”ﬂ"d, resent the velocity of robotd; at the start of segment

k. Let AT" and AT}** be the minimum and maxi-
mum traversal times for robafl; along segment. Let

. 2 _ .2 2 .2
AT™in — _ (V7hae —Y5tart TVmaz —Vend) + S . X

2amaz Umaz Vmaz AT;}’;:{’(AT_{,’;:?) and AT{,’;}Q"(AI;’,’;‘?) represent the two

4 Umae=Vstart | Vmae=Vend possible minimum (maximum) values (Section 4.1). TI

Amax Amax
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binary variablesy;;; 1 andy;x 2 (zix,1 andz;; ) depend on  long for each robot to go from zero tg,,, and vice versa.
whether or not the values of;, andv;;.4.1) permitthe robot  (This assumption can be relaxed as discussed in [25].)
to reachv; . (zero) inS;, and are used to select the fea-

sible value of AT} (AT/;**). The MINLP formulation 1. Lower bound MILP: A lower bound for the MINLP

for the optimal continuous velocity schedule is:

Minimize C.,qx
subject to:

Cmaz > ti,last + Tilast
Lik+1) =ik + Tie
AT > 7y > AT
tin — tigey1) + M(1 = Gijkn) > 0
tik — tjhe1) + MOijkn > 0

tip >0

dijkh € {0,1}

Sy > (Uz'z(k+1) - vizk)

fori=1,...,n

> —Sik
2ai,maz

problem can clearly be obtained by solving the MIL
for the instantaneous model with infinite acceleratia
We obtain a tighter lower bound by formulating iam
proved instantaneous modbht considers the acceler
ation and deceleration time over the first and last st
ments for each robot. The minimum traversal timi
for the first and last segments are thAd™" =
S/Vmaz + Vmaz/20maz- Solving the resulting MILP
gives a lower bound for the MINLP problem.

. Upper bound MILP: The MINLP is transformed int

an MILP problem by setting the velocities at the en
points of each segment (except the initial and goal \

(V7 maz = Vi + U maz — Vigea1) locities) to the maximum feasible velocity. Solvin

Sik — 20 — Myir1 <0 this setpoint MILP problem (see next section) gives
1,Max . . . . .
(v? — 2 02 2 ) feasible continuous velocity schedule, which is ther
vz,m(m: Uik vz,mam vz(k+1)
Sik — 5 + Myik2 >0 fore an upper bound for the MINLP problem.
Qi mazx

; S; (Uimax - 1)'2]6 + ’Ui2,max - U’2(k+1)) .

AT = —— — T — : 5 Setpoint Model
Uz,mam az,mamvz,maz

Vimaz — Vi v;, — Vi(ht1 i .
imaz 7 Yik | Timar 7 Fi(k+1) The setpoint modeis used to generate a continuous vi

(wmin "y iy ) locity schedule. Since any .ContiHUOL.JS velocity sqhedule
AT — middle,ik — “tk) | \Tmiddle ik — 7i(k+1) an upper bound on the optimal continuous velocity sche
ule, the setpoint model is guaranteed to provide an up
bound on the MINLP problem. Here each robot’s veloci
is set to its maximum feasible velocity at its collision zon:
endpoints, thereby biasing the robots to move through tr
collision zones in the shortest possible time. Setting the®

+

_ai,max ai,mam

i mazx i . mazx

. 1
(vmiiaie.in)” = 1(2%21@ + 203,41y + 4Sik i maz)
ATH™ = yiny - AT + yin,2 - AT
Yik,1 + Yik,2 :21 Yik 1, Yik,2 € {0,1}
Vik t Vikg1)

(Six — ) = Mz, <0 locity v, of each robot at the endpoints of its segments
) 20, max Vi maz transforms the MINLP formulation to an MILP for-
(Six — Vi t ”i(k+1)) 4 Mzips >0 mulation withAT™" and AT™%* as follows:
1k 1k,2 —

2a1’,mam
mar __
A ikl — O

S . . .
ATmar _ (vik — V7 idae ir.) T (Vitk+1) — Umiddie,ik) AT — ) Vrnas if interior segment
k2 Qi maz @i maz pmax 4 5 fffirst or last segment

. mazx 2 22 2 s
(Umiddle,ik) - Z(Quzk + 2Ui(k+1) - 4SZkaz,ma;r)
AT = s - TR + 22 - AT g it
Zik1 + Zike =1 zig1,zik2 € {0,1} N 0 if 5 > Jmes

— L »

Vi,max Z Uik > 0

2imas 2R =mas 9P i ¢ o Vi

Amazx Amazx

Vi initial = Vi,goal = 0
This MINLP problem has very difficult nonconvex con- 5.1 MILP Formulation

straints. Existing optimization techniques to solve MINLPs The MILP formulation for the setpoint model is identice
either require convexity or are not guaranteed to find théo the formulation for the improved instantaneous mod
optimal solution for large problem sizes. Hence we solveand differs only in theAT™%* parameter values. Wher
two MILPs that differ only in theitA7™4* values to obtain  the segment traversal timg, generated by the MILP does
good lower and upper bounds on the optimal solution; thenot correspond to either a minimum time or maximum tin
bounds have been very close in our experiments. Assumieajectory over the segment, we have a simple algorithn
for simplicity that the first and last segments are sufficientlygenerate a feasible velocity profile for the double integrat
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6 Car-like Mobile Robots 6.3 Coordinating Multiple Car-like Robots

We now illustrate our coordination approach on nonholo- Cons!der asingle car-like r_oboF moving along a path St
nomic car-like robots with dynamics constraints. Paths thafent W_'th z andv re_presentlng Its F’OS'“Q” and velocit,
satisfy the nonholonomic constraints (Laumond [19]) typ- respectively. The optimal control problem is:
ically require the robot to stop when there is a discontinu- AT
ity in curvature (to change the steering direction) or when ~ Minor Max AT = / ldt
there is a cusp point (to reverse the robot motion direction). ) 0
Therefore we use simple continuous curvature paths for a subject to:

forward moving robot (Scheuer and Fraichard [31]). £\ _ (01 x 0
o )= Lo o )lw )t )e®
6.1 Car-like Robot Model )= 0

The configuration of a robot is given iy, y, 6, k) where _ _
(z,y) represgents the robot refere%ce pct)gi%\tyat the)midpoint of v(0) = vstare V(AT) = Ven
the rear axled is the robot orientation, anelis the signed 0 <v < varax(2)
path curvaturev is the robot velocity at its reference point.  —ain(z,v) <a(t) < aprax(z,v)

We model a car-like robot of mass moving on a plane
with a friction coefficientu as subject to the following dy- Whe€reévaaz(z) = min (“mawv \/%) —aumin(T,v) =
namics constraints (Fraichard [11]): max(Fmin _\/m), and  apzae(z,v) =

m

min(F"T;l‘”' AV 1H2g? — k2v*). This TPBVP is difficult to
solve because of the complex constraints on the state

(a) Acceleration constraints due to the engine forcecontrol variables.

z(0) =-S5 z(AT

1. Tangential acceleration constraints:

Fare: foin < g < Fmaz, The minimum steering radius constraimt,;, >
(b) Sliding constraints to prevent slipping are: 02,00/ 1292 — (Fma2)2 makes vares(2), anrin(z,v),

—V12g? — K2t <a < \/pPg? — k204 and aprq.(z,v) state independent constants. Therefc

. . the double integrator formulation of Section 4.1 appli
Thus the (state dependent) acceleration constraints arg; the car-like robots above. Given a set ofcar-like

Frin 242 2,4 . g .
az maX(F e =V iPg? — kPvt) and robotsAy,, ..., A, with specified SCC paths that satisfy th
a < min(Fzes, \/u2g? — k2ot). above minimum steering radius constraints, we can g

erate collision-free continuous velocity profiles along tt
specified paths that minimize the completion time using t
MILP formulations described earlier.

2. Velocity constraints: In addition to the magnitude con-
straints) < v < Vpaq, 10 ensure that?g? — k2v* > 0

we have the constraint ﬁ <v<, /ﬁ.

Thus the (state dependent) velocity constraints are: 7 Implementation

0 <v < min (Umaﬂm ) We have implemented software in C++ to coordina
the motions of polyhedral robots with specified paths (Fi
6.2 Paths ure 4). We compute the collision zones using the PQP ¢

The specified paths are chosen todimple continuous ”Si_?n dtlatecltion pacﬁagi (Ijarse?] e\tNaI. [17]) by iaml\allill
curvature path§SCC paths) (Scheuer and Fraichard [31]). UNfformly along each robot's path. We generate the

Each path i€>2 continuous, so the path has continuous curformulations from the collision zones and solve them usi

vature and no cusps. Since the robot can follow the patilnhe AMPL [10] and CPLEX [13] optimization packages

without having to stop or reverse direction, we assume th(,§'nce the setpoint formulation with its tighter constrain

robot moves forward monotonically along its path. The cur-' solyed much faster thgn t_he |mprc_)ved Instantaneous
vaturer of a path is upper bounded by,,.,, that is, the mulation, we use the objective function value from the s
axry H

steering radius > 1/ There is an upper !ooint solution as an upper bound constraintinthe?mpr_o\,
bound gn the t?mg d’gﬁi;lative ({f gLLJarf/aturle PPEr ihstantaneous formulation. See Table 1 for running tim

iy 9 9 94w (Faee\2 whi measured on a Sun Ultra 60. The problem complexity
We additionally assumg“g® — xv® > (“5a2)*, which pends primarily on the number of collision zones, and

is true for typical values of the variables. This constramt_a lesser extent on the number of robots. For a particulz

can be expressed as a minimum steering radius constralah_ﬁcuIt problem (for example, the radial case with a bo

Pmin = U?n,a,.’l:/\/ p2g? — (%)2 during path generation. tleneck at the center) or for a sufficiently large number

This also implies that the maximum robot velocitywjs,.. - collision zones, the MILP time dominates the running tim
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(b)

Figure 4: Overhead view of example paths for 12 robots

Num. | Num. of | Collision | MILP-S || MILP-I
of collision | detection time time
robots zones | time (secs)| (secs) (secs)
5 13 18.67 0.04 0
8 42 55.67 0.13 0.08
10 71 88.26 0.53 0.17
12 82 115.81 0.61 0.25
8radial 29 30.53 3.87 0.095
12radial 86 70.53 160 60.67
12scc 154 65.62 12 1.167

Table 1. Sample run times for setpoint formulation (MILF
S) and improved instantaneous formulation (MILP-I). (Tt
MILP-I formulation used the MILP-S solutions as uppe
bounds.) Collision checks were performed at 200 poil
along each path. AMPL presolve times are not included.

stantaneous model and setpoint model solutions, and de
oping heuristic algorithms for closing the gap is importar
Extending the approach to systems with more complex
namics, including aircraft and articulated robots, appe:
to be an attainable next step. Another interesting direct
is online coordination of multiple robots using sensor es
mates of robot positions and velocities.
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