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Abstract

This paper focuses on the coordination of multiple robots
with kinodynamic constraints along specified paths. The
presented approach generates continuous velocity profiles
that avoid collisions and minimize the completion time for
the robots. The approach identifies collision segments along
each robot’s path and then optimizes the motions of the
robots along their collision and collision-free segments. For
each path segment for each robot, the minimum and maxi-
mum possible traversal times that satisfy the dynamics con-
straints are computed by solving the corresponding two-
point boundary value problems. Then the collision avoid-
ance constraints for pairs of robots can be combined to for-
mulate a mixed integer nonlinear programming (MINLP)
problem. Since this nonconvex MINLP model is difficult
to solve, we describe two related mixed integer linear pro-
gramming (MILP) formulations that provide schedules that
are lower and upper bounds on the optimum; the upper
bound schedule is a continuous velocity schedule. The ap-
proach is illustrated with robots modeled as double inte-
grators subject to velocity and acceleration constraints. An
implementation that coordinates 12 nonholonomic car-like
robots is described.

1 Introduction

Coordinating multiple robots with kinodynamic con-
straints, i.e. simultaneous kinematic and dynamics con-
straints ([8]), in a shared workspace without collisions has
applications in manufacturing cells ([28]), AGV coordina-
tion in harbors and airports ([2]), and air traffic control
([24]). The general problem requires finding the trajectory
(path and velocity profile) of each robot such that a speci-
fied objective, such as the task completion time, total time,
or energy consumption, of the system is minimized.

We present here an approach to generate continuous ve-
locity profiles for multiple robots with specified paths and
dynamics constraints so their motions are collision-free and
minimize the task completion time. This is in contrast
to prior work that mostly addressed either the collision-
free path or trajectory coordination of several robots with-
out considering dynamics constraints ([23],[20],[36],[1]),

or the search for time-optimal motions for a single robot
([5],[34]). An example application is the coordination of
the motions of large numbers of AGVs along specified paths
in harbors and airports ([2]). We must satisfy kinematic
constraints, such as avoiding collisions between robots and
with moving obstacles, and dynamics constraints, such as
velocity and acceleration bounds, on the robot motions.
By identifying the collision segments along a robot’s path
and when it can enter and exit its collision segments, we
can combine the collision avoidance constraints for pairs of
robots to formulate a mixed integer nonlinear programming
(MINLP) problem. Since the resulting nonconvex MINLP
formulation is difficult to solve, we use two related mixed
integer linear programming (MILP) formulations, theim-
proved instantaneousand setpointformulations, that pro-
vide schedules that are lower and upper bounds on the opti-
mal solution. We illustrate the approach using robots mod-
eled as double integrators, and demonstrate its application
to nonholonomic car-like robots with dynamics constraints.

1.1 Related Work

Multiple Robot Coordination: The problem of motion
planning for multiple robots is to have each robot move
from its initial to its goal configuration, while avoiding col-
lisions with obstacles or other robots ([18]). This problem
is highly underconstrained, and Hopcroft, Schwartz, and
Sharir [12] showed that even a simplified two-dimensional
case of the problem is PSPACE-hard. Recent efforts have
focused on probabilistic approaches. A potential field ran-
domized path planner was applied to multiple robot plan-
ning ([3]), and probabilistic roadmap planners have been
developed for multiple car-like robots ([38]) and manipula-
tors ([30]).

A slightly more constrained version of the problem is ob-
tained when all but one of the robots have specified trajec-
tories. This is the problem of planning a path and velocity
for a single robot among moving obstacles ([27], [14]). To
plan the motions of multiple robots, Erdmann and Lozano-
Perez [9] assign priorities to robots and sequentially search
for collision-free paths for the robots, in order of priority, in
the configuration-time space.

If the problem is further constrained so that the paths of
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the robots are specified, one obtains a path coordination
problem. O’Donnell and Lozano-Perez [23] developed a
method for path coordination of two robots. LaValle and
Hutchinson [20] addressed a similar problem where each
robot was constrained to a specified configuration space
roadmap. The work most closely related to ours is that
of Simeon, Leroy, and Laumond [36]. They perform path
coordination for a very large number of car-like robots in
the plane, where robots with intersecting paths can be parti-
tioned into smaller sets. A more constrained version of this
problem is the trajectory coordination problem where the
trajectory (path and velocity) of each robot is specified. Pre-
vious work on trajectory coordination has focused almost
exclusively on dual robot systems ([4], [7], [35]). Akella
and Hutchinson [1] recently developed an MILP formula-
tion to coordinate large numbers of robots with specified
trajectories by changing only robot start times.
Trajectory Planning: There is a large body of work on
the time optimal control of a single manipulator. Bobrow,
Dubowsky, and Gibson [5] and Shin and McKay [34] devel-
oped algorithms to generate the time-optimal velocity pro-
file of a manipulator along a specified path. Algorithms
for minimum-time trajectory generation for a manipulator
with dynamics and actuator constraints have also been de-
veloped ([29], [33]). Trajectory planning directly in the 2n-
dimensional state space that considers both kinematic and
dynamic constraints is calledkinodynamic planning. Don-
ald et al. [8] developed a polynomial time approximation
algorithm for kinodynamic planning for a single robot to
generate near time-optimal trajectories. Fraichard [11] de-
scribes a trajectory planner for a car-like robot with dy-
namics constraints moving along a given path. Recent
work on randomized kinodynamic planning includes the
use of rapidly exploring random trees ([21]) and probabilis-
tic roadmaps ([15]).
Air Traffic Control: Conflict resolution among multiple
aircraft in a shared airspace ([37], [32], [24]) is closely re-
lated to multiple robot coordination. Tomlin, Pappas, and
Sastry [37] synthesized safe conflict resolution maneuvers
for two aircraft using speed and heading changes. Kosecka
et al. [16] use potential field planners to generate conflict
resolution maneuvers. Schouwenaars et al. [32] developed
an MILP formulation for fuel-optimal path planning of mul-
tiple vehicles by using a discretized system model. Pal-
lottino, Feron, and Bicchi [24] generate optimal conflict-
free paths to minimize the total flight time and solve cases
when either instantaneous velocity changes or heading an-
gle changes are allowed.

2 Problem Overview

Given a set ofn robotsA1, . . . ,An with specified paths,
the goal is to find the control inputs along the specified paths
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Figure 1: Example with two translating robots with two col-
lision zones.

so that the completion time of the set of robots is minimized
and their motions are collision free and satisfy their dynam-
ics constraints. We assume that the start and goal configura-
tions of each robot are collision-free, and that the specified
paths for the robots are free of static obstacles. We further
assume that each robot moves forward along its path with-
out retracing its path.

2.1 Paths and Collision Zones

Each robotAi is given a pathγi, which is a continuous
mapping[0, 1] → Cfreei . Let Si = [0, 1] denote the set
of parameter valuessi that place the robot along the path
γi. Thecoordination spacefor n robots is defined asS =
S1 × S2 × · · · × Sn. A feasible coordination is a schedule
ψ(t) : R+ → S in which sinit = (0, 0, . . . , 0) andsgoal =
(1, 1, . . . , 1) and the robots do not collide. Note that there
is a 1-to-1 mapping betweens and the path length.

A collision pair CPij(si, sj), where si, sj ∈ [0, 1]
is defined as a pair of configurations(γi(si), γj(sj))
where robotAi and robotAj collide, i.e.,Ai(γi(si)) ∩
Aj(γj(sj)) 6= ∅. A collision segmentfor robot
Ai is a contiguous interval[sstarti , sendi ] over which
Ai collides with some Aj . That is, ∀si ∈
[sstarti , sendi ],∃sj such thatA(γi(si)) ∩ A(γj(sj)) 6= ∅.

An ordered pair of maximal contiguous intervals
([sstarti , sendi ], [sstartj , sendj ]) in the coordination spaceS
constitute acollision zoneCZij if and only if any point
in one interval results in a collision with at least one
point in the other interval (Figure 1). That is,∀si ∈
[sstarti , sendi ],∃sj ∈ [sstartj , sendj ] such thatA(γi(si)) ∩
A(γj(sj)) 6= ∅, and ∀sj ∈ [sstartj , sendj ],∃si ∈
[sstarti , sendi ] such thatA(γi(si)) ∩ A(γj(sj)) 6= ∅.

In Figure 1, the collision zones are([a1, a2], [b3, b4]), and
([a3, a4], [b1, b2]). A maximal interval that is not within
any collision zone is called acollision-free segment. Each
robot’s path is decomposed into one or more collision seg-
ments and collision-free segments.

2.2 Optimal Control Problem For A Single Robot

Consider a robotA moving along a path segment. Let
x(t) represent its state,u(t) be the control,γ be the path of
A, J(x,u) be the objective function, andg(x) andq(u) be
the inequality constraints on the state variables and controls
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respectively. Then the optimal control problem, to compute
the minimum and maximum segment traversal time for the
robot subject to its dynamics and path constraints, can be
written as:

Minimize J(x,u)
subject to:

ẋ = f(x,u)
g(x) ≤ 0
q(u) ≤ 0
x(0) = xstart

x(∆T ) = xend
x ∈ γ

The minimum time control problem hasJ(x,u) = ∆T ,
and the maximum time control problem hasJ(x,u) =
−∆T where∆T =

∫∆T

0
1dt is the time to traverse the seg-

ment. Feasible robot motions that give a minimum and a
maximum of the objective over each segment are obtained
by solving two TPBVPs (two-point boundary value prob-
lems) for each segment.

2.3 Coordinating Multiple Robots

Now consider the multiple robot system in which each
robot has a specified path and dynamics constraints. The
goal is to coordinate these robots to minimize a specified
objective; in this paper it is the global completion time. The
path of each robot is decomposed into collision segments
and collision-free segments. The coordination of multiple
robots can then be modeled as a mixed integer nonlinear
programming (MINLP) problem, with each robot satisfy-
ing the traversal time constraints and collision avoidance
constraints over each of its segments. Since this MINLP
problem with nonconvex constraints is difficult to solve, we
obtain schedules that provide a lower bound and an upper
bound on the optimal solution by solving two related mixed
integer linear programming (MILP) problems. We illustrate
this approach using the double integrator model from opti-
mal control ([6]).

This approach easily incorporates multiple moving ob-
stacles with known trajectories. Each moving obstacle is
treated like a robot with a known velocity profile whose col-
lision constraints are included in the MILP formulations.

3 Instantaneous Model

We first consider a simplified model, theinstantaneous
model, where each robot moves only at its highest speed
vmax, and can instantaneously start or stop with infinite ac-
celeration. The discontinuous velocity schedule provided
by the instantaneous model is a lower bound to the optimal
continuous velocity schedule.

3.1 MILP Formulation

We now present a mixed integer linear programming
(MILP) formulation for the instantaneous model. Lettik
be the time when robotAi begins moving along itskth seg-
ment andτik be the traversal time forAi to pass through
segmentk. Let ∆Tminik and ∆Tmaxik represent the mini-
mum and maximum traversal time forAi between the start
point of segmentk and the start point of segmentk + 1.
For the instantaneous model,∆Tmaxik =∞. The minimum
time forAi to traverse a segment of lengthSik at its max-
imum velocityvi,max is ∆Tminik = Sik/vi,max. The com-
pletion timeCmax for the set of robots is greater than or
equal to the completion time of each robot. Consider robots
Ai andAj with a shared collision zone wherek andh are
their respective collision segments. A sufficient condition
for collision avoidance is thatAi andAj are not simultane-
ously in their shared collision zone. That is,tjh ≥ ti(k+1)

(whenAi exits segmentk beforeAj enters segmenth) or
tik ≥ tj(h+1) (whenAj exits segmenth beforeAi enters
segmentk). These disjunctive constraints are converted to
standard form ([22]) by introducingδijkh, a binary vari-
able that is 1 if robotAi goes first along itskth segment
and 0 if robotAj goes first along itshth segment, andM ,
a large positive number. The resulting collision avoidance
constraints to ensure the two robotsAi andAj are not si-
multaneously in their shared collision zone are:

tjh − ti(k+1) +M(1− δijkh) ≥ 0
tik − tj(h+1) +Mδijkh ≥ 0

The constraints for all robots are combined to form the
instantaneous MILP formulation:

MinimizeCmax
subject to:
Cmax ≥ ti,last + τi,last for i = 1, . . . , n
ti(k+1) = tik + τik
∆Tmaxik ≥ τik ≥ ∆Tminik

tjh − ti(k+1) +M(1− δijkh) ≥ 0
tik − tj(h+1) +Mδijkh ≥ 0
tik ≥ 0
δijkh ∈ {0, 1}

The collision avoidance constraints are conservative in
not allowing two robots to simultaneously be in their col-
lision zone, and in some cases lead to solutions that are
not truly optimal. When a robot has overlapping collision
zones with more than one robot, we subdivide its overlap-
ping collision segments into several subsegments. The rele-
vant pairs of subdivided collision zones are used to generate
collision avoidance constraints.

The instantaneous model for multiple robot coordination
can be viewed as ajob shop scheduling problem, which is
NP-hard ([26]). By reduction, the instantaneous model for
robot coordination is NP-hard.
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Figure 2: Minimum∆T . Case (a): Velocity reachesvmax.
Case (b): Velocity cannot reachvmax.

4 Continuous Velocity Model

We now consider generating a schedule with continuous
velocity profiles for the robots consistent with their max-
imum velocity and acceleration bounds. To find the min-
imum and maximum times taken by a robot to traverse a
segment, we solve two TPBVPs over the segment. We il-
lustrate this procedure using thedouble integratormodel
from classical optimal control ([6]).

4.1 Single Robot on a Segment
A single robot moving along a path segment can be mod-

eled as a double integrator with inequality constraints on
the control input (acceleration) and the velocity state vari-
able. The minimum time control of the double integrator
model is well known ([6]) and we have extended this to ob-
tain the maximum time control. Basically the solutions to
these TPBVPs have a bang-bang or bang-off-bang control
structure. LetS be the length of the segment,∆T be the
time taken to traverse the segment, andvstart andvend be
the velocities at the segment endpoints. The minimum∆T
and maximum∆T each have two different cases, depend-
ing on whetherS is sufficiently long for the robot to reach
vmax (zero) for the minimum (maximum) time case. Note

that if |v
2
end−v

2
start|

2amax
> S, there is no feasible solution since

the distance is too short for a feasible velocity profile.

1. Minimum∆T (Figure 2):

(a) If S ≥ v2
max−v

2
start+v

2
max−v

2
end

2amax
,

∆Tmin = − (v2
max−v

2
start+v

2
max−v

2
end)

2amax·vmax + S
vmax

+vmax−vstart
amax

+ vmax−vend
amax

startv

endv

maxv

t

v

(a)

startv

endv

maxv

t

v
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Figure 3: Maximum∆T . Case (a): Velocity can decrease
to zero. Case (b): Velocity cannot decrease to zero.

(b) If 2v2
max−v

2
start−v

2
end

2amax
> S ≥ |v

2
end−v

2
start|

2amax
,

∆Tmin =
vmiddle − vstart

amax
+
vmiddle − vend

amax

wherevmiddle = 1
2 (2v2

start + 2v2
end + 4Samax)

1
2

2. Maximum∆T (Figure 3):

(a) If S ≥ (v2
start+v

2
end)

2amax
, ∆Tmax =∞.

(b) If 1
2

(v2
start+v

2
end)

amax
> S ≥ 1

2
|(v2

end−v
2
start)|

amax
,

∆Tmax = (vstart−vmiddle)
amax

+ (vend−vmiddle)
amax

wherevmiddle = 1
2 (2v2

start+2v2
end−4Samax)

1
2

4.2 Continuous Velocity MINLP Formulation

Since the robot velocities are variables in the minimum
and maximum time control for a robot over a segment,
they introduce nonlinear constraints. We therefore for-
mulate a mixed integer nonlinear programming (MINLP)
model for generating a minimum time continuous veloc-
ity schedule. We have the usual completion time and col-
lision avoidance constraints. The traversal time constraints
are more complicated. Letai,max andvi,max be the max-
imum acceleration and velocity of robotAi. Let vik rep-
resent the velocity of robotAi at the start of segment
k. Let ∆Tminik and ∆Tmaxik be the minimum and maxi-
mum traversal times for robotAi along segmentk. Let
∆Tminik,1 (∆Tmaxik,1 ) and∆Tminik,2 (∆Tmaxik,2 ) represent the two
possible minimum (maximum) values (Section 4.1). The
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binary variablesyik,1 andyik,2 (zik,1 andzik,2) depend on
whether or not the values ofvik andvi(k+1) permit the robot
to reachvi,max (zero) inSik and are used to select the fea-
sible value of∆Tminik (∆Tmaxik ). The MINLP formulation
for the optimal continuous velocity schedule is:

MinimizeCmax
subject to:
Cmax ≥ ti,last + τi,last for i = 1, . . . , n
ti(k+1) = tik + τik
∆Tmaxik ≥ τik ≥ ∆Tminik

tjh − ti(k+1) +M(1− δijkh) ≥ 0
tik − tj(h+1) +Mδijkh ≥ 0
tik ≥ 0
δijkh ∈ {0, 1}

Sik ≥
(v2
i(k+1) − v

2
ik)

2ai,max
≥ −Sik

Sik −
(v2
i,max − v2

ik + v2
i,max − v2

i(k+1))

2ai,max
−Myik,1 ≤ 0

Sik −
(v2
i,max − v2

ik + v2
i,max − v2

i(k+1))

2ai,max
+Myik,2 ≥ 0

∆Tminik,1 =
Sik
vi,max

−
(v2
i,max − v2

ik + v2
i,max − v2

i(k+1))

2ai,maxvi,max
+
vi,max − vik
ai,max

+
vi,max − vi(k+1)

ai,max

∆Tminik,2 =
(vminmiddle,ik − vik)

ai,max
+

(vminmiddle,ik − vi(k+1))
ai,max

(vminmiddle,ik)2 =
1
4

(2v2
ik + 2v2

i(k+1) + 4Sikai,max)

∆Tminik = yik,1 ·∆Tminik,1 + yik,2 ·∆Tminik,2

yik,1 + yik,2 = 1 yik,1, yik,2 ∈ {0, 1}

(Sik −
v2
ik + v2

i(k+1)

2ai,max
)−Mzik,1 ≤ 0

(Sik −
v2
ik + v2

i(k+1)

2ai,max
) +Mzik,2 ≥ 0

∆Tmaxik,1 =∞

∆Tmaxik,2 =
(vik − vmaxmiddle,ik)

ai,max
+

(vi(k+1) − vmaxmiddle,ik)
ai,max

(vmaxmiddle,ik)2 =
1
4

(2v2
ik + 2v2

i(k+1) − 4Sikai,max)

∆Tmaxik = zik,1 ·∆Tmaxik,1 + zik,2 ·∆Tmaxik,2

zik,1 + zik,2 = 1 zik,1, zik,2 ∈ {0, 1}
vi,max ≥ vik ≥ 0
vi,initial = vi,goal = 0

This MINLP problem has very difficult nonconvex con-
straints. Existing optimization techniques to solve MINLPs
either require convexity or are not guaranteed to find the
optimal solution for large problem sizes. Hence we solve
two MILPs that differ only in their∆Tmax values to obtain
good lower and upper bounds on the optimal solution; the
bounds have been very close in our experiments. Assume
for simplicity that the first and last segments are sufficiently

long for each robot to go from zero tovmax and vice versa.
(This assumption can be relaxed as discussed in [25].)

1. Lower bound MILP: A lower bound for the MINLP
problem can clearly be obtained by solving the MILP
for the instantaneous model with infinite acceleration.
We obtain a tighter lower bound by formulating anim-
proved instantaneous modelthat considers the acceler-
ation and deceleration time over the first and last seg-
ments for each robot. The minimum traversal times
for the first and last segments are then∆Tmin =
S/vmax + vmax/2amax. Solving the resulting MILP
gives a lower bound for the MINLP problem.

2. Upper bound MILP: The MINLP is transformed into
an MILP problem by setting the velocities at the end-
points of each segment (except the initial and goal ve-
locities) to the maximum feasible velocity. Solving
this setpoint MILP problem (see next section) gives a
feasible continuous velocity schedule, which is there-
fore an upper bound for the MINLP problem.

5 Setpoint Model

Thesetpoint modelis used to generate a continuous ve-
locity schedule. Since any continuous velocity schedule is
an upper bound on the optimal continuous velocity sched-
ule, the setpoint model is guaranteed to provide an upper
bound on the MINLP problem. Here each robot’s velocity
is set to its maximum feasible velocity at its collision zones
endpoints, thereby biasing the robots to move through their
collision zones in the shortest possible time. Setting the ve-
locity vik of each robot at the endpoints of its segments to
vi,max transforms the MINLP formulation to an MILP for-
mulation with∆Tmin and∆Tmax as follows:

∆Tmin =
{ S

vmax
if interior segment

vmax
2amax

+ S
vmax

if first or last segment

∆Tmax =

 ∞ if S ≥ v2
max

amax
2vmax−2(v2

max−amaxS)
1
2

amax
if S < v2

max

amax

5.1 MILP Formulation

The MILP formulation for the setpoint model is identical
to the formulation for the improved instantaneous model,
and differs only in the∆Tmax parameter values. When
the segment traversal timeτik generated by the MILP does
not correspond to either a minimum time or maximum time
trajectory over the segment, we have a simple algorithm to
generate a feasible velocity profile for the double integrator.
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6 Car-like Mobile Robots

We now illustrate our coordination approach on nonholo-
nomic car-like robots with dynamics constraints. Paths that
satisfy the nonholonomic constraints (Laumond [19]) typ-
ically require the robot to stop when there is a discontinu-
ity in curvature (to change the steering direction) or when
there is a cusp point (to reverse the robot motion direction).
Therefore we use simple continuous curvature paths for a
forward moving robot (Scheuer and Fraichard [31]).

6.1 Car-like Robot Model

The configuration of a robot is given by(x, y, θ, κ) where
(x, y) represents the robot reference point at the midpoint of
the rear axle,θ is the robot orientation, andκ is the signed
path curvature.v is the robot velocity at its reference point.

We model a car-like robot of massm moving on a plane
with a friction coefficientµ as subject to the following dy-
namics constraints (Fraichard [11]):

1. Tangential acceleration constraints:

(a) Acceleration constraints due to the engine force
F are: Fminm ≤ a ≤ Fmax

m .

(b) Sliding constraints to prevent slipping are:
−
√
µ2g2 − κ2v4 ≤ a ≤

√
µ2g2 − κ2v4.

Thus the (state dependent) acceleration constraints are:
a ≥ max(Fminm ,−

√
µ2g2 − κ2v4) and

a ≤ min(Fmaxm ,
√
µ2g2 − κ2v4).

2. Velocity constraints: In addition to the magnitude con-
straints0 ≤ v ≤ vmax, to ensure thatµ2g2−κ2v4 ≥ 0
we have the constraint−

√
µg
|κ| ≤ v ≤

√
µg
|κ| .

Thus the (state dependent) velocity constraints are:

0 ≤ v ≤ min
(
vmax,

√
µg
|κ|

)
.

6.2 Paths

The specified paths are chosen to besimple continuous
curvature paths(SCC paths) (Scheuer and Fraichard [31]).
Each path isC2 continuous, so the path has continuous cur-
vature and no cusps. Since the robot can follow the path
without having to stop or reverse direction, we assume the
robot moves forward monotonically along its path. The cur-
vatureκ of a path is upper bounded byκmax, that is, the
steering radiusρ ≥ ρmin = 1/κmax. There is an upper
bound on the time derivative of curvature,κ̇.

We additionally assumeµ2g2 − κ2v4 ≥ (Fmaxm )2, which
is true for typical values of the variables. This constraint
can be expressed as a minimum steering radius constraint

ρmin ≥ v2
max/

√
µ2g2 − (Fmaxm )2 during path generation.

This also implies that the maximum robot velocity isvmax.

6.3 Coordinating Multiple Car-like Robots
Consider a single car-like robot moving along a path seg-

ment with x and v representing its position and velocity
respectively. The optimal control problem is:

Min or Max ∆T =
∫ ∆T

0

1dt

subject to:(
ẋ
v̇

)
=
(

0 1
0 0

)(
x
v

)
+
(

0
1

)
a(t)

x(0) = −S x(∆T ) = 0
v(0) = vstart v(∆T ) = vend

0 ≤v ≤ vMax(x)
−aMin(x, v) ≤a(t) ≤ aMax(x, v)

where vMax(x) = min
(
vmax,

√
µg
|κ|

)
, −aMin(x, v) =

max(Fminm ,−
√
µ2g2 − κ2v4), and aMax(x, v) =

min(Fmaxm ,
√
µ2g2 − κ2v4). This TPBVP is difficult to

solve because of the complex constraints on the state and
control variables.

The minimum steering radius constraintρmin ≥
v2
max/

√
µ2g2 − (Fmaxm )2 makes vMax(x), aMin(x, v),

and aMax(x, v) state independent constants. Therefore
the double integrator formulation of Section 4.1 applies
to the car-like robots above. Given a set ofn car-like
robotsA1, . . . ,An with specified SCC paths that satisfy the
above minimum steering radius constraints, we can gen-
erate collision-free continuous velocity profiles along the
specified paths that minimize the completion time using the
MILP formulations described earlier.

7 Implementation

We have implemented software in C++ to coordinate
the motions of polyhedral robots with specified paths (Fig-
ure 4). We compute the collision zones using the PQP col-
lision detection package (Larsen et al. [17]) by sampling
uniformly along each robot’s path. We generate the MILP
formulations from the collision zones and solve them using
the AMPL [10] and CPLEX [13] optimization packages.
Since the setpoint formulation with its tighter constraints
is solved much faster than the improved instantaneous for-
mulation, we use the objective function value from the set-
point solution as an upper bound constraint in the improved
instantaneous formulation. See Table 1 for running times
measured on a Sun Ultra 60. The problem complexity de-
pends primarily on the number of collision zones, and to
a lesser extent on the number of robots. For a particularly
difficult problem (for example, the radial case with a bot-
tleneck at the center) or for a sufficiently large number of
collision zones, the MILP time dominates the running time.
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(a)

(b)

Figure 4: Overhead view of example paths for 12 robots:
(a) Radial paths, with a bottleneck at the center (b) Simple
continuous curvature paths. Goal configurations are indi-
cated by solid polyhedra.

In our experiments, an optimal solution, indicated by
a zero gap between the objective function values com-
puted by the improved instantaneous and setpoint formu-
lations, was found in almost all cases; the maximum gap
observed was 8.84%. Example animations can be seen at
www.cs.rpi.edu/˜sakella/multikino/ .

8 Conclusion

By combining techniques from optimal control and math-
ematical programming, we developed an MINLP formula-
tion for minimum time collision-free coordination of mul-
tiple robots with kinodynamic constraints along specified
paths. We then developed two related MILP formulations
that give upper and lower bounds on the optimal solution.
Although the MILP formulations for coordination of multi-
ple robots are NP-hard, the availability of efficient collision
detection software and integer programming solvers makes
this approach practical for reasonable problem sizes.

There are several directions for future work. We have
recently developed formulations for coordination of robots
where each robot can move along a set of possible paths,
and are investigating their computational feasibility. Ana-
lytically characterizing the gap between the improved in-

Num. Num. of Collision MILP-S MILP-I
of collision detection time time

robots zones time (secs) (secs) (secs)

5 13 18.67 0.04 0
8 42 55.67 0.13 0.08
10 71 88.26 0.53 0.17
12 82 115.81 0.61 0.25

8radial 29 30.53 3.87 0.095
12radial 86 70.53 160 60.67
12scc 154 65.62 12 1.167

Table 1: Sample run times for setpoint formulation (MILP-
S) and improved instantaneous formulation (MILP-I). (The
MILP-I formulation used the MILP-S solutions as upper
bounds.) Collision checks were performed at 200 points
along each path. AMPL presolve times are not included.

stantaneous model and setpoint model solutions, and devel-
oping heuristic algorithms for closing the gap is important.
Extending the approach to systems with more complex dy-
namics, including aircraft and articulated robots, appears
to be an attainable next step. Another interesting direction
is online coordination of multiple robots using sensor esti-
mates of robot positions and velocities.
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