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Abstract

This paper focuses on the collision-free coordination of multi-
ple robots with kinodynamic constraints along specified paths. We
present an approach to generate continuous velocity profiles for mul-
tiple robots; these velocity profiles satisfy the dynamics constraints,
avoid collisions, and minimize the completion time. The approach,
which combines techniques from optimal control and mathemati-
cal programming, consists of identifying collision segments along
each robot’s path, and then optimizing the robots’ velocities along
the collision and collision-free segments. First, for each path seg-
ment for each robot, the minimum and maximum possible traversal
times that satisfy the dynamics constraints are computed by solving
the corresponding two-point boundary value problems. The collision
avoidance constraints for pairs of robots can then be combined to for-
mulate a mixed integer nonlinear programming (MINLP) problem.
Since this nonconvex MINLP model is difficult to solve, we describe
two related mixed integer linear programming (MILP) formulations,
which provide schedules that give lower and upper bounds on the
optimum; the upper bound schedule is designed to provide continu-
ous velocity trajectories that are feasible. The approach is illustrated
with coordination of multiple robots, modeled as double integrators
subject to velocity and acceleration constraints. An application to
coordination of nonholonomic car-like robots is described, along
with implementation results for 12 robots.

KEY WORDS—multiple robots, collision-free coordination,
dynamics, mixed integer program

1. Introduction

Coordinating multiple robots with kinodynamic constraints
(i.e., simultaneous kinematic and dynamics constraints) in a
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shared workspace without collisions has applications in man-
ufacturing cells (Rizzi, Gowdy, and Hollis 2001), automated
guided vehicle (AGV) coordination in harbors and airports
(Alami et al. 1998), and air traffic control (Bicchi and Pallot-
tino 2000). The general problem requires finding a trajectory
(path and velocity profile) for each robot such that the speci-
fied objective, such as the task completion time, total time, or
energy consumption, of the system is minimized. Optimiza-
tion of the robot motions is especially important when the task
is executed repeatedly or resources must be conserved.

This paper deals with the optimal coordination of multi-
ple robots moving with kinodynamic constraints along spec-
ified paths. While previous work in robotics mostly ad-
dressed either the collision-free path coordination problem
of several robots without considering dynamics constraints
(O’Donnell and Lozano-Perez 1989; LaValle and Hutchinson
1998; Simeon, Leroy, and Laumond 2002), or the search for
time-optimal motions for a single robot (Bobrow, Dubowsky,
and Gibson 1985; Shin and McKay 1985), the contribution
of this paper is an approach to generate continuous velocity
profiles that satisfy the dynamics constraints, avoid collisions
between robots, and minimize the task completion time. An
example application is the coordination of AGVs along fixed
paths in harbors and airports. The robot motions must sat-
isfy kinematic constraints, such as avoiding collisions with
other robots and with moving obstacles, and dynamics con-
straints, such as velocity and acceleration bounds. Our basic
approach is to simultaneously tackle the problem of gener-
ating individual robot trajectories that satisfy the dynamics
constraints, and the problem of generating optimal coordina-
tion schedules that satisfy the collision avoidance constraints.
By identifying the collision segments along a robot’s path,
we combine the disjunctive collision avoidance constraints
for pairs of robots to formulate a mixed integer nonlinear pro-
gramming (MINLP) problem. Since the resulting nonconvex
MINLP formulation is difficult to solve, we use two related
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mixed integer linear programming (MILP) formulations. The
“improved instantaneous model” provides a lower bound on
the optimal solution, and the “setpoint model” provides a con-
tinuous velocity schedule that is both feasible and an upper
bound on the optimal continuous velocity trajectories. In this
paper, we illustrate the approach using robots modeled as dou-
ble integrators subject to velocity and acceleration constraints,
and we discuss an application to a system of car-like robots.
Portions of this work were previously presented in Peng and
Akella (2003a, 2003b).

The approach described here represents a step towards
solving the challenging problem of coordinating multiple
robots without specified paths. This approach can be com-
bined with probabilistic techniques, which can generate paths
(Švestka and Overmars 1998; Sanchez and Latombe 2002) or
trajectories (LaValle and Kuffner 2001; Hsu et al. 2001) for
the set of robots, to then optimize robot motions along those
paths subject to dynamics constraints.

2. Related Work

There are two main bodies of related work in robotics, which
partially overlap. One focuses on the coordination of multi-
ple robots, typically without considering robot dynamics. The
other focuses on trajectory optimization for a single robot
while considering robot dynamics. Additionally, there has
been recent work in coordinating air vehicles with simplified
dynamics models.

2.1. Multiple Robot Coordination

Motion planning for multiple robots requires moving each
robot from its initial to its goal configuration, while avoid-
ing collisions with static obstacles or with other robots
(Latombe 1991). This problem is highly underconstrained,
and Hopcroft, Schwartz, and Sharir (1984) have shown that
even a simplified two-dimensional case of the problem is
PSPACE-hard. Recent efforts have focused on reducing the
dimension of the configuration space by grouping robots
(Aronov et al. 1999) or using probabilistic approaches. A
potential field randomized path planner was applied to mul-
tiple robot planning (Barraquand, Langlois, and Latombe
1992), and probabilistic roadmap planners have been de-
veloped for coordinating multiple car-like robots (Švestka
and Overmars 1998) and multiple manipulators (Sanchez
and Latombe 2002). However, these do not consider robot
dynamics.

A slightly more constrained version of the problem is ob-
tained when all but one of the robots have specified trajec-
tories. This is the problem of planning a path and velocity
for a single robot among moving obstacles (Kant and Zucker
1986; Reif and Sharir 1994). Erdmann and Lozano-Perez
(1987) obtain a heuristic solution for planning the motions
of multiple robots by assigning priorities to robots and se-

quentially searching for collision-free paths for the robots in
the configuration-time space, with previous robots treated as
moving obstacles. Buckley (1989) presented a fast motion
planner for multiple translating robots in the plane that pri-
oritizes robots based on whether they can travel in a straight
line to the goal. Parsons and Canny (1990) describe a cell de-
composition based path planning algorithm for coordinating
translating robots in the plane. Fujimura and Samet (1989)
perform path planning for a robot in the presence of moving
obstacles using the configuration space–time. They assume a
translating robot with velocity and acceleration bounds, and
use a hierarchical octree representation of the space. Fior-
ini and Shiller (1993, 1998) have developed an approach that
computes velocity obstacles to perform trajectory planning of
a single robot among multiple moving obstacles with known
linear trajectories. They have also considered optimization
of the generated trajectories (Fiorini and Shiller 1996).
Shiller, Large, and Sekhavat (2001) have generalized the ba-
sic approach to deal with obstacles moving along arbitrary
trajectories.

If the problem is further constrained so that the paths of
the robots are specified, one obtains a path coordination prob-
lem. O’Donnell and Lozano-Perez (1989) developed a co-
ordination diagram representation for path coordination of
two robots. LaValle and Hutchinson (1998) addressed a sim-
ilar problem where each robot was constrained to a specified
configuration space roadmap. Ghrist and Koditschek (2002)
designed controllers for coordination of AGVs constrained to
motion on graphs, based on an analysis of the configuration
space of two robots on a Y-graph. Simeon, Leroy, and Lau-
mond (2002) performed path coordination for a very large
number of car-like robots, in part by exploiting the cylindri-
cal structure of the coordination diagram and in part by par-
titioning robots with shared collision zones into smaller sets.
Trajectory coordination is a closely related problem where
the trajectory (path and velocity) of each robot is specified.
Akella and Hutchinson (2002) recently developed an MILP
formulation for the trajectory coordination of large numbers
of robots by changing robot start times. Our work here extends
these problem classes by additionally considering dynamics
constraints and generating continuous velocity profiles.

2.2. Time-optimal Trajectory Planning

There is a large body of work on the time-optimal control of
a single manipulator, going back to the early work of Kahn
and Roth (1971). Bobrow, Dubowsky, and Gibson (1985) and
Shin and McKay (1985) developed algorithms to generate the
time-optimal velocity profile of a manipulator moving along
a specified path. Subsequently, Pfeiffer and Johanni (1987),
Slotine and Yang (1989), and Shiller and Lu (1992) refined
these algorithms. Lamiraux and Laumond (1998) extended
these methods to generate velocity profiles for a car-like robot
with constraints on the robot velocity magnitude.
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Trajectory planning directly in the 2n-dimensional state
space that considers both kinematic and dynamics constraints
is called “kinodynamic planning”. Sahar and Hollerbach
(1986), and later Shiller and Dubowsky (1991) developed al-
gorithms for global near minimum-time trajectory generation
(path and velocity) for a manipulator with dynamics and actu-
ator constraints using grid-based search spaces. O’Dunlaing
(1987) presented a polynomial-time algorithm for planning
the motion of a particle moving in one dimension while sub-
ject to bounded acceleration constraints. Canny, Rege, and
Reif (1991) developed an exact exponential-time algorithm
for the time-optimal motion of a point robot, with velocity
and acceleration bounds, in two dimensions. Donald et al.
(1993) developed a polynomial-time approximation algo-
rithm to generate near time-optimal trajectories that satisfy
kinematic and dynamic constraints for a single point mass
robot. Heinzinger et al. (1990) developed an approximation al-
gorithm for time-optimal trajectory planning of an open-chain
manipulator, using graph search in the discretized state space.
Donald and Xavier (1995a) presented an improved algorithm
for robots with decoupled dynamics bounds, and extended this
work to robots with coupled dynamics bounds such as open-
chain manipulators (Donald and Xavier 1995b). Reif and
Wang (1997) developed approximation algorithms that use
nonuniform grid decompositions for kinodynamic planning.
Fraichard (1999) described a trajectory planner for a car-like
robot with dynamics constraints moving along a given path
among moving obstacles. Recent work has focused on ran-
domized kinodynamic planning, including the use of rapidly
exploring random trees (RRTs) (Lavalle and Kuffner 2001)
and probabilistic roadmaps (Hsu et al. 2001). These random-
ization approaches are capable of generating collision-free
trajectories for multiple robots. For example, Frazzoli (2003)
has recently applied randomization techniques to trajectory
planning and coordination of a small number of spacecraft.
However, these do not explicitly provide a method to optimize
the coordination of the robots, a gap which the present work
addresses.

2.3. Multiple Robot Coordination with Dynamics

Previous work on coordination of robots with dynamics has
focused almost exclusively on dual robot systems (Shin and
Bien 1989; Chang, Chung, and Bien 1990; Bien and Lee 1992;
Chang, Chung, and Lee 1994). Lee and Lee (1987) consid-
ered the effects of delays and velocity changes on motion
time. Freund and Hoyer (1988) implemented a hierarchical
control scheme to modify trajectories of multiple robots to
avoid collisions, using a specified right-of-way prioritization
for the robots. Shin and Zheng (1992) showed that, for a two-
robot system, generating time-optimal trajectories for each
robot independently and then delaying the start time of one
of the robots leads to a minimal finish time under certain
assumptions.

The RRT approach (LaValle and Kuffner 2001) is capable
of generating collision-free trajectories for multiple robots.
However, it does not explicitly provide a method to opti-
mize the coordination of the robots. Zefran, Desai, and Kumar
(1997) consider the planning and control of multiple cooper-
ating manipulators. In recent work, Pledgie et al. (2002) per-
form trajectory planning and control of groups of unmanned
vehicles that are differentially flat systems. Hao et al. (2003)
present a framework for planning and control of formations
of three unmanned ground vehicles.

2.4. Air Traffic Control

Conflict resolution among multiple aircraft in a shared
airspace is closely related to multiple robot coordination.
Tomlin, Pappas, and Sastry (1998) synthesized provably safe
conflict resolution maneuvers for two aircraft using speed and
heading changes. Kosecka et al. (1997) used potential field
planners to generate conflict resolution maneuvers. Bicchi
and Pallottino (2000) modeled aircraft with constant veloc-
ity and curvature bounds and generated minimum total time
collision-free paths using given waypoints for three aircraft.
Frazzoli et al. (2001) formulated the planar multi-aircraft con-
flict resolution problem as a nonconvex quadratic program
with quadratic constraints. They used semidefinite program-
ming to find the lower bound on the optimum and random-
ization to find a feasible solution. Richards et al. (2001) used
an MILP formulation to plan fuel-optimal paths for multi-
ple spacecraft that avoid plume impingement from thrusters.
They used a discretized model of the spacecraft dynamics.
Schouwenaars et al. (2001) used a discretized system model to
develop an MILP formulation for fuel-optimal path planning
of multiple vehicles, including moving obstacles. Pallottino,
Feron, and Bicchi (2002) generated conflict-free paths to min-
imize the total flight time for cases when either instantaneous
velocity changes or heading angle changes are allowed.

3. Problem Overview

Given a set ofn robotsA1, . . . ,An with specified paths, the
goal is to find the control inputs along the specified paths so
that the dynamics constraints of the robots are satisfied, their
motions are collision-free, and the completion time of the set
of robots is minimized. We assume that the start and goal con-
figurations of each robot are collision-free. This assumption
guarantees the existence of a solution since a feasible schedule
is for one robot at a time to move along its path, for some ar-
bitrary sequencing of the robots. The only assumptions about
the specified paths are that they are free of static obstacles,
and can be traversed by the robots without violating kinematic
constraints. We further assume that each robot moves forward
along its path without retracing its path.



298 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2005

3.1. Paths and Collision Zones

Each robotAi is given a pathγi , which is a continuous map-
ping[0,1] → Cf reei . LetSi = [0,1] denote the set of parame-
ter valuessi that place the robot along the pathγi . The “coordi-
nation space” forn robots is defined asS = S1×S2×· · ·×Sn.
A feasible coordination is a scheduleψ(t) : [0,∞) → S in
which sinit = (0,0, . . . ,0) andsgoal = (1,1, . . . ,1) and the
robots do not collide. Note that there is a one-to-one mapping
betweens and the path length.

A “collision pair” CP ij (si, sj ), wheresi andsj ∈ [0,1], is
defined as a pair of configurations(γi(si), γj (sj ))where robot
Ai and robotAj collide (i.e., IntAi (γi(si))∩ IntAj (γj (sj )) �=
∅). A “collision segment” for robotAi is a contiguous in-
terval [sstart

i
, send

i
] over which Ai collides with someAj .

That is, ∀si ∈ [sstart
i

, send
i

], ∃sj such that IntAi (γi(si)) ∩
IntAj (γj (sj )) �= ∅.

An ordered pair of maximal contiguous intervals
([sstart

i
, send

i
], [sstart

j
, send

j
]) in the coordination spaceS con-

stitute a “collision zone”CZ ij if and only if any point in one
interval results in a collision with at least one point in the
other interval (Figure 1). That is,∀si ∈ [sstart

i
, send

i
], ∃sj ∈

[sstart
j

, send
j

] such that IntAi (γi(si)) ∩ IntAj (γj (sj )) �= ∅, and
∀sj ∈ [sstart

j
, send

j
], ∃si ∈ [sstart

i
, send

i
] such that IntAi (γi(si))∩

IntAj (γj (sj )) �= ∅. In Figure 1, the collision zones are
([a1, a2], [b3, b4]), and([a3, a4], [b1, b2]). A maximal interval
that is not within any collision zone is called a “collision-free
segment”. Each robot’s path is decomposed into one or more
collision segments and collision-free segments.

We compute collision segments for pairs of robots, and
then subdivide any overlapping collision segments so that
each subdivided segment corresponds to a set of potentially
colliding robots over its entire length. We also ensure that the
order in which the robots traverse the subsegments does not
change over the original (undivided) segments, since chang-
ing the order will result in collisions. For example, if robot
A2 goes beforeA3 in the first subsegment, thenA2 must go
beforeA3 in all subsegments that make up their undivided
collision zone.

3.2. Optimal Control Problem For A Single Robot

For a single robotA moving along a path segment, letq rep-
resent the configuration, letx(t) represent the state, letu(t)
be the control, letγ be the path of the robot in configuration
space, letJ (x,u) be the objective function, and letc(x,u)
represent the inequality constraints on the state variables and
controls. To determine when to speed up and slow down each
robot as it moves along its specified path, we must first com-
pute their fastest and slowest possible motions along each path
segment. Thus, the optimal control problem, to compute the
minimum and maximum times taken by the robot to traverse
the segment subject to its dynamics and path constraints, can
be written as

Minimize J (x,u)

subject to:

ẋ = f(x,u)

c(x,u) ≤ 0 (1)

x(0) = xstart
x(�T ) = xend

q ∈ γ.
The minimum time control problem hasJ (x,u) =∫ �T

0
1 dt = �T , and the maximum time control problem

hasJ (x,u) = −�T where�T is the time to traverse the
segment. Feasible robot motions that give a minimum and a
maximum of the objective over each segment are obtained by
solving two two-point boundary value problems (TPBVPs)
for each segment.

3.3. Coordination of Multiple Robots

Now we consider the multiple robot system in which each
robot has a specified path and dynamics constraints. The goal
is to coordinate these robots to minimize a specified objective;
in this paper it is the global completion time. The path of each
robot is decomposed into collision segments and collision-
free segments. The coordination of multiple robots can then
be modeled as an MINLP problem, with each robot satisfy-
ing the traversal time and collision avoidance constraints over
each of its segments. Since this MINLP problem with non-
convex constraints is difficult to solve, we obtain schedules
that provide a lower bound and an upper bound on the optimal
solution by solving two related MILP problems. We illustrate
this approach using the double integrator model from optimal
control (Bryson and Ho 1975).

4. Instantaneous Model

We first consider a simplified model where each robot always
moves using its highest speedvmax , and is permitted to instan-
taneously change its velocity. That is, each robot has infinite
acceleration, and can instantaneously accelerate tovmax or in-
stantaneously decelerate to zero velocity fromvmax . We will
refer to this as the “instantaneous model”, since it provides a
schedule with instantaneous starts and stops.

4.1. Mixed Integer Linear Programming Formulation

We now present an MILP formulation for the instantaneous
model. Lettik be the time when robotAi begins moving along
its kth segment and letτik be the traversal time forAi to
pass through segmentk. Let�T min

ik
and�T max

ik
represent the

minimum and maximum traversal times forAi between the
start point of segmentk and the start point of segmentk + 1,
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Fig. 1. Coordination example with two translating robots having two collision zones.

giving the “traversal time constraints”�T max
ik

≥ τik ≥ �T min
ik

.
For the instantaneous model,�T max

ik
= ∞. The minimum

time forAi to traverse a segment of lengthSik at its maximum
velocity vi,max is�T min

ik
= Sik/vi,max . The motion completion

timeCmax for the set of robots is greater than or equal to the
completion time of each robot, leading to the “completion
time constraint”Cmax ≥ ti,last + τi,last for each robotAi .

Consider robotsAi andAj with a shared collision zone
wherek andh are their respective collision segments. A suf-
ficient condition for collision avoidance is thatAi andAj

are not simultaneously in their shared collision zone. That is,
tjh ≥ ti(k+1) (whenAi exits segmentk beforeAj enters seg-
menth) or tik ≥ tj (h+1) (whenAj exits segmenth beforeAi

enters segmentk). These disjunctive constraints are converted
to standard conjunctive form (Nemhauser and Wolsey 1988)
by introducingδijkh, a binary variable that is 1 if robotAi goes
first along itskth segment and 0 if robotAj goes first along
its hth segment, andM, a sufficiently large positive number.
The resulting “collision avoidance constraints” to ensure the
two robotsAi andAj are not simultaneously in their shared
collision zone are

tjh − ti(k+1) +M(1 − δijkh) ≥ 0
tik − tj (h+1) +Mδijkh ≥ 0.

The traversal time, completion time, and collision avoid-
ance constraints for all robots are combined to form the in-
stantaneous MILP formulation:

MinimizeCmax
subject to:
Cmax ≥ ti,last + τi,last for i = 1, . . . , n
tik ≥ 0
ti(k+1) = tik + τik
�T max

ik
≥ τik ≥ �T min

ik

tjh − ti(k+1) +M(1 − δijkh) ≥ 0
tik − tj (h+1) +Mδijkh ≥ 0
δijkh ∈ {0,1}.

(2)

A solution to this MILP provides the completion timeCmax ,
the start timestik and traversal timesτik for each robot along

each segment, and the precedence order of the robots through
the collision zones, specified by theδijkh variables. The colli-
sion avoidance constraints in the above model are conservative
in requiring that two robots should not simultaneously be in
their shared collision zone, and can lead to solutions that are
not truly optimal.

The coordination of multiple robots under the instanta-
neous model can be viewed as a “job shop scheduling prob-
lem” (JSP). Each “job”, composed of several operations, is
a robot’s motion along its path. Each “operation” is the mo-
tion along a segment. Each “machine” is a collision zone or
a collision-free zone. The JSP is NP-hard (Pinedo 1995), and
by reduction, the instantaneous model for robot coordination
is NP-hard.

5. Continuous Velocity Model

We now consider generating a schedule with continuous ve-
locity profiles for the robots, which is consistent with their
dynamics constraints. Since we are trying to determine when
to speed up and slow down each robot as it moves along its
specified path, we first compute their fastest and slowest pos-
sible motions along each path segment. To find the minimum
and maximum times taken by a robot to traverse a segment,
we solve two TPBVPs over the segment. We illustrate this
procedure using the “double integrator” model from classical
optimal control (Bryson and Ho 1975) for robots with maxi-
mum velocity and acceleration bounds.

5.1. Single Robot on a Segment

A single robot moving along a path segment can be modeled as
a double integrator with inequality constraints on the control
input (acceleration) and the velocity state variable. Letx(t),
v(t) = dx(t)/dt , anda(t) = dv(t)/dt be the position, veloc-
ity, and acceleration of the robot at timet , letS be the length of
the segment, and let�T be the time taken to traverse the seg-
ment. Computing the minimum and maximum times taken by
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the robot to traverse the segment, subject to constraints on its
velocitiesvstart andvend at the segment endpoints and inequal-
ity constraints on its velocity and acceleration, can be solved
as a TPBVP. The double integrator system can be written as

Minimize or Maximize�T =
�T∫
0

1dt

subject to:(
ẋ

v̇

)
=

(
0 1
0 0

) (
x

v

)
+

(
0
1

)
a(t)

x(0) = −S x(�T ) = 0 (3)

v(0) = vstart v(�T ) = vend

0 ≤ v ≤ vmax

−amax ≤ a ≤ amax.

5.2. Minimum and Maximum Time Control for a Single
Robot over a Segment

The minimum time control of the double integrator model is
well known (Bryson and Ho 1975). We have extended this to
obtain the maximum time control using the restricted maxi-
mum principle (Knowles 1981). Basically, these are TPBVPs,
and the solutions have a bang–bang or bang–off–bang control
structure. The minimum�T and maximum�T each have
two different cases, depending on whetherS is sufficiently
long for the robot to reachvmax (zero) for the minimum (max-
imum) time case. Note that if

S <
|v2
end

− v2
start

|
2amax

,

there is no feasible velocity profile since the distance is too
short.

1. Minimum�T (Figure 2)

(a) If

S ≥ 1

2

(
(v2

max
− v2

start
)

amax
+ (v2

max
− v2

end
)

amax

)
,

the robot velocity can reachvmax and

�T min = S

vmax
− ((v2

max
− v2

start
)+ (v2

max
− v2

end
))

2amax · vmax
+ vmax − vstart

amax
+ vmax − vend

amax
.

(b) If

1

2

(
(v2

max
− v2

start
)

amax
+ (v2

max
− v2

end
)

amax

)
> S

≥ 1

2

|v2
end

− v2
start

|
amax

,

the robot velocity cannot reachvmax and

�T min = (vmiddle − vstart )

amax

+ (vmiddle − vend)

amax

wherevmiddle = 1

2
(2v2

start
+ 2v2

end
+ 4Samax)

1/2.

2. Maximum�T (Figure 3)

(a) If

S ≥ 1

2

(v2
start

+ v2
end
)

amax
,

the robot can go to zero velocity and�T max = ∞.

(b) If

1

2

(v2
start

+ v2
end
)

amax
> S ≥ 1

2

|(v2
end

− v2
start
)|

amax
,

the robot cannot go to zero velocity and

�T max = (vstart − vmiddle)

amax

+ (vend − vmiddle)

amax

wherevmiddle = 1

2
(2v2

start
+ 2v2

end
− 4Samax)

1/2.

5.3. Continuous Velocity Mixed Integer Nonlinear
Programming Problem Formulation

Since the robot velocities are variables in the minimum and
maximum time control for a robot over a segment, they intro-
duce nonlinear constraints. We therefore formulate a MINLP
problem for the multiple robot coordination problem, with
the robot velocities at the segment endpoints being additional
variables to be computed. We have the usual completion time
constraints and collision avoidance constraints. The traver-
sal time constraints are more complicated since the minimum
and maximum possible traversal times now depend on the seg-
ment endpoint velocities, which are variables. Letai,max be the
maximum acceleration, letvi,max be the maximum velocity of
robotAi , and letvik represent the velocity ofAi at the start of
segmentk. Let�T min

ik
and�T max

ik
be the minimum and maxi-

mum possible traversal times forAi along the segmentk. Let
�T min

ik,a
and�T min

ik,b
represent the two minimum traversal time

values (described in Section 5.2). Similarly, let�T max
ik,a

and
�T max

ik,b
represent the two maximum traversal time values. The

binary variableyik encodes the disjunctive constraint that ei-
ther the values ofvik andvi(k+1) permit the robot to reachvi,max
in Sik or they do not, and it is used to select the correspond-
ing feasible value of�T min

ik
. Similarly, the binary variablezik
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startv

endv

maxv

t

v

startv

endv

maxv
vmiddle

t

v

(a) (b)
Fig. 2. Minimum�T : (a) velocity reachesvmax ; (b) velocity cannot reachvmax . The maximum velocity attained isvmiddle.

startv

endv

maxv

t

v

startv

endv

maxv

vmiddle
t

v

(a) (b)
Fig. 3. Maximum�T : (a) velocity can decrease to zero; (b) velocity cannot decrease to zero. The minimum velocity attained
is vmiddle.

encodes the disjunctive constraint that either the values ofvik
andvi(k+1) permit the robot to reach zero velocity inSik or
they do not, and it is used to select the corresponding feasible
value of�T max

ik
. For simplicity, the velocities at the initial and

goal configurations,vi,initial andvi,goal, are assumed zero for
each robot. The resulting MINLP formulation for the opti-
mal continuous velocity schedule can be described by three
sets of constraints. The first set of constraints are the standard
completion time constraints, traversal time constraints, and
collision avoidance constraints:

MinimizeCmax
subject to:

Cmax ≥ ti,last + τi,last for i = 1, . . . , n

tik ≥ 0

ti(k+1) = tik + τik

�T max

ik
≥ τik ≥ �T min

ik

tjh − ti(k+1) +M(1 − δijkh) ≥ 0

tik − tj (h+1) +Mδijkh ≥ 0

δijkh ∈ {0,1}
vi,max ≥ vik ≥ 0

vi,initial = vi,goal = 0.

(4)

The second set of constraints are the nonlinear minimum
traversal time constraints:

Sik ≥ (v2
i(k+1) − v2

ik
)

2ai,max
≥ −Sik(

Sik − (v2
i,max

− v2
ik
)+ (v2

i,max
− v2

i(k+1))

2ai,max

)
−Myik ≤ 0(

Sik − (v2
i,max

− v2
ik
)+ (v2

i,max
− v2

i(k+1))

2ai,max

)
+M(1 − yik) ≥ 0

�T min

ik,a
= Sik

vi,max
− (v2

i,max
− v2

ik
+ v2

i,max
− v2

i(k+1))

2ai,maxvi,max

+vi,max − vik

ai,max
+ vi,max − vi(k+1)

ai,max

�T min

ik,b
= (vmin

middle,ik
− vik)

ai,max
+ (vmin

middle,ik
− vi(k+1))

ai,max

(vmin
middle,ik

)2 = 1

4
(2v2

ik
+ 2v2

i(k+1) + 4Sikai,max)

�T min

ik
= yik ·�T min

ik,a
+ (1 − yik) ·�T min

ik,b

yik ∈ {0,1}.
(5)

The third set of constraints are the nonlinear maximum
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traversal times constraints:(
Sik − v2

ik
+ v2

i(k+1)

2ai,max

)
−Mzik ≤ 0(

Sik − v2
ik

+ v2
i(k+1)

2ai,max

)
+M(1 − zik) ≥ 0

�T max

ik,a
= ∞

�T max

ik,b
= (vik − vmax

middle,ik
)

ai,max
+ (vi(k+1) − vmax

middle,ik
)

ai,max

(vmax
middle,ik

)2 = 1

4
(2v2

ik
+ 2v2

i(k+1) − 4Sikai,max)

�T max

ik
= zik ·�T max

ik,a
+ (1 − zik) ·�T max

ik,b

zik ∈ {0,1}.

(6)

This MINLP problem describing the optimal solution has
difficult nonconvex constraints. Existing techniques to solve
MINLPs either require convexity or are not guaranteed to find
the optimal solution for large problem sizes.

We therefore solve two MILPs, which differ only in their
�T max values, to obtain good lower and upper bounds on
the optimal solution. Initially, we also assume that the first
segment is sufficiently long for the robot to reachvi,max by its
end, and that the last segment is sufficiently long for the robot
to decelerate fromvi,max to zero.

1. Lower bound problem. A lower bound for the MINLP
problem can clearly be obtained by solving the MILP
for the instantaneous model, assuming infinite accel-
eration. We obtain a tighter lower bound by formu-
lating an improved instantaneous model that consid-
ers the time to accelerate and decelerate over the first
and last segments for each robot. Since the segments
are assumed sufficiently long for robotAi to go from
zero tovi,max (and vice versa), the minimum traver-
sal times for the first and last segments are�T min =
S/vi,max + vi,max/2ai,max . Solving the MILP for this im-
proved instantaneous model gives a lower bound for the
MINLP problem.

2. Upper bound problem. Here the original MINLP model
is transformed into an MILP problem by setting the ve-
locities at the endpoints of each segment (except the
initial and goal configurations) tovi,max , the highest fea-
sible velocity given the segment lengths. Solving the
MILP problem for this setpoint model gives a feasible
continuous velocity schedule that is an upper bound for
the MINLP problem, as described in the next section.

Note that under the assumption that the initial and goal
configurations are collision-free, a valid solution always exists
for both problems since a feasible schedule is to pick some
arbitrary sequencing of the robots, and to have only one robot
at a time move along its path.

6. Setpoint Model

We now describe the setpoint model to generate a continu-
ous velocity schedule for a set of robots with dynamics con-
straints; for double integrators, the dynamics constraints are
the maximum velocityvi,max and maximum accelerationai,max
bounds. We first compute the time-optimal velocity profile for
each robot over its entire path. We then make the following
additional assumption: each robot travels at its maximum fea-
sible velocity at the endpoints of each of its collision segments.
The maximum feasible velocity at each segment endpoint is
obtained from the corresponding point on the time-optimal
velocity profile. The intuition is that by setting the velocity
vik at the endpoints of the collision zones to be the correspond-
ing maximum velocity, the robots are biased to move through
their collision zones in the least time. Since any continuous
velocity schedule is an upper bound on the optimal contin-
uous velocity schedule, this solution is guaranteed to be an
upper bound on the optimal solution. Further, setting the end-
point velocities reduces the MINLP formulation to an MILP
formulation. The continuous velocity schedule generated by
the setpoint model is the solution used to specify the controls
for coordinating the robots.

6.1. Mixed Integer Linear Programming Formulation

For double integrators, the maximum feasible velocity is
vi,max . Since the segment endpoint velocities arevi,max by the
setpoint assumption, the minimum and maximum times to
traverse a segment of lengthSik are

�T min

ik
=



Sik/vi,max

if k an interior segment
Sik/vi,max + vi,max/2ai,max

if the first or last segment

�T max

ik
=

{ ∞ if Sik ≥ v2
i,max

/ai,max
2vi,max−2(v2

i,max
−ai,maxSik )1/2

ai,max
if Sik < v2

i,max
/ai,max.

The MILP formulation for the setpoint model is identical to
the MILP formulation for the improved instantaneous model,
except for the difference in the�T max values. Like the instan-
taneous model, the setpoint model is also NP-hard. The so-
lution to the setpoint MILP is a continuous velocity schedule
that is guaranteed to be an upper bound on the optimal con-
tinuous velocity schedule. When the segment traversal time
τik generated by the MILP does not correspond to either min-
imum time or maximum time trajectories over the segment,
we generate a velocity profile, as described in Section 6.3, so
the robot can traverse the segment in the given amount of time
subject to its velocity and acceleration constraints.
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6.2. Relaxing Segment Length Constraints

We now relax the requirement that the first and last segments
are sufficiently long for the robot velocity to reachvi,max and
zero, respectively.We assume that each path is long enough for
the robot to reach its highest speedvi,max at some point along
the path. (If the path is not sufficiently long, we compute the
highest speed attained by the time-optimal velocity profile
along the path and treat that effective highest speed asvi,max .)
We then set the velocity at each segment endpoint to be the
highest velocity consistent with the initial and goal velocities.
The velocityvik at the start of thekth segment, assuming robot
Ai begins with an initial velocity of zero and ends with a goal
velocity of zero, is

vik =




√
2ai,max

∑k−1
j=1 Sij if

∑k−1
j=1 Sij ≤ v2

i,max

2ai,max√
2ai,max

∑
j≥k Sij if

∑
j≥k Sij ≤ v2

i,max

2ai,max

vi,max otherwise.

Note that the velocityvik at the start of each segment is
uniquely determined, since the path is sufficiently long for
the robot to reach its highest speedvi,max at some point along
the path.

The corresponding bounds on the segment traversal times
�T min

ik
and�T max

ik
for the setpoint model are computed from

�T min(vik, vi(k+1))and�T max(vik, vi(k+1)), as described in Sec-
tion 5.2.

We correspondingly update the improved instantaneous
model so that the velocityvik at each segment endpoint is
the highest velocity physically possible, which is the corre-
sponding setpoint velocity. For the improved instantaneous
model,�T min

ik
takes the same values as in the setpoint model,

while �T max
ik

= ∞ since the robot can pause its motion
instantaneously.

6.3. Generating Velocity Profiles

Solving the setpoint formulation gives a feasible coordination
schedule, from which we obtain the traversal timeτik along
each segmentk for each robotAi .When this segment traversal
time τik does not correspond to an extremal trajectory (either
a minimum time or maximum time velocity profile) over the
segment, we must generate a feasible velocity profile with
traversal timeτik. In general, this is not easy due to the veloc-
ity and control inequality constraints. (The robot’s velocity
profile cannot be generated by solving differential-algebraic
equations, since the velocity constraints and accleration con-
straints that are active at each time instant are not known.)

For the double integrator, we exploit its dynamics to gen-
erate a velocity profile consistent with traversal timeτik. By
observing that the nonextremal trajectories havevstart andvend
equal tovmax , we can solve analytically to show that a sym-
metric bang–off–bang velocity profile is a feasible trajectory

(Figure 4). The velocity during the off-phase,vik,off , is ob-
tained by solving the following quadratic equation:

v2
i,max

− v2
ik,off

ai,max
+ vik,off

(
τik − 2

vi,max − vik,off

ai,max

)
= Sik.

Selecting the non-negative solution

vik,off = −1

2
τikai,max + vi,max

+ 1

2

(
ai,max(τ

2
ik
ai,max − 4τikvi,max + 4Sik)

)1/2

yields the trajectory profile specified by

ai(t) =




−ai,max, tik ≤ t < tik + vi,max−vik,off
ai,max

0, tik + vi,max−vik,off
ai,max

≤ t < tik

+τik − vi,max−vik,off
ai,max

ai,max, tik + τik − vi,max−vik,off
ai,max

≤ t

< tik + τik.

A few example velocity profiles generated by this algo-
rithm are shown in Figure 5.

6.4. Optimality

While in the general case there can be a gap between the
lower bound of the improved instantaneous formulation and
the upper bound provided by the setpoint formulation, we
have identified two cases for which the gap is zero. That is,
here the setpoint formulation provides an optimal coordina-
tion schedule.

1. When each robot can collide with at most one other
robot. Since each robot can collide with at most one
other robot, the multiple robot problem can be reduced
to a set of independent problems, each optimizing the
motions of a pair of robots. It can be shown (Shin and
Zheng 1992) that when the robots have a single shared
collision zone, the optimal solution for a pair of robots
is to independently generate the time-optimal velocity
profile for each robot and then compute the start times
for the two robots that minimize the total completion
time. Clearly, the setpoint formulation will automati-
cally generate such a solution.

2. When the length of each segment is sufficiently long for
each robot to reach zero velocity in the interior of each
segment. Here, the improved instantaneous and setpoint
formulations are identical since their�T max values are
identical. When this occurs, the gap is guaranteed to
be zero and the setpoint solution provides an optimal
feasible velocity schedule.

Note that in the limit as robot maximum accelerationamax
approaches infinity, the setpoint model approaches the im-
proved instantaneous model.
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maxv

voff

t ik τ ikt ik +
t

v

Fig. 4. A symmetric bang–off–bang velocity profile over a segment. Here,vstart andvend are equal tovmax .

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

robot velocity 

time

ve
lo

ci
ty

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

robot velocity 

time

ve
lo

ci
ty

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

robot velocity 

time

ve
lo

ci
ty

Fig. 5. Example velocity profiles for three robots, indicating their velocities over their entire paths.

7. Coordinating Multiple Car-like Mobile
Robots

We now illustrate our coordination approach on nonholo-
nomic car-like robots with dynamics constraints. Paths that
satisfy the nonholonomic constraints such as Dubins’paths or
Reeds and Shepp’s paths (Laumond 1998) typically require
the robot to stop when there is a discontinuity in curvature (to
change the steering direction) or when there is a cusp point (to
reverse the robot motion direction). Therefore, we use sim-
ple continuous curvature paths for a forward moving robot
(Scheuer and Fraichard 1997).

7.1. Car-like Robot Model

The configuration of a robot is given by(x, y, θ, κ) where
(x, y) represents the robot reference point at the mid-point of
the rear axle,θ is the robot orientation, andκ is the signed path
curvature. Letv be the robot velocity at its reference point.

We model a car-like robot of massmmoving on a horizon-
tal plane with a friction coefficientµ as subject to the follow-
ing dynamics constraints (Shiller and Chen 1990; Fraichard
1999).

1. Acceleration constraints.

(a) Acceleration constraints due to the maximum en-
gine forceFmax and the maximum braking force
Fmin are

Fmin

m
≤ a ≤ Fmax

m
.

(b) Sliding friction constraints to prevent the robot
slipping off the path are

−√
µ2g2 − κ2v4 ≤ a ≤ √

µ2g2 − κ2v4.

Thus, the (state-dependent) acceleration constraints are

a ≥ max

(
Fmin

m
,−√

µ2g2 − κ2v4

)

and

a ≤ min

(
Fmax

m
,
√
µ2g2 − κ2v4

)
.

2. Velocity constraints.

(a) Maximum velocity constraints are 0≤ v ≤ vmax .
These can be used to enforce maximum speed
constraints and to prevent tip-over at high speeds.
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(b) Velocity magnitude constraints. To ensure that
µ2g2−κ2v4 ≥ 0 in the sliding friction constraints,
we have the constraint

−
√
µg

|κ| ≤ v ≤
√
µg

|κ| .

Thus, the (state-dependent) velocity constraints are

0 ≤ v ≤ min

(
vmax,

√
µg

|κ|
)
.

7.2. Paths

The specified paths are chosen to be simple continuous curva-
ture (SCC) paths (Scheuer and Fraichard 1997). SCC paths are
composed of straight lines, circular arcs, and clothoid curves.
The curvature of a clothoid curve varies linearly with its path
length and so the clothoidal segments bridge the straight-line
segments and circular arcs. Each path isC2 continuous, so the
path has continuous curvature and no cusps. Since the robot
can follow the path without having to stop or reverse direction,
we assume the robot moves forward monotonically along its
path. The curvatureκ of an SCC path is upper bounded by
κmax . That is, the steering radiusρ ≥ ρmin = 1/κmax . Addi-
tionally, there is an upper bound on the curvature derivative,
κ̇, since a robot must reorient its front wheels with a finite
steering velocity.

7.3. Optimal Control Problem For A Single Car-like Robot

Consider a single car-like robot moving along an SCC path
segment withx andv representing its position and velocity
respectively. The optimal control problem is

Min or Max �T =
�T∫
0

1dt

subject to:(
ẋ

v̇

)
=

(
0 1
0 0

) (
x

v

)
+

(
0
1

)
a(t)

x(0) = −S x(�T ) = 0 (7)

v(0) = vstart v(�T ) = vend

v ≥ 0 v ≤ vmax v ≤
√
µg

|κ|
a(t) ≥ Fmin

m
a(t) ≤ Fmax

m

a2(t) ≤ µ2g2 − κ2v4.

This TPBVP is difficult to solve because of the complex
constraints on the state and control variables. We assume
thatFmin = −Fmax and additionally assumeµ2g2 − κ2v4 ≥
(Fmax/m)

2, which is reasonable for typical values of the vari-
ables. This constraint can be expressed as a minimum steer-
ing radius constraintρmin ≥ v2

max
/
√
µ2g2 − (Fmax/m)2 during

path generation.This implies that the maximum robot velocity
is vmax . This minimum steering radius constraint also makes
the upper and lower bounds on the acceleration state indepen-
dent constants with magnitudeFmax/m. Therefore, the double
integrator formulation of Section 5.1 applies directly to these
car-like robots.

7.4. Coordinating Multiple Car-like Robots

Given a set ofn car-like robotsA1, . . . ,An with specified
SCC paths that satisfy the above minimum steering radius
constraints, we generate collision-free continuous velocity
profiles along the specified paths that minimize the com-
pletion time using the setpoint MILP formulation described
earlier.

Our approach can be extended to car-like nonholonomic
robots with piecewise continuous curvature paths. When the
class of continuous curvature paths includes cusp points
(Fraichard, Scheuer, and Desvigne 1999; Lamiraux and Lau-
mond 2001), we must add the constraint that the robot velocity
must be zero at every such point, and compute the velocity
while taking into account the direction reversals at cusp points.

8. Implementation

We have implemented software in C++ to coordinate the mo-
tions of polyhedral robots with specified paths (Figure 6 and
Multimedia Extensions 1–6). We compute the collision zones
using the PQP collision detection package (Larsen et al. 2000)
by sampling uniformly along each robot’s path. The sampling
resolution along the robots’ paths must be sufficiently fine to
avoid missing any part of the collision zones. Since the op-
timal coordination may cause a pair of robots to just touch
at the boundary of their collision zone, we compute collision
zones using a specified tolerance.

We generate the MILP formulations from the computed
collision zones and solve them using the AMPL (Fourer, Gay,
and Kernighan 1993) and CPLEX (ILOG Inc. 1999) opti-
mization packages. Since the setpoint formulation with its
tighter constraints is usually solved much more quickly than
the improved instantaneous formulation, we use the setpoint
solution as an upper bound constraint for the improved instan-
taneous formulation. See Table 1 for running times measured
on a Sun Ultra 60. The MILP problem complexity depends
primarily on the number of collision zones, and to a lesser ex-
tent on the number of robots. For a particularly difficult prob-
lem (for example, the symmetric radial case with a bottleneck
at the center) or for a sufficiently large number of collision
zones, the MILP time will dominate the running time.

In our experiments, an optimal solution, indicated by a
zero gap between the minimum completion time values com-
puted by the improved instantaneous and setpoint formula-
tions, was found in almost all cases; the maximum gap ob-
served was 8.84%. We have observed that a zero gap may
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(a) (b)

(c)

Fig. 6. Overhead view of example paths for 12 robots: (a) radial paths with symmetry, with a bottleneck at the center; (b)
constant curvature straight-line and circular paths for car-like robots; (c) SCC paths for car-like robots. Goal configurations
are indicated by solid polyhedra. Animations may be seen in Multimedia Extensions 1–6.

occur even with small values ofamax . Example animations
can be seen at http://www.cs.rpi.edu/∼sakella/multikino/ and
in the Appendix.

8.1. Moving Obstacles

We have applied both the instantaneous and setpoint formu-
lations to include multiple moving obstacles with known tra-
jectories. Each moving obstacle is treated like a robot with
a specified trajectory. The collision constraints for each ob-
stacle are computed from its known velocity profile, and are
easily added to the MILP formulations.

9. Conclusion

We have developed an approach to generate continuous ve-
locity profiles for (near) minimum time collision-free coordi-
nation of multiple robots with kinodynamic constraints along
specified paths. We use two MILP formulations, of which
the setpoint model provides a continuous velocity schedule
that is feasible and is an upper bound on the optimal continu-

ous velocity schedule, and the improved instantaneous model
provides a lower bound on the optimal solution. The princi-
pal advantage of our MILP formulations is that they permit
the collision-free coordination of a large number of robots.
The MILP formulations for coordination of multiple robots
are NP-hard, and their complexity increases directly with the
number of collision zones. However, efficient collision de-
tection software and integer programming solvers make this
approach practical for reasonable problem sizes. Furthermore,
the input set of robots may be partitioned into smaller disjoint
sets of robots with shared collision zones, which may then be
coordinated independently.

There are several directions for future work. While we
have focused on reducing the completion time, other linear
objective functions, such as the average completion time or
the total execution time, may be optimized. Additionally, ob-
jective functions that may be described as piecewise linear
functions or convex quadratic functions may also be solved
using CPLEX (ILOG Inc. 1999). It is important to analyti-
cally characterize the gap between the improved instantaneous
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Table 1. Sample Run Times for Setpoint Formulation (MILP-S) and Improved Instantaneous Formulation (MILP-I)

% Gap
Number of Collision Number of MILP-S Number of MILP-I Between

Number of Collision Time Binary Time Binary Time MILP-S
Robots Zones (s) Variables (s) Variables (s) and MILP-I

5 13 17.64 20 0.04 14 0 0.0
8 42 52.63 64 0.13 62 0.08 0.0
10 71 84.87 102 0.53 100 0.17 0.0
12 82 109.96 124 0.61 123 0.25 0.0

8 (radial, unsymm.) 32 62.89 54 0.167 54 0.095 0.0
12 (radial, unsymm.) 94 166.19 128 2.2 128 0.49 0.0

8 (radial, symm.) 29 28.4 54 3.87 54 0.095 0.0
12 (radial, symm.) 86 20.556 124 216.7 124 65.7 0.0

12 (const. curvature) 154 11.62 158 2.167 158 0.967 7.4
12 (SCC) 64 118.94 85 0.296 85 0.16 0.0

Note. (The MILP-I formulation used the MILP-S solutions as upper bounds.) Collision checks were performed at 65–200
points along each path for most paths, and at 605 points for the SCC paths. AMPL presolve times are not included.

model and setpoint model solutions, and to develop heuris-
tic algorithms for closing the gap. Developing computational
procedures to directly solve the continuous velocity MINLP
formulation is important. We are currently characterizing the
convexity of the MINLP constraints to develop an approach
to directly solve for the global optimum of the MINLP.

Extending the approach to general car-like robots, aircraft,
and manipulator robots is an interesting next step, since the
complex constraints on the state and control variables make
solving the TPBVPs for individual segments challenging. To
apply this approach to aircraft, we can use a simplified planar
aircraft model (Bicchi and Pallottino 2000). For specified con-
tinuous curvature paths, the velocity is a variable with magni-
tude bounds and the acceleration is the control input. To apply
this approach to manipulator robots, we must compute appro-
priate collision zones and solve the TPBVPs for the dynamic
model of the robots. One approach is to generate optimal ve-
locity profiles by extending previous methods for optimizing
motion of a manipulator along a path (Bobrow, Dubowsky,
and Gibson 1985; Shin and McKay 1985; Slotine and Yang
1989; Shiller and Lu 1992). However, we must additionally
address computing the maximum traversal times, and gener-
ating velocity profiles consistent with the computed traversal
times.An alternative approach we have recently demonstrated
is to use the time-scaling law for robot manipulators (Holler-
bach 1984) to perform time-scaled coordination of multiple
manipulators (Akella and Peng 2004).

To apply the approach for coordinating multiple robots in
this paper to more general systems with complex linear or
nonlinear dynamics, we must turn to numerical methods, as
exact analytical solutions do not exist. A promising approach
is to use specialized nonlinear programming techniques and
to solve the discretized version of the optimal control problem
as a large-scale sparse nonlinear programming problem (von

Stryk 2000; Betts 2001). The advantages of this approach are
that it does not require writing down the first-order necessary
conditions, which may be tedious or even impossible to do
for complex dynamics, and it leverages advances in nonlinear
solvers, such as SNOPT (Gill, Murray, and Saunders 2002),
which can solve nonlinear programming problems with many
thousands of constraints and variables.

The approach described here represents a step towards
solving the challenging problem of coordinating multiple
robots without specified paths. To relax the fixed path con-
straint, we are developing formulations for coordination of
multiple robots on a roadmap where each robot can select
a path from a set of candidate paths. By introducing a bi-
nary variable for each candidate path to denote whether that
path is chosen, the roadmap coordination can also be mod-
eled as a mixed integer programming problem with additional
roadmap constraints. The approach in this paper can also be
combined with probabilistic techniques, which can generate
paths (Švestka and Overmars 1998; Sanchez and Latombe
2002) or trajectories (LaValle and Kuffner 2001; Hsu et al.
2001) for the set of robots, to then optimize robot motions
along those paths subject to dynamics constraints. Automatic
modification of robot paths to reduce completion time would
be a useful extension. Another interesting direction is on-line
coordination of multiple robots using sensor-based estimates
of robot positions and velocities.

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org. Each example animation depicts a set of robots be-
fore and after coordination. Goal configurations are indicated
by solid polyhedra. Collisions are indicated by changing the
color of the colliding robots to red.
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Table of Multimedia Extensions
Extension Type Description

1 Animation 12 robots moving along radial
paths with symmetry, with a
bottleneck at the center (before
coordination)

2 Animation 12 robots moving along radial
paths with symmetry, with a
bottleneck at the center (after
coordination)

3 Animation 12 car-like robots moving on
constant curvature straight-line
and circular paths (before coor-
dination)

4 Animation 12 car-like robots moving on
constant curvature straight-line
and circular paths (after coordi-
nation)

5 Animation 12 car-like robots moving on
simple continuous curvature
paths (before coordination)

6 Animation 12 car-like robots moving on
simple continuous curvature
paths (after coordination)
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