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Abstract

This paper focuses on the collision-free coordination of multi-
ple robots with kinodynamic constraints along specified paths. We
present an approach to generate continuous vel ocity profilesfor mul-
tiple robots; these velocity profiles satisfy the dynamics constraints,
avoid collisions, and minimize the completion time. The approach,
which combines techniques from optimal control and mathemati-
cal programming, consists of identifying collision segments along
each robot’s path, and then optimizing the robots' velocities along
the collision and collision-free segments. First, for each path seg-
ment for each robot, the minimum and maximum possible traversal
times that satisfy the dynamics constraints are computed by solving
the corresponding two-point boundary value problems. The collision
avoidanceconstraintsfor pairsof robotscan then becombinedtofor-
mulate a mixed integer nonlinear programming (MINLP) problem.
Since this nonconvex MINLP model is difficult to solve, we describe
two related mixed integer linear programming (MILP) formulations,
which provide schedules that give lower and upper bounds on the
optimum; the upper bound schedule is designed to provide continu-
ousvelocity trajectoriesthat arefeasible. Theapproach isillustrated
with coordination of multiple robots, modeled as double integrators
subject to velocity and acceleration constraints. An application to
coordination of nonholonomic car-like robots is described, along
with implementation results for 12 robots.

KEY WORDS—multiple robots, collision-free coordination,

dynamics, mixed integer program

1. Introduction

Coordinating
Multiple Robots
with Kinodynamic
ConstraintsAlong
Specified Paths

shared workspace without collisions has applications in man-
ufacturing cells (Rizzi, Gowdy, and Hollis 2001), automated
guided vehicle (AGV) coordination in harbors and airports
(Alami et al. 1998), and air traffic control (Bicchi and Pallot-
tino 2000). The general problem requires finding a trajectory
(path and velocity profile) for each robot such that the speci-
fied objective, such as the task completion time, total time, or
energy consumption, of the system is minimized. Optimiza-
tion of the robot motions is especially important when the task
is executed repeatedly or resources must be conserved.
This paper deals with the optimal coordination of multi-
ple robots moving with kinodynamic constraints along spec-
ified paths. While previous work in robotics mostly ad-
dressed either the collision-free path coordination problem
of several robots without considering dynamics constraints
(O’Donnell and Lozano-Perez 1989; LaValle and Hutchinson
1998; Simeon, Leroy, and Laumond 2002), or the search for
time-optimal motions for a single robot (Bobrow, Dubowsky,
and Gibson 1985; Shin and McKay 1985), the contribution
of this paper is an approach to generate continuous velocity
profiles that satisfy the dynamics constraints, avoid collisions
between robots, and minimize the task completion time. An
example application is the coordination of AGVs along fixed
paths in harbors and airports. The robot motions must sat-
isfy kinematic constraints, such as avoiding collisions with
other robots and with moving obstacles, and dynamics con-
straints, such as velocity and acceleration bounds. Our basic
approach is to simultaneously tackle the problem of gener-
ating individual robot trajectories that satisfy the dynamics
constraints, and the problem of generating optimal coordina-
tion schedules that satisfy the collision avoidance constraints.

Coordinating multiple robots with kinodynamic constraintssy, igentifying the collision segments along a robot's path,
(i.e., simultaneous kinematic and dynamics constraints) ing, combine the disjunctive collision avoidance constraints

The International Journal of Robotics Research
Vol. 24, No. 4, April 2005, pp. 295-310,

DOI: 10.1177/0278364905051974

©2005 Sage Publications

for pairs of robots to formulate a mixed integer nonlinear pro-
gramming (MINLP) problem. Since the resulting nonconvex
MINLP formulation is difficult to solve, we use two related
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mixed integer linear programming (MILP) formulations. Thequentially searching for collision-free paths for the robots in
“improved instantaneous model” provides a lower bound atthe configuration-time space, with previous robots treated as
the optimal solution, and the “setpoint model” provides a cormoving obstacles. Buckley (1989) presented a fast motion
tinuous velocity schedule that is both feasible and an uppplanner for multiple translating robots in the plane that pri-
bound on the optimal continuous velocity trajectories. In thisritizes robots based on whether they can travel in a straight
paper, we illustrate the approach using robots modeled as ddine to the goal. Parsons and Canny (1990) describe a cell de-
ble integrators subject to velocity and acceleration constraintgmposition based path planning algorithm for coordinating
and we discuss an application to a system of car-like robotsanslating robots in the plane. Fujimura and Samet (1989)
Portions of this work were previously presented in Peng amgkrform path planning for a robot in the presence of moving
Akella (2003a, 2003b). obstacles using the configuration space—time. They assume a
The approach described here represents a step towam@dmslating robot with velocity and acceleration bounds, and
solving the challenging problem of coordinating multipleuse a hierarchical octree representation of the space. Fior-
robots without specified paths. This approach can be conmi and Shiller (1993, 1998) have developed an approach that
bined with probabilistic techniques, which can generate patkemputes velocity obstacles to perform trajectory planning of
(Svestka and Overmars 1998; Sanchez and Latombe 2002paingle robot among multiple moving obstacles with known
trajectories (LaValle and Kuffner 2001; Hsu et al. 2001) folinear trajectories. They have also considered optimization
the set of robots, to then optimize robot motions along thos# the generated trajectories (Fiorini and Shiller 1996).

paths subject to dynamics constraints. Shiller, Large, and Sekhavat (2001) have generalized the ba-
sic approach to deal with obstacles moving along arbitrary
2 Related Work trajectories.

If the problem is further constrained so that the paths of

There are two main bodies of related work in robotics, whicH'€ roPots are specified, one obtains a path coordination prob-

partially overlap. One focuses on the coordination of mulf€M- ©'Donnell and Lozano-Perez (1989) developed a co-

ple robots, typically without considering robot dynamics.ThQrdinaﬁon diagram representation for path coordination of

other focuses on trajectory optimization for a single robdiVe obots. LaValle and Hutchinson (1998) addressed a sim-
while considering robot dynamics. Additionally, there hal@r problem where each robot was constrained to a specified

been recent work in coordinating air vehicles with simplifie¢onfiguration space roadmap. Ghrist and Koditschek (2002)
dynamics models. designed controllers for coordination of AGVs constrained to

motion on graphs, based on an analysis of the configuration
space of two robots on a Y-graph. Simeon, Leroy, and Lau-
mond (2002) performed path coordination for a very large
Motion planning for multiple robots requires moving eactiumber of car-like robots, in part by exploiting the cylindri-
robot from its initial to its goal configuration, while avoid- cal structure of the coordination diagram and in part by par-
ing collisions with static obstacles or with other robotéitioning robots with shared collision zones into smaller sets.
(Latombe 1991). This problem is highly underconstrained,rajectory coordination is a closely related problem where
and Hopcroft, Schwartz, and Sharir (1984) have shown thte trajectory (path and velocity) of each robot is specified.
even a simplified two-dimensional case of the problem i8kella and Hutchinson (2002) recently developed an MILP
PSPACE-hard. Recent efforts have focused on reducing tigmulation for the trajectory coordination of large numbers
dimension of the configuration space by grouping robofrobots by changing robot starttimes. Our work here extends
(Aronov et al. 1999) or using probabilistic approaches. Ahese problem classes by additionally considering dynamics
potential field randomized path planner was applied to mugonstraints and generating continuous velocity profiles.
tiple robot planning (Barraquand, Langlois, and Latombe
1992), and probapilis_tic roadmap plar?ners have peen dfz_ Time-optimal Trajectory Planning
veloped for coordinating multiple car-like robots (Svestka
and Overmars 1998) and multiple manipulators (Sanch&here is a large body of work on the time-optimal control of
and Latombe 2002). However, these do not consider robatsingle manipulator, going back to the early work of Kahn
dynamics. and Roth (1971). Bobrow, Dubowsky, and Gibson (1985) and
A slightly more constrained version of the problem is obShin and McKay (1985) developed algorithms to generate the
tained when all but one of the robots have specified trajetime-optimal velocity profile of a manipulator moving along
tories. This is the problem of planning a path and velocita specified path. Subsequently, Pfeiffer and Johanni (1987),
for a single robot among moving obstacles (Kant and Zuck&lotine and Yang (1989), and Shiller and Lu (1992) refined
1986; Reif and Sharir 1994). Erdmann and Lozano-Peréizese algorithms. Lamiraux and Laumond (1998) extended
(1987) obtain a heuristic solution for planning the motionthese methods to generate velocity profiles for a car-like robot
of multiple robots by assigning priorities to robots and sewith constraints on the robot velocity magnitude.

2.1. Multiple Robot Coordination



Peng and Akella / Coordinating Multiple Robots 297

Trajectory planning directly in ther2dimensional state ~ The RRT approach (LaValle and Kuffner 2001) is capable
space that considers both kinematic and dynamics constrainfsgenerating collision-free trajectories for multiple robots.
is called “kinodynamic planning”. Sahar and HollerbactHowever, it does not explicitly provide a method to opti-
(1986), and later Shiller and Dubowsky (1991) developed atnize the coordination of the robots. Zefran, Desai, and Kumar
gorithms for global near minimum-time trajectory generatiof1997) consider the planning and control of multiple cooper-
(path and velocity) for a manipulator with dynamics and actuating manipulators. In recent work, Pledgie et al. (2002) per-
ator constraints using grid-based search spaces. O’'Dunlafiogm trajectory planning and control of groups of unmanned
(1987) presented a polynomial-time algorithm for planningehicles that are differentially flat systems. Hao et al. (2003)
the motion of a particle moving in one dimension while subpresent a framework for planning and control of formations
ject to bounded acceleration constraints. Canny, Rege, apithree unmanned ground vehicles.

Reif (1991) developed an exact exponential-time algorithm

for the time-optimal motion of a point robot, with velocity

and acceleration bounds, in two dimensions. Donald et &.4. Air Traffic Control

(1993) developed a polynomial-time approximation algo-

rithm to generate near time-optimal trajectories that satisfyonflict resolution among multiple aircraft in a shared
kinematic and dynamic constraints for a single point magdrspace is closely related to multiple robot coordination.
robot. Heinzinger etal. (1990) developed an approximation afomlin, Pappas, and Sastry (1998) synthesized provably safe
gorithm for time_optima| trajectory p|anning ofan Open_chairﬁ;onﬂict resolution maneuvers for two aircraft USing Speed and
manipulator, using graph search in the discretized state spaé@ading changes. Kosecka et al. (1997) used potential field
Donald and Xavier (19953) presented an improved aigorithmanners to generate conflict resolution maneuvers. Bicchi
for robots with decoupled dynamics bounds, and extended tf#gd Pallottino (2000) modeled aircraft with constant veloc-
work to robots with coupled dynamics bounds such as opeiﬁy and curvature bounds and generated minimum total time
chain manipulators (Donald and Xavier 1995b). Reif angollision-free paths using given waypoints for three aircraft.
Wang (1997) deveioped approximation aigorithms that ué‘_é'azzoli et a.l. (2001) formulated the planal’ multi'aircraﬁ con-
nonuniform grid decompositions for kinodynamic planningflict resolution problem as a nonconvex quadratic program
Fraichard (1999) described a trajectory planner for a car-liRéith quadratic constraints. They used semidefinite program-
robot with dynamics constraints moving along a given patfing to find the lower bound on the optimum and random-
among moving obstacles. Recent work has focused on rdﬁatiOH to find a feasible solution. Richards et al. (2001) used
domized kinodynamic planning, including the use of rapidian MILP formulation to plan fuel-optimal paths for multi-
expioring random trees (RRTs) (Lava”e and Kuffner 200]}?'6 Spacecraft that avoid plume impingement from thrusters.
and probabilistic roadmaps (Hsu et al. 2001). These randoriey used a discretized model of the spacecraft dynamics.
ization approaches are capable of generating collision-fr&houwenaars etal. (2001) used a discretized system model to
trajectories for multiple robots. For example, Frazzoli (2003yevelop an MILP formulation for fuel-optimal path planning
has recently applied randomization techniques to trajecto®y multiple vehicles, including moving obstacles. Pallottino,
planning and coordination of a small number of spacecrafteron, and Bicchi (2002) generated conflict-free paths to min-
However’ these do not exp“Citiy provide amethodto Optimizgnize the total ﬂ|ght time for cases when either instantaneous
the coordination of the robots, a gap which the present woMelocity changes or heading angle changes are allowed.
addresses.

2.3. Multiple Robot Coordination with Dynamics 3. Problem Overview
Previous work on coordination of robots with dynamics ha&iven a set of: robots A, ... , A, with specified paths, the
focused almost exclusively on dual robot systems (Shin amal is to find the control inputs along the specified paths so
Bien 1989; Chang, Chung, and Bien 1990; Bien and Lee 199%&at the dynamics constraints of the robots are satisfied, their
Chang, Chung, and Lee 1994). Lee and Lee (1987) consiatotions are collision-free, and the completion time of the set
ered the effects of delays and velocity changes on motiafrobots is minimized. We assume that the start and goal con-
time. Freund and Hoyer (1988) implemented a hierarchicéyurations of each robot are collision-free. This assumption
control scheme to modify trajectories of multiple robots t@uarantees the existence of a solution since a feasible schedule
avoid collisions, using a specified right-of-way prioritizationis for one robot at a time to move along its path, for some ar-
for the robots. Shin and Zheng (1992) showed that, for a twaitrary sequencing of the robots. The only assumptions about
robot system, generating time-optimal trajectories for eadhe specified paths are that they are free of static obstacles,
robot independently and then delaying the start time of ored can be traversed by the robots without violating kinematic
of the robots leads to a minimal finish time under certainonstraints. We further assume that each robot moves forward
assumptions. along its path without retracing its path.
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3.1. Paths and Collision Zones

Each robot4; is given a pathy;, which is a continuous map- Minimize  J(x, u)

ping[0, 1] — C/"*. LetS; = [0, 1] denote the set of parame- subject to:

ter values; that place the robot along the pathThe “coordi- o

nation space” fon robots is defined a8 = S; xS, x - - - x S,.. x=fx,u)

A feasible coordination is a schedulg?) : [0, o0) — S in cx,u) <0 1)
whichs;,;, = (0,0,...,0) ands,, = (1,1,...,1) and the X(0) = X,rart

robots do not collide. Note that there is a one-to-one mapping X(AT) = Xy

betweers and the path length.
A “collision pair” CP;;(s;, s;), wheres; ands; < [0, 1], is qevy.
defined as a pair of configuratioqs (s;), v, (s;)) where robot
A; and robotA4; collide (i.e., Int4; (y;(s;)) N IntA; (y;(s;)) #
#). A “collision segment” for robot4; is a contiguous in-
terval [s7*, se“] over which A; collides with someA,.

The minimum time control problem hag(x,u) =
fOM ldr = AT, and the maximum time control problem
hasJ(x,u) = —AT where AT is the time to traverse the
. » start ond _ P segment. Feasible robot motions that give a minimum and a
That is, vs; €[5, 5], 3s; such that Ik, (y:(s:)) N maximum of the objective over each segment are obtained by

IntA;(y;(s; @. . g
Aé(yij(ré()e)r;j pair of maximal contiguous intervalssolvmg two two-point boundary value problems (TPBVPS)

(Lsyrt, s, [s5r, s¢"“]) in the coordination spacé con- for each segment.
stitute a “collision zoneCZ; if and only if any point in one o )
interval results in a collision with at least one point in the3-3. Coordination of Multiple Robots

other interval (Figure 1). That isfs; € [s;", 5], 3s; €  Now we consider the multiple robot system in which each

[s;'"*, 551 such that Int; (v, (s:)) N INtA, (v;(s))) # 0, and (o0t has a specified path and dynamics constraints. The goal
Vs; € L5y, 551, 3si € [, s such that It (v:(s)) N is o coordinate these robots to minimize a specified objective;
INtA;(y;(s;)) # ¥. In Figure 1, the collision zones arejp, this paper itis the global completion time. The path of each
([as, @z, [bs, bal), and(las, aal, [b1, b]). A maximal interval  r4hat is decomposed into collision segments and collision-
that is not within any coII|S|on_zone is called a_“colllsmn—freefree segments. The coordination of multiple robots can then
segment”. Each robot's path is decomposed into one or MQ§g modeled as an MINLP problem, with each robot satisfy-
collision segments and collision-free segments. ing the traversal time and collision avoidance constraints over
We compute collision segments for pairs of robots, andach of its segments. Since this MINLP problem with non-
then subdivide any overlapping collision segments so thagnex constraints is difficult to solve, we obtain schedules
each subdivided segment corresponds to a set of potentigiiy provide a lower bound and an upper bound on the optimal
colliding robots over its entire length. We also ensure that thg,| ;tion by solving two related MILP problems. We illustrate

order in which the robots traverse the subsegments does gak approach using the double integrator model from optimal
change over the original (undivided) segments, since changsnirol (Bryson and Ho 1975).

ing the order will result in collisions. For example, if robot
A, goes before4; in the first subsegment, thef, must go
before A, in all subsegments that make up their undivided | Nstantaneous M odel

collision zone. , ) N
We first consider a simplified model where each robot always

moves using its highest speegl,, and is permitted to instan-
3.2. Optimal Control Problem For A Single Robot taneously change its velocity. That is, each robot has infinite

acceleration, and can instantaneously acceleratg t@r in-
For a single robotd moving along a path segment, etep-  stantaneously decelerate to zero velocity fram. We will
resent the configuration, letr) represent the state, letr)  refer to this as the “instantaneous model”, since it provides a
be the ContrOI, |ei/ be the path of the robot in Conﬁgurationschedu|e with instantaneous starts and Stops_
space, let/(x, u) be the objective function, and letx, u)
represent the inequality constraints on the state variables aAjnﬁu_l
controls. To determine when to speed up and slow down each
robot as it moves along its specified path, we must first corii¥e now present an MILP formulation for the instantaneous
pute their fastest and slowest possible motions along each pathdel. Let;, be the time when robod,; begins moving along
segment. Thus, the optimal control problem, to compute this kth segment and let;, be the traversal time fod,; to
minimum and maximum times taken by the robot to traversgass through segmehtLet AT and AT7** represent the
the segment subject to its dynamics and path constraints, camimum and maximum traversal times f@; between the
be written as start point of segmerit and the start point of segmeht- 1,

. Mixed Integer Linear Programming Formulation
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Initial Goal
! — Y
a, %

\ . .
"4’2
Goal Initial

Fig. 1. Coordination example with two translating robots having two collision zones.

giving the “traversal time constraint&®7,;* > 7, > AT". each segment, and the precedence order of the robots through
For the instantaneous model7;** = oo. The minimum the collision zones, specified by thg,, variables. The colli-
time for A; to traverse a segment of length at its maximum  sion avoidance constraints inthe above model are conservative
veloCity v; 4. IS AT = Siy/Vimer- The motion completion in requiring that two robots should not simultaneously be in
time C,.. for the set of robots is greater than or equal to ththeir shared collision zone, and can lead to solutions that are
completion time of each robot, leading to the “completiomot truly optimal.
time constraint’C,,... > #; 15 + Ti s fOr €ach robot4,. The coordination of multiple robots under the instanta-
Consider robots4; and.A; with a shared collision zone neous model can be viewed as a “job shop scheduling prob-
wherek andh are their respective collision segments. A suflem” (JSP). Each “job”, composed of several operations, is
ficient condition for collision avoidance is that; and.A; a robot’s motion along its path. Each “operation” is the mo-
are not simultaneously in their shared collision zone. That ipn along a segment. Each “machine” is a collision zone or
tin = tigrn (WhenA; exits segment before4; enters seg- a collision-free zone. The JSP is NP-hard (Pinedo 1995), and

menth) or t;, > t;4.41 (WhenA; exits segmenk before.4; by reduction, the instantaneous model for robot coordination
enters segmen). These disjunctive constraints are converteds NP-hard.

to standard conjunctive form (Nemhauser and Wolsey 1988)

by introducings; ., a binary variable that is 1 if robot; goes . .

first along itskth segment and O if robot; goes first along 5. Continuous Velocity Model

its hth segment, and/, a sufficiently large positive number. \ve o, consider generating a schedule with continuous ve-
The resulting “collision avoidance constraints” to ensure thg i profiles for the robots, which is consistent with their
two robotsA; and.A; are not simultaneously in their sharedyy 3 mics constraints. Since we are trying to determine when
collision zone are to speed up and slow down each robot as it moves along its
tin — tigry + ML= 8j) = 0 specified path, we first compute their fastest and slowest pos-
tic — tigsy + M8iji = 0. sible motions along each path segment. To find the minimum
The traversal time, completion time, and collision avoida@nd maximum times taken by a robot to traverse a segment,
ance constraints for all robots are combined to form the ifve solve two TPBVPs over the segment. We illustrate this
stantaneous MILP formulation: procedure using the “double integrator” model from classical
optimal control (Bryson and Ho 1975) for robots with maxi-

Minimize C . .
e mum velocity and acceleration bounds.

subject to:

Cnmx Z ti.la.vt + Ti last for i = 1, oo,

ty >0 5.1. Single Robot on a Segment

ligry) = L + Tix @) A single robot moving along a path segment can be modeled as

max min
ATik Z Tk = ATik

a double integrator with inequality constraints on the control
tin — tigeny + M(L—8;,) = 0

input (acceleration) and the velocity state variable. L@},
lik = tiosy) + My 2 0 v(t) = dx(¢)/dt, anda(z) = dv(z)/dr be the position, veloc-
Sijen € {0, 1} ity, and acceleration of the robot at timéet S be the length of
A solution to this MILP provides the completiontinig,., the segment, and |&tT be the time taken to traverse the seg-
the start timeg;, and traversal times,, for each robot along ment. Computing the minimum and maximum times taken by
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the robot to traverse the segment, subject to constraints on its the robot velocity cannot reaah),,, and
velocitiesv,,,, andv,,, at the segment endpoints and inequal-
ity constraints on its velocity and acceleration, can be solved AT — Wnidate = Vstar)
as a TPBVP. The double integrator system can be written as Amax
AT n (Vmiddie = Vena)
Minimize or Maximize AT = /1dt Qyax
1
_ 0 whereuv,,;yq. = E(vam” + 202, + 4S8a,,..)".
subject to:
X 0 1 X 0 2. MaximumAT (Figure 3)
1=l o o A a(t)
@ If
x(0) =-S5 x(AT)=0 3)
U(O) = VUstart U(AT) = Vend S > }M
0 S v S vmax B 2 ama%
—Omax = A = gy the robot can go to zero velocity and™** = oo.
(b) If

5.2. Minimum and Maximum Time Control for a Single

Robot over a Segment 12, +vi,) S gt |(Va — Ve
. . . . . 2 amax o 2 amax ’
The minimum time control of the double integrator model is
well known (Bryson and Ho 1975). We have extended this to the robot cannot go to zero velocity and
obtain the maximum time control using the restricted maxi-
mum principle (Knowles 1981). Basically, these are TPBVPs, AT™* — M
and the solutions have a bang—bang or bang—off-bang control Amax
structure. The minimumnA7 and maximumAT each have (Vond — Umidate)
two different cases, depending on whetlSeis sufficiently + .
long for the robot to reach,,,, (zero) for the minimum (max- 1 "
imum) time case. Note that if wherev,, ;. = E(vam” + 202, — 45a,,,)">.
|vfnd — vsztart|
S < 24, 5.3. Continuous Vel ocity Mixed Integer Nonlinear

. . . L . . Programming Problem Formulation
there is no feasible velocity profile since the distance is too

short. Since the robot velocities are variables in the minimum and
o ) maximum time control for a robot over a segment, they intro-
1. Minimum AT (Figure 2) duce nonlinear constraints. We therefore formulate a MINLP
@) If problem for th_e_ multiple robot coordinat?on prqblem, \_/v_ith
the robot velocities at the segment endpoints being additional
5= 1 ((vfm - ) N W2, — vfm,)> variables to be computed. We have the usual completion time
-2 a D ’ constraints and collision avoidance constraints. The traver-
sal time constraints are more complicated since the minimum
and maximum possible traversal times now depend on the seg
S (3, —v2, )+ W2, —v2) ment endpoint velocities, which are variables. &gt be the
maximum acceleration, let .. be the maximum velocity of
robot.4;, and letv;, represent the velocity of; at the start of
4 Ymax = Ustare, Umar = Yend segmenk. Let AT andAT;** be the minimum and maxi-
Amax Amax mum possible traversal times fgl; along the segmeiit Let
(b) If AT and AT represent the two minimum traversal time
values (described in Section 5.2). Similarly, et ;<" and
((vfm -2, Wi, vf,u,)> AT represent the two maximum traversal time values. The
> S . . . . . .
o binary variabley;, encodes the disjunctive constraint that ei-
, , ther the values af;, andv;., permit the robot to reach ...
L1500 = V| in S, or they do not, and it is used to select the correspond-
—2 max ’ ing feasible value oA T}™. Similarly, the binary variable;;

max a

the robot velocity can reaah,., and

ATmin —

Unmax zamux * Umax

Aax a
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Vimax
Vend

Vstart

Y

(@) (b)

Fig. 2. MinimumAT: (a) velocity reaches,.; (b) velocity cannot reach,,... The maximum velocity attained is,; 4.

Vv \Y
Vimax - Vimax
Vend Vendf----------

Vstart

Vmiddle- - -

Y

(b)
Fig. 3. MaximumAT': (a) velocity can decrease to zero; (b) velocity cannot decrease to zero. The minimum velocity attained

IS Upigate-

encodes the disjunctive constraint that either the valueg of  The second set of constraints are the nonlinear minimum
and ;.4 permit the robot to reach zero velocity K or traversal time constraints:
they do not, and it is used to select the corresponding feasible
value of AT;**. For simplicity, the velocities at the initialand g, >
goal configurationsy, ;. andv; ..., are assumed zero for " R . )
each robot. The resulting MINLP formulation for the opti- QS-A W = Vi) (W — Ui(k+1))> _ My, <0
mal continuous velocity schedule can be described by thre& 20, ax e
sets of constraints. The first set of constraints are the standaf (Ve — V2) + (V2,0 — Vi)
ik —

2 2
(Wiury = U3)

> —Si
Zai,max

)+M(l—yik)20

completion time constraints, traversal time constraints, an 20,
collision avoidance constraints: 2 2 2 2
ATmin _ Sik . (vi,max — Uik + vi,max - vi(k+l))
- ik,a —
Minimize Cmax e Vi, max 2at\max Vi, max
subject to: +v,gnmx — Uik n Vimax = Vig+1)
Chax = Litast + Tilast fori = 1...,n . imax a_i'm"x
tw >0 AT — Upniddie.ix — Vik) n (Umidate.ix — Vite+n)
- ikb —
ligrr) = i + Tik 1a’7”““‘ Gimax
max min i 2 2 2
AT =ty = ATy (4) Whnidae)” = Z(Zvik + 207 11) + ASikGimax)

tin — tigen + M(L—8;,) = 0
Lk — tigpny + MSijn = 0

Sizn € 10, 1} yir € {0, 1}.

Vimar = Vg =0 ()

AT = yy - AT 4+ (L= ya) - AT

ik,a

Viinitiat = Vi.goat = 0. The third set of constraints are the nonlinear maximum
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traversal times constraints: 6. Setpoint M odel
U.Z —+ v.2 . . .
<Sik - w) - Mz, <0 We now describe the setpoint model to generate a continu-
20 ax ous velocity schedule for a set of robots with dynamics con-
2 2 . . . .
Vix Vi straints; for double integrators, the dynamics constraints are
Spg————)+MA-2z4) >0 . . : ;
20; yax the maximum velocity; ... and maximum acceleratien,,,,
AT™ — o0 bounds. We first compute the time-optimal velocity profile for

ik,a

each robot over its entire path. We then make the following
Wik = Vpiare ik n Wiy — Vpigae)  (6)  additional assumption: each robot travels at its maximum fea-

AT = . . . : -
kb ;i max i max sible velocity atthe endpoints of each of its collision segments.
mar 2 L ) The maximum feasible velocity at each segment endpoint is
Wpidae.)” = Z(Zvl‘k + 2041y — ASikimax) obtained from the corresponding point on the time-optimal

velocity profile. The intuition is that by setting the velocity
v atthe endpoints of the collision zones to be the correspond-
7 € {0, 1}. ing maximum velocity, the robots are biased to move through
their collision zones in the least time. Since any continuous
This MINLP problem describing the optimal solution hasselocity schedule is an upper bound on the optimal contin-
difficult nonconvex constraints. Existing techniques to solvgous velocity schedule, this solution is guaranteed to be an
MINLPs either require convexity or are not guaranteed to findpper bound on the optimal solution. Further, setting the end-
the optimal solution for large problem sizes. point velocities reduces the MINLP formulation to an MILP
We therefore solve two MILPs, which differ only in their formulation. The continuous velocity schedule generated by
AT™* values, to obtain good lower and upper bounds othe setpoint model is the solution used to specify the controls
the optimal solution. Initially, we also assume that the firsor coordinating the robots.
segment is sufficiently long for the robot to reagl),, by its
end, and that the last segment is sufficiently long for the robot
to decelerate from, ., to zero. 6.1. Mixed I nteger Linear Programming Formulation

AT =z AT + (L= z) - AT

ik,a

1. Lower bound problem. A lower bound for the MINLP For double integrators, the maximum feasible velocity is
problem can clearly be obtained by solving the MILP,, ... Since the segment endpoint velocities arg,, by the
for the instantaneous model, assuming infinite accesetpoint assumption, the minimum and maximum times to
eration. We obtain a tighter lower bound by formu+raverse a segment of lengsh are
lating an improved instantaneous model that consid-

ers the time to accelerate and decelerate over the first S/ v;

and last segment; .for each robot. Since the segments Amin if & an interior segment
are assumed sufﬁmgntly long for roh@t .to go from KT S/ Vimar + Vimar /205 mar
zero tov, ... (and vice versa), the minimum traver- if the first or last segment

sal times for the first and last segments Arg™" =

S/ Vi max F Vimax/2G; max - SOIVING the MILP for this im-

proved instantaneous model gives a lower bound for the

MINLP problem. o0 it Si = 07,00/ Qimax

AT;‘T‘” = 2Ui,m(u_z(vlzvmax_ai.muxsik)l/z if S, < 1)2 /Cl-

2. Upper bound problem. Here the original MINLP model @ max ik fmax [ Simaz
is transformed into an MILP problem by setting the ve-
|0Cities at the endpoints Of each Segment (except the The MILP formulation for the Setpoint modelisidentical to
initial and goal configurations) to,.., the highest fea- the MILP formulation for the improved instantaneous model,
sible velocity given the segment lengths. Solving théxcept for the difference in the7"** values. Like the instan-
MILP problem for this setpoint model gives a feasibldaneous model, the setpoint model is also NP-hard. The so-
Continuous Ve|ocity Schedu|e that iS an upper bound fé\dtlon to the Setpoint MILP iS a Continuous Ve|OCiW SChedu|e

the MINLP problem, as described in the next sectionthat is guaranteed to be an upper bound on the optimal con-
tinuous velocity schedule. When the segment traversal time

Note that under the assumption that the initial and goal, generated by the MILP does not correspond to either min-
configurations are collision-free, a valid solution always existsnum time or maximum time trajectories over the segment,
for both problems since a feasible schedule is to pick somee generate a velocity profile, as described in Section 6.3, so
arbitrary sequencing of the robots, and to have only one robibie robot can traverse the segment in the given amount of time
at a time move along its path. subject to its velocity and acceleration constraints.
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6.2. Relaxing Segment Length Constraints (Figure 4). The velocity during the off-phase, ., is ob-

. , tained by solving the following quadratic equation:
We now relax the requirement that the first and last segments y g 94 a

.. . 2 2
are sufficiently long for the robot velocity to reaeh,.. and Vimax — Vikofr . o plimar T Vikors \ _ ¢
zero, respectively. We assume thateach pathislong enoughfor  a; . A N e

the robot to reach its highest speed,.. at some point along Selecting the non-negative solution
the path. (If the path is not sufficiently long, we compute the

ai,max

highest speed attained by the time-optimal velocity profile Vitosy = —}r,-ka,;m + Uy e

along the path and treat that effective highest speeg,as) ' 2

We then set the velocity at each segment endpoint to be the 1 ) 12
highest velocity consistent with the initial and goal velocities. 5 (@smar (Tetimax — AT Vimar +ASi))

The ve!ocnyp,-k at thg _start of theth segment, assummg robotYieldS the trajectory profile specified by
A; begins with an initial velocity of zero and ends with a goa o
velocity of zero, is —Cimars L < 1< My 4 mmeRall

Ai,max

Vi,max —Vik,of f
\/2a Zk_l S, if Zk_l S.. < O ar 0, luc + @, max =<
i,max j=1"ij j=19ij = 2,:”1“ a; (t) — —I-I',-k . Ui'm{;;zi:{'”/f
Uik = 12a. g i < Jimax .
Zat.max ijk Sl_] If ijk Sl] = 20; max Qi s tik + Ty — Vi,max —Vik.of f S t

di,max
Vi max OtherWise

< lix + Tik-

Note that the velocity,, at the start of each segment is A few example velocity profiles generated by this algo-
uniquely determined, since the path is sufficiently long fofithm are shown in Figure 5.
the robot to reach its highest spegg,.. at some point along
the path. 6.4. Optimality

The corresponding bounds on the segment traversal tin\m
AT and AT for the setpoint model are computed from
AT™" (v, Vigyy) @NAAT ™ (v, Vis1)), @S describedin Sec-
tion 5.2.

ile in the general case there can be a gap between the
lower bound of the improved instantaneous formulation and
the upper bound provided by the setpoint formulation, we

We correspondingly update the improved instantaneo hgve |dent|f|ed_two cases _for wh|c_h the gap IS Z€rO. Tha_t IS,
ere the setpoint formulation provides an optimal coordina-

model so that the velocity,, at each segment endpoint istion schedule

the highest velocity physically possible, which is the corre- '

sponding setpoint velocity. For the improved instantaneous 1. When each robot can collide with at most one other
model, AT takes the same values as in the setpoint model,  robot. Since each robot can collide with at most one
while AT = oo since the robot can pause its motion other robot, the multiple robot problem can be reduced
instantaneously. to a set of independent problems, each optimizing the
motions of a pair of robots. It can be shown (Shin and
Zheng 1992) that when the robots have a single shared
collision zone, the optimal solution for a pair of robots
Solving the setpoint formulation gives a feasible coordination is to independently generate the time-optimal velocity

6.3. Generating Vel ocity Profiles

schedule, from which we obtain the traversal timealong profile for each robot and then compute the start times
each segmelitfor each robotd;. When this segment traversal for the two robots that minimize the total completion
time 7;, does not correspond to an extremal trajectory (either  time. Clearly, the setpoint formulation will automati-
a minimum time or maximum time velocity profile) over the cally generate such a solution.

segment, we must generate a feasible velocity profile with
traversal timer;,.. In general, this is not easy due to the veloc-
ity and control inequality constraints. (The robot’s velocity
profile cannot be generated by solving differential-algebraic
equations, since the velocity constraints and accleration con-
straints that are active at each time instant are not known.)

For the double integrator, we exploit its dynamics to gen-
erate a velocity profile consistent with traversal time By
observing that the nonextremal trajectories hayg andv,,, Note that in the limit as robot maximum acceleratigp,
equal tov,,,, we can solve analytically to show that a sym-approaches infinity, the setpoint model approaches the im-
metric bang—off-bang velocity profile is a feasible trajectorproved instantaneous model.

2. When the length of each segment is sufficiently long for
each robot to reach zero velocity in the interior of each
segment. Here, the improved instantaneous and setpoint
formulations are identical since theWT"** values are
identical. When this occurs, the gap is guaranteed to
be zero and the setpoint solution provides an optimal
feasible velocity schedule.
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Vmax

Voff

t
tik tik + Tik

Fig. 4. A symmetric bang—off-bang velocity profile over a segment. Herg,andv,,, are equal ta,,,,.

01 4 01

Fig. 5. Example velocity profiles for three robots, indicating their velocities over their entire paths.

7. Coordinating M ultiple Car-like M obile (a) Acceleration constraints due to the maximum en-
Robots gine forceF,,, and the maximum braking force
F,., are
We now illustrate our coordination approach on nonholo- o 7
nomic car-like robots with dynamics constraints. Paths that ™ <aq< 22
m m

satisfy the nonholonomic constraints such as Dubins’ paths or
Reeds and Shepp’s paths (Laumond 1998) typically require  (b) Sliding friction constraints to prevent the robot

the robot to stop when there is a discontinuity in curvature (to slipping off the path are

change the steering direction) or when there is a cusp point (to

reverse the robot motion direction). Therefore, we use sim- —/u2g? — k?v* < a < Ju?g? — k2l

ple continuous curvature paths for a forward moving robot

(Scheuer and Fraichard 1997). Thus, the (state-dependent) acceleration constraints are
Fyin

7.1. Car-like Robot Model a> maX<7, —Vug? - K2v4>

The configuration of a robot is given ki, y, 8, k) where
(x, y) represents the robot reference point at the mid-point of
the rear axleq is the robot orientation, andis the signed path . Fax P 2
) ) ) a=mn|—-,/u?g*—kv*|.
curvature. Let be the robot velocity at its reference point. m
We model a car-like robot of massmoving on a horizon-
tal plane with a friction coefficient as subject to the follow- 2. Velocity constraints.

ing dynamics constraints (Shiller and Chen 1990; Fraichard ) ) )
1999). (&) Maximum velocity constraints are9 v < v,,,,.

These can be used to enforce maximum speed
1. Acceleration constraints. constraints and to prevent tip-over at high speeds.

and
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(b) Velocity magnitude constraints. To ensure thgpath generation. Thisimplies thatthe maximum robot velocity
n?g?—i?v* > Ointhe sliding friction constraints, is v,,,,. This minimum steering radius constraint also makes

we have the constraint the upper and lower bounds on the acceleration state indepen-
dent constants with magnitud¢,./m. Therefore, the double
1224 1524 . . ! . .
- m <v= m integrator formulation of Section 5.1 applies directly to these
car-like robots.
Thus, the (state-dependent) velocity constraints are
g 7.4. Coordinating Multiple Car-like Robots
05v§min<vmw —) ) . . .
x| Given a set of: car-like robotsA,, ... , A, with specified
SCC paths that satisfy the above minimum steering radius
7.2. Paths constraints, we generate collision-free continuous velocity

The specified paths are chosen to be simple continuous cur%‘?f"es along the specified paths that minimize the com-

ture (SCC) paths (Scheuer and Fraichard 1997). SCC paths%are(ﬁ'ig? time using the setpoint MILP formulation described
composed of straight lines, circular arcs, and clothoid curves. Our approach can be extended to car-like nonholonomic

The curvature of a clothoid curve varies linearly with its path bots with piecewise continuous curvature oaths. When the
length and so the clothoidal segments bridge the straight-lirﬁ% P b '

segments and circular arcs. Each patfidgontinuous, so the class of continuous curvature paths includes cusp points

path has continuous curvature and no cusps. Since the rog%rti'gg%r(;jl’ Svcvher:er,taré% aesv'%nfrlﬁl ??h Ij["’t‘rr? |rrau:)x ?\?dl Lai‘:“"
can follow the path without having to stop or reverse directio 0 ), wemusta €constra attherobotveiocity

we assume the robot moves forward monotonically along i{QUSt be zero at every such point, and compute the velocity

path. The curvature of an SCC path is upper bounded bywh|letak|ng|nto accountthe direction reversals at cusp points.

Knax- That is, the steering radius > p,, = 1/kpa. Addi-

tionally, there is an upper bound on the curvature derivativ8, | mplementation

K, since a robot must reorient its front wheels with a finite

steering velocity. We have implemented software in C++ to coordinate the mo-
tions of polyhedral robots with specified paths (Figure 6 and

7.3. Optimal Control Problem For A Single Car-like Robot ~ Multimedia Extensions 1-6). We compute the collision zones
using the PQP collision detection package (Larsen et al. 2000)

Consider a single car-like robot moving along an SCC pathy sampling uniformly along each robot’s path. The sampling

segment withr andv representing its position and velocity resolution along the robots’ paths must be sufficiently fine to

respectively. The optimal control problem is avoid missing any part of the collision zones. Since the op-
AT timal coordination may cause a pair of robots to just touch
Min or Max AT — / 1ds at the bogndary of th_eir collision zone, we compute collision
zones using a specified tolerance.
) 0 We generate the MILP formulations from the computed
subject to: collision zones and solve them using the AMPL (Fourer, Gay,
X 0 1 X 0 and Kernighan 1993) and CPLEX (ILOG Inc. 1999) opti-
( v ) - ( 0 0 ) ( v > + < 1 )a(t) mization packages. Since the setpoint formulation with its
x(0) = —S x(AT)=0 @ tight.er constre_lints is usually solved rr_1uch more quickly tha_n
the improved instantaneous formulation, we use the setpoint
V() = Vsare V(AT) = Vena solution as an upper bound constraint for the improved instan-
v>0 v < v < |8 taneous formulation. See Table 1 for running times measured
- - e ~V x| on a Sun Ultra 60. The MILP problem complexity depends
F,in . primarily on the number of collision zones, and to a lesser ex-
a(t) = " a(t) < o tent on the number of robots. For a particularly difficult prob-

lem (for example, the symmetric radial case with a bottleneck
at the center) or for a sufficiently large number of collision
This TPBVP is difficult to solve because of the complexones, the MILP time will dominate the running time.

constraints on the state and control variables. We assumeln our experiments, an optimal solution, indicated by a
that F,,;,, = —F,., and additionally assume?g? — «2v* >  zero gap between the minimum completion time values com-
(F,.../m)?, which is reasonable for typical values of the variputed by the improved instantaneous and setpoint formula-
ables. This constraint can be expressed as a minimum sta@&ns, was found in almost all cases; the maximum gap ob-
ing radius constraing,,;, > v2 //u?g? — (F,../m)2during served was 8.84%. We have observed that a zero gap may

— “max

a’(r) < u2g? — kv
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()

Fig. 6. Overhead view of example paths for 12 robots: (a) radial paths with symmetry, with a bottleneck at the center; (b)
constant curvature straight-line and circular paths for car-like robots; (c) SCC paths for car-like robots. Goal configurations

are indicated by solid polyhedra. Animations may be seen in Multimedia Extensions 1-6.

occur even with small values @f,,.,. Example animations ous velocity schedule, and the improved instantaneous model
can be seen at http://www.cs.rpi.echgakella/multikino/ and provides a lower bound on the optimal solution. The princi-

in the Appendix. pal advantage of our MILP formulations is that they permit
the collision-free coordination of a large number of robots.
8.1. Moving Obstacles The MILP formulations for coordination of multiple robots

We have app“ed both the instantaneous and Setpoint fornﬁr_e NP'hard, and their Comp|8Xity increases directly with the
lations to include multiple moving obstacles with known tralumber of collision zones. However, efficient collision de-
jectories. Each moving obstacle is treated like a robot wit¢ction software and integer programming solvers make this
a specified trajectory. The collision constraints for each olPProach practical forreasonable problem sizes. Furthermore,

stacle are computed from its known velocity profile, and aré€ input set of robots may be partitioned into smaller disjoint
easily added to the MILP formulations. sets of robots with shared collision zones, which may then be

coordinated independently.

There are several directions for future work. While we
have focused on reducing the completion time, other linear
We have developed an approach to generate continuous 9bjective functions, such as the average completion time or
locity profiles for (near) minimum time collision-free coordi-the total execution time, may be optimized. Additionally, ob-
nation of multiple robots with kinodynamic constraints alongective functions that may be described as piecewise linear
specified paths. We use two MILP formulations, of whicHunctions or convex quadratic functions may also be solved
the setpoint model provides a continuous velocity schedultsing CPLEX (ILOG Inc. 1999). It is important to analyti-
that is feasible and is an upper bound on the optimal contingally characterize the gap between the improved instantaneous

9. Conclusion
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Table 1. Sample Run Timesfor Setpoint Formulation (MILP-S) and Improved I nstantaneous For mulation (ML P-I)

% Gap
Number of  Collision  Numberof MILP-S  Number of MILP-I Between
Number of Collision Time Binary Time Binary Time MILP-S
Robots Zones (s) Variables (s) Variables (s) and MILP-I
5 13 17.64 20 0.04 14 0 0.0
8 42 52.63 64 0.13 62 0.08 0.0
10 71 84.87 102 0.53 100 0.17 0.0
12 82 109.96 124 0.61 123 0.25 0.0
8 (radial, unsymm.) 32 62.89 54 0.167 54 0.095 0.0
12 (radial, unsymm.) 94 166.19 128 2.2 128 0.49 0.0
8 (radial, symm.) 29 28.4 54 3.87 54 0.095 0.0
12 (radial, symm.) 86 20.556 124 216.7 124 65.7 0.0
12 (const. curvature) 154 11.62 158 2.167 158 0.967 7.4
12 (SCC) 64 118.94 85 0.296 85 0.16 0.0

Note. (The MILP-I formulation used the MILP-S solutions as upper bounds.) Collision checks were performed at 65-200
points along each path for most paths, and at 605 points for the SCC paths. AMPL presolve times are not included.

model and setpoint model solutions, and to develop heuriStryk 2000; Betts 2001). The advantages of this approach are
tic algorithms for closing the gap. Developing computationghat it does not require writing down the first-order necessary
procedures to directly solve the continuous velocity MINLRonditions, which may be tedious or even impossible to do
formulation is important. We are currently characterizing théor complex dynamics, and it leverages advances in nonlinear
convexity of the MINLP constraints to develop an approachkolvers, such as SNOPT (Gill, Murray, and Saunders 2002),
to directly solve for the global optimum of the MINLP. which can solve nonlinear programming problems with many

Extending the approach to general car-like robots, aircratjousands of constraints and variables.
and manipulator robots is an interesting next step, since the The approach described here represents a step towards
complex constraints on the state and control variables magelving the challenging problem of coordinating multiple
solving the TPBVPs for individual segments challenging. Toobots without specified paths. To relax the fixed path con-
apply this approach to aircraft, we can use a simplified planatraint, we are developing formulations for coordination of
aircraft model (Bicchiand Pallottino 2000). For specified conmultiple robots on a roadmap where each robot can select
tinuous curvature paths, the velocity is a variable with magna path from a set of candidate paths. By introducing a bi-
tude bounds and the acceleration is the control input. To appiary variable for each candidate path to denote whether that
this approach to manipulator robots, we must compute appngath is chosen, the roadmap coordination can also be mod-
priate collision zones and solve the TPBVPs for the dynamiled as a mixed integer programming problem with additional
model of the robots. One approach is to generate optimal yv@admap constraints. The approach in this paper can also be
locity profiles by extending previous methods for optimizingcombined with probabilistic techniques, which can generate
motion of a manipulator along a path (Bobrow, Dubowskypaths (Svestka and Overmars 1998; Sanchez and Latombe
and Gibson 1985; Shin and McKay 1985; Slotine and Yang002) or trajectories (LaValle and Kuffner 2001; Hsu et al.
1989; Shiller and Lu 1992). However, we must additionally2001) for the set of robots, to then optimize robot motions
address computing the maximum traversal times, and genafeng those paths subject to dynamics constraints. Automatic
ating velocity profiles consistent with the computed traversahodification of robot paths to reduce completion time would
times. An alternative approach we have recently demonstratied a useful extension. Another interesting direction is on-line
is to use the time-scaling law for robot manipulators (Hollereoordination of multiple robots using sensor-based estimates
bach 1984) to perform time-scaled coordination of multiplef robot positions and velocities.
manipulators (Akella and Peng 2004).

To apply the approach for coordinating multiple robots i'A
this paper to more general systems with complex linear or
nonlinear dynamics, we must turn to numerical methods, @he multimedia extension page is found at http://www.
exact analytical solutions do not exist. A promising approadiir.org. Each example animation depicts a set of robots be-
is to use specialized nonlinear programming techniques afate and after coordination. Goal configurations are indicated
to solve the discretized version of the optimal control problemy solid polyhedra. Collisions are indicated by changing the
as a large-scale sparse nonlinear programming problem (vawior of the colliding robots to red.

ppendix: Index to Multimedia Extensions
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Table of Multimedia Extensions

Description

Extension Type
1 Animation
2 Animation
3 Animation
4 Animation
5 Animation
6 Animation

12 robots moving along radial
paths with symmetry, with a
bottleneck at the center (before
coordination)

12 robots moving along radial
paths with symmetry, with a
bottleneck at the center (after
coordination)

12 car-like robots moving on
constant curvature straight-line
and circular paths (before coor-
dination)

12 car-like robots moving on
constant curvature straight-line
and circular paths (after coordi-
nation)

12 car-like robots moving on
simple continuous curvature
paths (before coordination)

12 car-like robots moving on
simple continuous curvature
paths (after coordination)
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