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Abstract

Coordinating the motions of multiple robots operating in
a shared workspace without collisions is an important ca-
pability. We address the task of coordinating the motions of
multiple robots when their trajectories (defined by both the
path and velocity along the path) are specified. This prob-
lem of collision-free trajectory coordination arises in weld-
ing and painting workcells in the automotive industry. We
identify sufficient and necessary conditions for collision-free
coordination of the robots when only the robot start times
can be varied, and define corresponding optimization prob-
lems. We develop mixed integer programming formulations
of these problems to automatically generate minimum time
solutions. This method is applicable to both mobile robots
and articulated arms, and places no restrictions on the num-
ber of degrees of freedom of the robots. The primary advan-
tage of this method is its ability to coordinate the motions of
several robots, with as many as 20 robots being considered.
We show that, even when the robot trajectories are specified,
minimum time coordination of multiple robots is NP-hard.

1 Introduction

Coordinating the motions of multiple robots without col-
lisions as they perform a task in a shared workspace is an
important capability. We focus on coordinating the motions
of multiple robots constrained to follow specified trajecto-
ries. By trajectory, we mean both the geometric specifica-
tion of the path and the velocity at which the robot traverses
the path. We outline thistrajectory coordinationproblem
and define corresponding optimization problems where the
goal is to find the minimum-time collision-free robot coor-
dinations when only the robot start times can be changed.

There are a number of applications in which this trajectory
coordination task is the exact problem to be solved. Con-
sider scheduling the motions of multiple robots in a welding,
spray painting, or assembly workcell to minimize the cycle
time. Since the robots have overlapping workspaces, we
must coordinate their motions to avoid collisions between
robots. We assume that the given trajectory of each indi-
vidual robot should not be modified since it may take into
account collisions with stationary obstacles, have a desired

velocity profile, or have desired wait times at critical points.
Alternative approaches to minimizing the completion time,
such as velocity tuning of the robots, may be inappropriate;
for example, a painting robot must follow a given trajectory
to spray paint uniformly.

We identify sufficient and necessary conditions for
collision-free coordination of multiple robots and formulate
the task as an optimization problem using a mixed integer
programming formulation that can be solved using commer-
cial solvers. We use collision detection software to iden-
tify potential collision conditions. The primary advantage of
this method is its ability to handle many robots, each with
several degrees of freedom. We place no restrictions on the
number of degrees of freedom of the robots. This approach
also applies to mobile robots and Automated Guided Vehi-
cles (AGVs) moving along fixed paths with specified trajec-
tories, and can also incorporate the motions of manipulator
arms on mobile robots.

The paper is organized as follows. Section 2 briefly dis-
cusses related work. Section 3 defines the problem, formu-
lates a set of optimization problems, and describes sufficient
conditions for collision-free motion of multiple robots. Sec-
tion 4 presents a mixed integer programming formulation
for coordinating the motions of multiple robots with spec-
ified trajectories. Section 5 discusses necessary conditions
for collision-free motion and describes a follow-the-leader
strategy. Section 6 describes useful extensions to the basic
problem. Section 7 discusses the computational complexity
of the coordination problem. Section 8 describes our pre-
liminary implementation of the planner and experimental re-
sults. Section 9 outlines directions for future work.

2 Related Work

Motion planning for multiple robots is a broad research
area (see [11] for an overview). In the most general case,
the problem is to have each robot move from its initial to its
goal configuration, while avoiding collisions with static ob-
stacles or with other robots. This problem is highly under-
constrained, and very few researchers have attempted to deal
with it directly. Hopcroft, Schwartz, and Sharir [7] showed
that even a simplified two-dimensional case of the problem
is PSPACE-hard.



A slightly more constrained version of the problem is ob-
tained when all but one of the robots have specified trajec-
tories. This is essentially the problem of planning a path
for a single robot among moving obstacles, which has been
treated by Reif and Sharir [17] and Kant and Zucker [9]. One
can generalize this problem to obtain a heuristic solution to
the problem of planning the motions of multiple robots. Erd-
mann and Lozano-Perez [3] assign priorities to robots and
sequentially search for collision-free paths for the robots, in
order of priority, in the configuration-time space. At each
iteration, previous robots are treated as moving obstacles.

If the problem is further constrained so that the paths
of the robots are specified, one obtains a path coordina-
tion problem. O’Donnell and Lozano-Perez [16] developed
a method for path coordination of two robots. LaValle
and Hutchinson also addressed a similar problem in [12],
where each robot was constrained to remain on a specified
configuration space roadmap during its motion. The work
most closely related to ours is that of Leroy, Laumond, and
Simeon [14]. They perform path coordination for over a hun-
dred robots. However the size of the largest subset of robots
with intersecting paths is 10.

In this paper, we address an even more constrained ver-
sion of the multiple robot motion planning problem: the tra-
jectory coordination problem where the trajectory of each
robot, including the time derivatives along the path, is spec-
ified. Previous work on trajectory coordination has focused
almost exclusively on dual robot systems (Bien and Lee [1],
Chang, Chung and Lee [2]). Shin and Zheng [19] show that
for a two-robot system, generating time-optimal trajectories
for each robot independently and then delaying the start time
of one of the robots leads to a minimal finish time provided
the collision region satisfies a strong connectivity assump-
tion. (A sufficient condition for this assumption is that the
robots may collide only once during their motion.)

The trajectory coordination problem for multiple robots
is closely related to jobshop scheduling problems (Garey,
Johnson, and Sethi [5], Lawler et al. [13]). Here space is the
common resource, and there are additional trajectory con-
straints. We model coordination of robots with fixed tra-
jectories as no-wait jobshop problems (Sahni and Cho [18],
Goyal and Sriskandarajah [6]).

3 Problem Formulation

The general problem that we are trying to solve can be
expressed as an optimization problem:Given a set of robots
with specified paths and velocity profiles on those paths, find
a set of parameterizations for these paths such that the total
execution time for the ensemble of robots is minimized, the
velocity constraints on the paths are satisfied, and no colli-
sions occur.

To make this problem more precise, we first turn to a brief
review of paths and their parameterizations (Section 3.1).

This will lead to a precise and straightforward characteriza-
tion of the set of parameterizations under which the robots’
velocity profiles remain invariant. We then develop a charac-
terization for collisions that can occur between robots (Sec-
tion 3.2), and a set of sufficient conditions for collision-free
coordination of the robots (Section 3.4).

3.1 Trajectories and Their Parameterizations
We denote theith robot byAi, a configuration space by
C, and a configuration byq ∈ C. By path we mean the
geometric specification of a curve in configuration space

γ : ζ ∈ [0, 1] 7→ γ(ζ) = q ∈ C

A differentiable functionτ given by

τ : t ∈ [0, T ] 7→ τ(t) = ζ ∈ [0, 1]

with τ(0) = 0 andτ(T ) = 1 is a reparameterization of the
pathγ. For our problem,t is a time variable, andT is some
constant such that all robots will have completed their tasks
prior to timeT . A path together with a parameterization
defines atrajectory. By trajectory we mean a path with the
velocity of the robot specified at every point along the path.
We will often simplify notation, and denote a trajectory as
γ(t) rather than explicitly representing the parameterization.

For our problem, robot velocities are specified a priori.
One way to do this is to specify an original parameterization
for γ, sayτ, such that the time derivatives ofτ provide the
desired velocity profile. Thus, any reparameterization, say
τ ′, that gives the desired velocity profile will be such that, for
any ζ value along the path, the time derivatives ofτ ′ andτ
agree. It is easy to show that all such reparameterizations are
obtained by merely changing the start time of task execution.

Without loss of generality, we will consider only the case
where the start times for the robots are delayed, i.e.,

τ ′i(t) =
{
τi(t− tstarti ) : t ≥ tstarti

0 : t < tstarti
, (1)

in which tstarti ≥ 0 is the time at which robotAi begins
its motion, andτi is the originally specified parameteriza-
tion. Note that this equation also implies thatAi remains
motionless untiltstarti . This restriction on possible reparam-
eterizations leads to the following optimization problem.

Optimization Problem I: Given a set of robots with spec-
ified trajectories, find the starting times for the robots such
that the total execution time for the ensemble of robots is
minimized and no collisions occur.

We now turn our attention to a set of sufficient conditions
for collision-free motion for this optimization problem. As
will be seen in Section 4, these sufficient conditions lead
to an optimization problem that can be solved using mixed
integer linear programming.



3.2 Collision Zones: Geometry
Here we develop the representation for the relevant inter-

actions between robots, using the above terminology for an
individual robot moving on a path with a specified velocity
profile.

We first develop notation to represent the set of points
at which theith robot,Ai, could possibly collide with the
jth robot,Aj . For a specific value ofζi, the subset of the
workspace that is occupied by theith robot is denoted by
Ai(γi(ζi)). A collision between two robots corresponds to
the situation in whichAi(γi(ζi))∩Aj(γj(ζj)) 6= ∅. For the
ith robot, we denote byPBij the set of values ofζi such
that when robotAi is at configurationγi(ζi) there exists a
configuration of another robot,Aj , such that the two robots
collide:

PBij = {ζi | ∃ ζj ∈ [0, 1] s.t. Ai(γi(ζi))∩Aj(γj(ζj)) 6= ∅}

In other words,PBij is the set of all points on the path of
robotAi at whichAi could collide withAj . (Our choice of
the notationPBij derives from the usual convention of using
the notationCB to denote points in the configuration space
at which collisions occur.)

The setPBij can be represented as a set of intervals

PBij = {[ζ1
is, ζ

1
if ], . . . , [ζmis , ζ

m
if ]} (2)

where each interval is acollision zone, and the subscriptss
and f refer to the start and finish of thekth collision, in-
dexed by the superscriptk, andm denotes the number of
collision zones for the robotAi with Aj . There is a natu-
ral correspondence between the collision zones ofPBij and
the collision zones ofPBji. In particular, for each collision
zone inPBij there is at least one collision zone inPBji that
could result in collision of the two robots. We will refer to
these corresponding pairs of collision zones ascollision zone
pairs, denoted byPIij . The set of collision zone pairs can
be represented by a set of pairs of intervals:

PIij = {< [ζkis, ζ
k
if ], [ζkjs, ζ

k
jf ] >}. (3)

Note that the superscriptk serves to index the set of collision
zone pairs. As we show in Section 3.4, it is straightforward
to usePIij to establish a set of sufficient conditions for col-
lision free scheduling of the robots. Note thatPIij andPIji
contain equivalent information.

Conceptually, collision zone pairs are generated by com-
puting the volume swept by each robot and determining
where it intersects the volume swept by another robot. The
intersection regions of the swept volumes of pairs of robots
give the collision zone pairs. Figure 1 is an example of
two translating robots with specified trajectories that over-
lap in two collision zones. For this examplePB12 =
{[a1, a2], [a3, a4]} andPB21 = {[b1, b2], [b3, b4]}. Colli-
sions can occur only whenζ1 ∈ [a1, a2] andζ2 ∈ [b1, b2]
or whenζ1 ∈ [a3, a4] andζ2 ∈ [b3, b4]. Thus,PI12 = {<
[a1, a2], [b1, b2] >,< [a3, a4], [b3, b4] >}.
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Figure 1: Example with two translating robots.

3.3 Collision Zones: Timing
The collision zone pairs describe the geometry of possible

collisions, but for scheduling the robots, we are interested in
the timing of the collisions. Thus, it is useful to develop
a corresponding representation for the times at which two
robots might collide. For a specified parameterization,τi,
the set of times at which it is possible that robotAi could
collide with robotAj is given by:

T Bij(τi) = {t | Ai(γi(τi(t))) ∩ Aj(γj(ζj)) 6= ∅,
for someζj ∈ [0, 1], i 6= j}

= τ−1
i (PBij).

As with PBij , the setT Bij(τi) can be represented by a set
of intervals, indexed by superscriptk, the endpoints of which
are obtained by applying the inverse parameterization (i.e.,
τ−1
i ) to the endpoints of the intervals ofPBij given in (2):

T Bij(τi) = {[τ−1
i (ζkis), τ

−1
i (ζkif )]} (4)

We refer to each interval as acollision-time interval.
As with collision zones, there is a natural correspondence

between collision-time intervals inT Bij andT Bji, and we
refer to these pairs ascollision-time interval pairs. For the
two robots,Ai andAj , we denote the set of all collision-
time interval pairs byCIij . We representCIij as a set of
pairs of intervals

CIij = {< I1
i , I

1
j >, . . . , < Ini , I

n
j >}, (5)

where the first intervalIki of each pair< Iki , I
k
j > corre-

sponds to robotAi and the second intervalIkj corresponds
to robotAj . During the time intervalIki , Ai is in a specific
collision zone andAj is in a corresponding collision zone
during time intervalIkj . Note thatCIij andCIji contain
equivalent information. The interval pairs inCIij(τi, τj),
indexed byk, can be determined from the mapping specified
in (3) by applying the appropriate inverse parameterization
to the endpoints of the collision zone intervals in each colli-
sion zone pair. That is,

CIij(τi, τj) = {< [τ−1
i (ζkis), τ

−1
i (ζkif )],

[τ−1
j (ζkjs), τ

−1
j (ζkjf )] >}. (6)



Note that ifIki andIkj do not overlap, then the two robots
cannot be in thekth collision zone pair simultaneously, and
therefore no collision will occur in this collision zone pair.
This observation forms the basis for the sufficient conditions
given in Section 3.4.

For notational convenience, we introduce the variables
T kjs andT kjf given by

T kjs = τj
−1(ζkjs) (7)

T kjf = τj
−1(ζkjf ) (8)

whereT kjs (respectivelyT kjf ) denotes the time at whichAj
enters (resp. exits) thekth collision zone if tstartj = 0.
Note that with multiple robots, the notationT kjs is ambigu-
ous since it does not specify the particular other robot that
is involved in the collision. When we use this notation, the
context will make clear which other robot is involved. See
Figure 2 for a graphical illustration of these quantities.
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Figure 2: Timelines for robotsA1 andA2. The bold lines
correspond to the collision-time intervals for the robots.

Since our parameterizations are restricted to those that
only delay the robot start times, we will always have param-
eterizations of the form

τ ′(t+ tstart) = ζ = τ(t), (9)

for each value ofζ ∈ [0, 1]. Inverting the parameterizations
τ ′ andτ we obtain

τ ′−1(ζ) = τ−1(ζ) + tstart. (10)

Using this notation, we can writeCIij(τ ′i , τ ′j) as

CIij(τ ′i , τ ′j) = { < [T 1
is + tstarti ,T 1

if + tstarti ],
[T 1
js + tstartj , T 1

jf + tstartj ] >,
...

< [Tnis + tstarti , Tnif + tstarti ],
[Tnjs + tstartj , Tnjf + tstartj ] >}.

3.4 Sufficient Conditions for Collision-free
Scheduling

To prevent collisions between two robotsAi andAj , it
is sufficient to ensure that the times at whichAi could col-
lide with robotAj do not coincide with the times at which

Aj could collide with robotAi, which can be assured if the
two robots are not in any collision zone pair belonging to
PIij at the same time. This amounts to ensuring that there
is no overlap between the two intervals of any collision-time
interval pair for the two robots. IfIki ∩ Ikj = ∅ for every
collision-time interval pair< Iki , I

k
j >∈ CIij(τi, τj), then

no collision can occur. (Note that it is not necessary to also
check the interval pairs inCIji, since preventing collision of
Aj withAi necessarily prevents collision of ofAj withAi.)
This sufficient condition leads to an optimization problem:

Optimization Problem II: Given a set of robots with spec-
ified trajectories, find the starting times for the robots such
that the total execution time for the ensemble of robots is
minimized and no two intervals of any collision-time inter-
val pair overlap.

In Section 4, we will present a Mixed Integer Linear Pro-
gram that solves this optimization problem. The sufficient
condition is clearly not a necessary condition. For example,
in a follow-the-leader situation where the robots move in the
same direction along their paths in the collision zone, the fol-
lower robot is delayed unduly since it waits for the leader to
exit the collision zone before it enters the collision zone. For
now, we note that this is a conservative strategy that guar-
antees that no collision occurs between the two robots. We
will discuss an alternative strategy that provides the mini-
mum time collision-free schedule in Section 5.

3.5 Assumptions

We make the following assumptions to generate a
collision-free coordination of the robot trajectories:

1. The only moving obstacles in the workspace are the
robots, and the specified trajectory for each robot does
not result in collisions with any static obstacles.

2. Each robot does not collide with the other robots when
they are at their start or goal configurations.

3. The starting velocity of each of the robots is zero.

4. Each robot path is monotonic, that is, the robot does not
back up along its path.

5. Each robot executes its specified trajectory, with no
changes to its specified velocities, once it starts mov-
ing.

6. The robot motions are sampled at sufficient resolution
so that no collisions occur during the motion between
successive collision-free configurations.

4 An Integer Programming Formulation

We first develop a mixed integer linear programming
(MILP) formulation for Optimization Problem II for the two
robot case, and then the general case with multiple robots.
tstarti is the start time for robotAi, which is to be computed,



andTi is the motion time required for robotAi to traverse
its entire trajectory when starting at timetstarti = 0.

4.1 The Two Robot Case
First consider trajectory coordination of two robotsAi

andAj . Assume the trajectory of each robot is given and
that the robots can collide with each other in only one re-
gion and that the robots do not collide multiple times in the
region. For each robot, identify its collision zone and com-
pute the time interval during which it is in its collision zone.
The collision-time interval[Tis, Tif ] of robotAi, where sub-
scriptss andf indicate start and finish times respectively, in-
dicates when robotAj can collide with it. The collision-time
interval[Tjs, Tjf ] of robotAj is similarly computed.

The maximum completion time for the two robots is equal
to the time when the last robot completes its task, i.e.,
maximum{tstarti +Ti, t

start
j +Tj}. Since we wish to min-

imize the completion time while ensuring the robots are not
in their collision zones at the same time, the trajectory coor-
dination problem can be stated as:

Minimize max{tstarti + Ti, t
start
j + Tj}

subject to
tstarti + Tif < tstartj + Tjs or tstarti + Tis > tstartj + Tjf
tstarti ≥ 0
tstartj ≥ 0

Since the objective function and the constraints are not
linear, we transform them to a linear form. Let the max-
imum time for robotsAi andAj to complete their mo-
tions betcomplete. Clearly tcomplete ≥ tstarti + Ti and
tcomplete ≥ tstartj + Tj . The disjunctive “or” constraint can
be converted to an equivalent pair of constraints using an in-
teger zero-one variableδij andM , a large positive number
([15]). HereM can be chosen to beTi + Tj . When robot
Ai enters the collision zone first,δij = 0 and the constraint
tstarti + Tif < tstartj + Tjs is active, and when robotAj
enters the collision zone first,δij = 1 and the constraint
tstartj + Tjf < tstarti + Tis is active. The equivalent MILP
formulation is:

Minimize tcomplete
subject to
tcomplete − tstarti − Ti ≥ 0
tcomplete − tstartj − Tj ≥ 0
tstarti + Tif − tstartj − Tjs −Mδij ≤ 0
tstartj + Tjf − tstarti − Tis −M(1− δij) ≤ 0
tstarti ≥ 0
tstartj ≥ 0
δij ∈ {0, 1}

4.2 The Multiple Robot Case
In the general case, multiple robots, pairs of which may

have multiple collision regions, must be coordinated. Here
< [T kis, T

k
if ], [T kjs, T

k
jf ] > denotes thekth collision-time in-

terval pair for the two robotsAi andAj . Let Nij denote

the number of collision-time interval pairs for robotsAi
andAj , i.e., Nij = |CIij | and letNrobots be the num-
ber of robots. The binary variableδijk is defined to be 0
if robotAi enters itskth collision zone with robotAj before
robotAj and to be 1 if robotAj enters its corresponding
kth collision zone before robotAi. A valid value forM is
M =

∑Nrobots
i=1 Ti. The MILP formulation to coordinate the

motions of the robots is:

Minimize tcomplete
subject to
tcomplete − tstarti − Ti ≥ 0, 1 ≤ i ≤ Nrobots
tstarti + T kif − tstartj − T kjs −Mδijk ≤ 0,

for all < [T kis, T
k
if ], [T kjs, T

k
jf ] >∈ CIij ,

for 1 ≤ i < j ≤ Nrobots
tstartj + T kjf − tstarti − T kis −M(1− δijk) ≤ 0

for all < [T kis, T
k
if ], [T kjs, T

k
jf ] >∈ CIij ,

for 1 ≤ i < j ≤ Nrobots
δijk ∈ {0, 1}, 1 ≤ i < j ≤ Nrobots, 1 ≤ k ≤ Nij
tstarti ≥ 0, 1 ≤ i ≤ Nrobots.

The resulting solution is guaranteed to be a collision-
free trajectory coordination strategy for all the robots. The
completion time constraints and collision-time interval con-
straints are necessary for only those robots that may col-
lide. Note that the MILP always has a feasible solution —
move the robots in sequence with only one robot in motion
at any given instant. Figure 3 shows the timelines for two
robots with multiple collision intervals, and Figure 4 shows
the collision-free sequencing of the start times of the robots.
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Figure 3: Timelines for robotsA1 andA2 with multiple col-
lision intervals.
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Figure 4: Collision-free timelines for robotsA1 andA2,
with robotA2 being delayed at its start.



5 Necessary Conditions for Optimality

We have so far computed start times to ensure that no
two robots are simultaneously in their shared collision zones.
This criterion for collision avoidance can be overly conser-
vative, for example, when two robotsAi andAj are moving
in the same direction in a collision zone pair. We can reduce
the completion time and derive the necessary conditions for
collision avoidance in such cases by permitting the robots to
play “follow the leader”. Assume robotAi moves first in
its collision zone andAj follows it. We need to compute
how much earlier the lead robotAi should start moving in
its collision zone, before the follower robotAj can enter its
collision zone, to avoid a collision.

Shin and Zheng [19] proved that for two robots with a
single collision region, delaying the start time of one of
the robots provides the time-optimal trajectory modification.
They compute the minimum delay time for the collision-free
coordination of two robots that have a single collision zone
pair by using a bisection search. The delay time of the fol-
lower robot, or equivalently, the lead time of the lead robot,
is initialized to a value that guarantees the lead robot will
exit its collision zone before the follower robot enters its col-
lision zone. The minimum lead time in the collision zone for
which the lead robot can still avoid a collision with the fol-
lower robot is then computed using bisection search.

We extend this idea of computing the necessary condi-
tions for collision avoidance to multiple robots, where pairs
of robots may have multiple collision zone pairs. Given two
robotsAi andAj that have more than one collision zone
pair, we treat each collision zone pair independently when
computing the lead times using bisection. For thekth col-
lision zone pair, we compute the minimum timeT leadijk that
robotAi must lead robotAj by at the start of itskth collision
zone to avoid a collision, and the minimum timeT leadjik that
robotAj must lead robotAi by at the start of itskth colli-
sion zone to avoid a collision. The corresponding follow-the-
leader constraints aretstarti +T kis+T

lead
ijk < tstartj +T kjs when

Ai leads through the collision zone, ortstartj +T kjs+T
lead
jik <

tstarti + T kis whenAj leads through the collision zone.
The maximum value ofT leadijk is T ki , the time taken for

robotAi to traverse itskth collision zone. SinceT leadijk ≤
T ki , we define a new variableT kie = min{T kis + T leadijk , T kif}
whereT kif = T kis + T ki . T kie, the collision-freeentry time,
is the time from start in robotAi’s trajectory, whenAi en-
ters itskth collision zone pair beforeAj , at which robotAj
can enter its collision zone without causing a collision. Sim-
ilarly, defineT kje = min{T kjs + T leadjik , T kjf}. The updated
follow-the-leader constraints aretstarti + T kie < tstartj + T kjs
whenAi leads through the collision zone, ortstartj + T kje <

tstarti + T kis whenAj leads through the collision zone. The
robotsAi andAj do not collide when their start times sat-
isfy these follow-the-leader constraints over all their colli-

sion zone pairs.
To extend this formulation to multiple robots, we include

these disjunctive constraints for every pair of robots that can
potentially collide. The minimum completion time over all
robots is obtained using the following formulation:

Minimize tcomplete
subject to
tcomplete − tstarti − Ti ≥ 0, 1 ≤ i ≤ Nrobots
tstarti + T kie − tstartj − T kjs −Mδijk ≤ 0

for all < [T kis, T
k
if ], [T kjs, T

k
jf ] >∈ CIij

1 ≤ i < j ≤ Nrobots
tstartj + T kje − tstarti − T kis −M(1− δijk) ≤ 0

for all < [T kis, T
k
if ], [T kjs, T

k
jf ] ∈ CIij ,

1 ≤ i < j ≤ Nrobots
δijk ∈ {0, 1}, 1 ≤ i < j ≤ Nrobots, 1 ≤ k ≤ Nij
tstarti ≥ 0, 1 ≤ i ≤ Nrobots.

The solution to the above MILP solves Optimization Prob-
lem I and gives the minimum time coordinated trajectories of
the robots when only their start times can change.

6 Extensions

Our problem formulation so far has focused on single
body robots with specified trajectories. We now discuss use-
ful extensions to the basic formulation.

6.1 Articulated Robots

To coordinate articulated robots with multiple links, we
consider motions of the individual links. An articulated
robotR consists of a set of links{Ai}. LetR[i] be the robot
to which linkAi belongs. The motions of links of an artic-
ulated robot are separated by constant time offsets. LetAi
begin moving timeTRi after the first moving link ofR[i] be-
gins moving. That is,tstarti = tstartR[i] + TRi wheretstartR[i] is
the start time of robotR[i]. LetNlinks be the total number
of robot links. Note that the start time and motion time of a
link may depend on the start and motion times of links that
precede it in the articulated chain. Thus the formulation for
a set of articulated robots is:

Minimize tcomplete
subject to
tcomplete − tstartR[i] − T

R
i − Ti ≥ 0, 1 ≤ i ≤ Nlinks

tstartR[i] + TRi + T kie − tstartR[j] − T
R
j − T kjs −Mδijk ≤ 0

for all < [T kis, T
k
if ], [T kjs, T

k
jf ] >∈ CIij ,

for 1 ≤ i < j ≤ Nlinks andR[i] 6= R[j]
tstartR[j] + TRj + T kje − tstartR[i] − T

R
i − T kis −M(1− δijk) ≤ 0

for all < [T kis, T
k
if ], [T kjs, T

k
jf ] >∈ CIij

for 1 ≤ i < j ≤ Nlinks andR[i] 6= R[j]
δijk ∈ {0, 1}, 1 ≤ i < j ≤ Nlinks, 1 ≤ k ≤ Nij
tstartR[i] ≥ 0, 1 ≤ i ≤ Nrobots.



The completion time constraints are necessary for all links
of a robot that can potentially have a collision. The collision-
time interval constraints are necessary for only those robots
that have one or more links involved in a potential collision.

6.2 Specifying Sequencing Constraints
In certain tasks, it may be necessary for one robot to com-

plete a particular operation or reach a certain point before
another robot performs a subsequent operation. This can oc-
cur in sequenced assembly tasks, or in welding workcells
where the primary welds must be completed before sec-
ondary welds. Consider the requirement thatAi has to reach
qi beforeAj reachesqj . For the unmodified trajectories, let
the time taken forAi to reachqi beTqi and forAj to reach
qj beTqj . The sequencing constraint can then be written as
tstarti + Tqi < tstartj + Tqj . Such constraints for multiple
robots can be easily added to the formulation.

7 Complexity

The integer programming formulation of our problem
suggests it is an NP-complete problem ([4]). We first con-
sider the decision version of the No-wait Jobshop Schedul-
ing problem (Sahni and Cho [18], Goyal and Sriskandara-
jah [6]), which is NP-complete. Each job consists of an or-
dered set of tasks, where each task is to be performed by a
specific processor. The tasks for each job must be executed
in sequence without breaks between them. Each processor
can perform no more than one task at any time instant, and
each job can be worked on by only one processor at any time
instant. The goal is to minimize the makespan (i.e., the max-
imum time of completion of any task).

The above problem can be transformed to our Multiple
Robot Scheduling problem. Let each jobj model the tra-
jectory of robotAj . Let each tasktk[j] model thekth tra-
jectory segment for robotAj , where each trajectory segment
is a contiguous collision zone segment or collision-free seg-
ment. Let processorpi model the regionri, where each re-
gion contains one or more trajectory segments. No two tra-
jectory segments that are in the same region can be executed
at the same time. The length of each task is the time taken
by the robot to traverse the corresponding segment. The goal
is to minimize the completion time of the robots. It follows
that the decision version of the Multiple Robot Scheduling
problem is NP-complete, and that the optimization problem
is NP-hard.

8 Implementation

We have implemented software in C++ to coordinate the
motions of polyhedral robots with specified trajectories (Fig-
ure 5) and have a preliminary implementation for articulated
robots. We compute the collision zones using the PQP col-
lision detection package (Larsen et al. [10]). The robot con-
figurations are specified at constant time intervals. To de-

Figure 5: Overhead view of the paths of 20 robots, with their
initial configurations indicated by solid cubes.

Num. of Num. of Collision MILP
robots collision detection time

zones time (secs) (secs)

3 2 < 1 0.02
5 10 2.4 0.02
10 27 9.8 0.11
15 65 23.4 0.53
20 79 36.8 1.83

Table 1: Comparison of sample run times for 100 frames.

termine the collision zones, each robot is stepped through
its trajectory, and at each trajectory point, all the remain-
ing robots are moved through their complete trajectories to
detect collisions. So forN robots where each robot hasT
trajectory points, collision detection is performedO(N2T 2)
times.

Using the computed collision-time interval pairs, we
generate the corresponding MILP formulation and solve
it using CPLEX [8], a commercial optimization package.
See Table 1 for runtime data on a Sun Ultra 10 for sin-
gle body robots. Note that the problem complexity de-
pends primarily on the number of collision zones, to a
lesser extent on the number of robots, and is relatively
independent of the number of degrees of freedom of the
robots. Our preliminary experiments indicate that the MILP
time dominates the running time as the number of colli-
sion zones increases. Example animations may be seen at
www.cs.rpi.edu/˜sakella/multiplerobots/ .



9 Conclusion

We have developed an optimization formulation that en-
ables the minimum time collision-free coordination of mul-
tiple robots with specified trajectories when only their start
times can be changed. The principal advantage of our MILP
formulation is that it permits the collision-free coordination
of a large number of robots (up to 20 robots). The problem
complexity depends on the number of robots and the num-
ber of potential collisions, and is relatively independent of
the number of degrees of freedom of the robots. Although
the optimal trajectory coordination of multiple robots is NP-
hard, the availability of efficient collision detection software
and integer programming solvers makes this approach prac-
tical.

There are several issues for future work. Developing poly-
nomial time approximation algorithms for the task of select-
ing start times and characterizing the quality of these solu-
tions is important. An alternative approach to minimizing
the completion time is modifying trajectories by tuning the
velocity of each of the robots. Identifying the conditions
under which we can do this, and developing techniques to
generate the optimized trajectories is important. Exploring
stochastic versions of the task that involve timing uncer-
tainties would be useful. Finally, exploring applications of
this work in computer graphics for choreographing anima-
tion characters is another interesting direction.
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