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Abstract— Coordinating multiple manipulators in a shared
workspace while considering their dynamics is an important
problem. This problem of collision-free coordination arises in
assembly, materials transfer, and welding workcells. Previous
approaches that considered robot dynamics have typically been
restricted to coordinating just two or three manipulators, even
when their paths are specified. We address the task of coordi-
nating the motions of multiple manipulators when either their
trajectories or their paths are given. By exploiting a fundamental
time scaling law for manipulators based on their dynamics, we
identify sufficient conditions for collision-free coordination of the
robots when the velocity profiles can be uniformly time-scaled
and the robot start times can be varied. We describe an approach
that develops mixed integer programming formulations of these
problems, where the time scaling factors are linear variables,
to automatically minimize completion time. This method can
potentially coordinate the motions of many manipulators.

I. I NTRODUCTION

Time-optimal and collision-free coordination of multiple
manipulator robots in a shared workspace while considering
their dynamics is an important open problem. There are sev-
eral applications that involve this coordination task. Consider
scheduling the motions of multiple robots in a welding or
assembly workcell to minimize the cycle time (Figure 1). Since
the robots have overlapping workspaces, we must coordinate
their motions to avoid collisions between robots. Additionally,
the actuator torque limits restrict how fast or slow a manipu-
lator may move along a path. The dynamics constraints make
this a challenging problem, and previous work ([1], [2], [3],
[4], [5], [6]) has typically been restricted to coordinating just
two or three robots, even when their paths are specified.

We focus on coordinating the motions of multiple manip-
ulators, while considering dynamics, when their trajectories
or paths are provided. By trajectory, we mean the geomet-
ric specification of the path along with the timing of the
robot’s motion along the path (that is, path and velocity).
Hollerbach [7] identified a fundamental time-scaling law for
manipulator dynamics that can be used to determine the range
of feasible trajectory speedups and slowdowns, without need-
ing to recompute the dynamics. We exploit this time-scaling
law, which decouples the path and timing along the path,
to generate time-warped trajectories to coordinate multiple
manipulators. We assume that the velocity profile of the given
trajectory of each individual robot may be uniformly time
scaled so its velocity profile shape is maintained, and the
robot start times can be changed. As such, this paper builds on

Fig. 1. Depiction of an example welding task that requires coordination of
multiple manipulators.

and generalizes our previous work on coordination of multiple
robots with specified trajectories (Akella and Hutchinson [8]),
which did not consider dynamics explicitly.

The specific problem that we consider in this paper is:Given
a set of manipulator robots with specified paths and velocity
profiles on those paths, find a set of uniform time-scaled
parameterizations for these paths such that the completion
time for the set of robots is minimized, dynamics constraints
along the paths are satisfied, and no collisions occur.

Our goal is to find near minimum-time collision-free robot
coordinations by computing the scaling factors by which the
robot velocity profiles are uniformly time-scaled, as well as
the robot start times. We identify sufficient conditions for
collision-free coordination of multiple robots and formulate
the task as an optimization problem using a mixed integer
linear programming (MILP) formulation. The uniform time
scaling law for manipulators identified by Hollerbach [7] leads
to a formulation where the time scaling factors are linear
variables. The primary advantage of this approach is its ability
to potentially handle many robots, each with several degrees
of freedom, while considering their dynamics.

The paper is organized as follows. Section II briefly dis-
cusses related work. Section III describes our previous work on
coordinating multiple robots with specified trajectories when
only their start times could be changed. Section IV outlines
Hollerbach’s time scaling law. Section V presents the main
results of this paper. Using the time scaling law and sufficient
conditions for collision-free time-scaled motion, we present a



mixed integer programming formulation for time-scaled coor-
dination of multiple robots with input trajectories. Section VI
describes preliminary results from our implementation of the
approach. Section VII outlines directions for future work.

II. RELATED WORK

There are two main bodies of related work, with some
overlap. One focuses on the coordination of multiple robots,
typically without considering robot dynamics. The other fo-
cuses on trajectory optimization for a single robot while
considering robot dynamics.
Multiple robot coordination: Motion planning for multiple
robots is a broad research area (see [9] for an overview). The
most general problem is to have each robot move from its
initial to its goal configuration, while avoiding collisions with
static obstacles or with other robots. Hopcroft, Schwartz,and
Sharir [10] showed that even a simplified two-dimensional
case of the problem is PSPACE-hard. Svestka and Over-
mars [11] developed a probabilistic roadmap (PRM) planner
for path coordination of multiple car-like robots. Recently
Sanchez and Latombe [12] used a single-query, bidirectional,
lazy PRM variant for coordinated path planning of multiple
robot arms, without considering dynamics.

A slightly more constrained version of the problem is
obtained when all but one of the robots have specified tra-
jectories. This is essentially the problem of planning a path
for a single robot among moving obstacles, which has been
treated by Reif and Sharir [13] and Kant and Zucker [14].
One can generalize this problem to obtain a heuristic solution
to the problem of planning the motions of multiple robots.
Erdmann and Lozano-Perez [15] assign priorities to robots and
sequentially search for collision-free paths for the robots, in
order of priority, in the configuration-time space. Fioriniand
Shiller [16] developed a velocity space method for avoiding
moving obstacles.

If the problem is further constrained so that the paths of
the robots are specified, one obtains a path coordination prob-
lem, where the robot dynamics are neglected. O’Donnell and
Lozano-Perez [17] developed a method for path coordination
of two robots. LaValle and Hutchinson also addressed a similar
problem in [18], where each robot was constrained to remain
on a specified configuration space roadmap during its motion.
Simeon, Leroy, and Laumond [19] perform path coordination
for a very large number of car-like robots (over a hundred
robots in some examples), where robots with intersecting paths
can be partitioned into smaller sets (of about ten robots).
Akella and Hutchinson [8] recently developed an MILP for-
mulation for the trajectory coordination of large numbers of
robots by only changing robot start times.
Trajectory planning for a single robot: There is a large
body of work on the time optimal control of a single ma-
nipulator with dynamics constraints. Bobrow, Dubowsky, and
Gibson [20], and Shin and McKay [21] developed algorithms
to generate the time-optimal velocity profile of a manipulator
moving along a specified path. Subsequently Pfeiffer and

Johanni [22], Slotine and Yang ([23]), and Shiller and Lu [24]
refined these algorithms.

Trajectory planning directly in the 2n-dimensional state
space that considers both kinematic and dynamic constraints
is called kinodynamic planning. Sahar and Hollerbach [25]
and later Shiller and Dubowsky [26] developed algorithms
for global near minimum-time trajectory generation for a
manipulator with dynamics and actuator constraints using grid-
based search spaces. Donald et al. [27] developed a polynomial
time approximation algorithm to generate near time-optimal
trajectories for a robot that satisfy kinematic and dynamiccon-
straints. Donald and Xavier [28] extended this work to robot
manipulators. Fraichard [29] described a trajectory planner for
a car-like robot with dynamics constraints moving along a
given path among moving obstacles. Recent work has focused
on randomized kinodynamic planning, including the use of
rapidly exploring random trees (Lavalle and Kuffner [30]) and
probabilistic roadmaps (Hsu et al. [31]).
Multiple robot coordination with dynamics: Work on tra-
jectory coordination with dynamics has focused almost exclu-
sively on dual robot systems (Shin and Bien [2], Chang, Chung
and Bien [3], Bien and Lee [4], Chang, Chung and Lee [6]).
Lee and Lee [1] considered the effects of delays and velocity
changes on motion time. Shin and Zheng [5] showed that for
a two-robot system, generating time-optimal trajectoriesfor
each robot independently and then delaying the start time of
one of the robots leads to a minimal finish time under certain
assumptions. Moon and Ahmad [32] studied the time scaling
of cooperative multi-robot trajectories with force interactions
between the manipulators. They use linear programming to
find the scaling constant range and quadratic programming to
find the minimum energy coordination. However, they did not
address collision avoidance of the manipulators.

Peng and Akella [33] developed an MILP formulation to co-
ordinate the motions of many robots with specified paths while
considering dynamics constraints; however the robots have
simple double integrator dynamics. The RRT approach [30]
is capable of generating collision-free trajectories for multiple
robots. However it does not explicitly provide a method to
optimize the coordination of the robots.

III. B ACKGROUND: COORDINATION OF MULTIPLE

ROBOTS WITH SPECIFIEDTRAJECTORIES

In this section, we summarize our previous work (Akella
and Hutchinson [8]) on coordinating multiple robots with
specified trajectories. That work considered thetrajectory
coordination problem:Given a set of robots with specified
trajectories, find the starting times for the robots such that the
completion time for the set of robots is minimized and no
collisions occur. It permitted only the robot start times tobe
modified, and did not consider robot dynamics explicitly.

A. Trajectories and Their Parameterizations

We first briefly review paths and their parameterizations.
We denote theith robot byAi, a configuration space byC,



and a configuration byq ∈ C. By pathwe mean the geometric
specification of a curve in configuration space

γ : ζ ∈ [0, 1] 7→ γ(ζ) = q ∈ C

A differentiable functionτ given by

τ : t ∈ [0, T ] 7→ τ(t) = ζ ∈ [0, 1]

with τ(0) = 0 and τ(T ) = 1 is a reparameterization of the
pathγ. Heret is a time variable, andT is some constant such
that all robots will have completed their tasks by timeT . A
path together with a time parameterization defines atrajectory.
To simplify notation, we often denote a trajectory asγ(t).

For this problem, robot velocities are specified a priori by
specifying an original parameterization forγ, say τ, such
that the time derivatives ofτ provide the desired velocity
profile. Thus, any reparameterizationτ ′ that gives the desired
velocity profile will be such that, for anyζ value along
the path, the time derivatives ofτ ′ and τ agree. All such
reparameterizations are obtained by merely changing the start
time of task execution. That is,

τ ′

i(t) =

{

τi(t − tstart
i ) : t ≥ tstart

i

0 : t < tstart
i

, (1)

in which tstart
i ≥ 0 is the time at which robotAi begins its

motion, andτi is the originally specified parameterization.

B. Collision Zones: Geometry

We now describe a geometric characterization for collisions
that can occur between robots, and identify sufficient condi-
tions for collision-free coordination. Consider the set ofpoints
at which theith robot, Ai, could possibly collide with the
jth robot, Aj . For a specific value ofζi, the subset of the
workspace that is occupied by theith robot is denoted by
Ai(γi(ζi)). A collision between two robots corresponds to the
situation in whichAi(γi(ζi)) ∩ Aj(γj(ζj)) 6= ∅. For theith

robot, we denote byPBij the set of values ofζi such that when
robotAi is at configurationγi(ζi) there exists a configuration
of another robot,Aj , such that the two robots collide:

PBij = {ζi | ∃ ζj ∈ [0, 1] s.t. Ai(γi(ζi)) ∩ Aj(γj(ζj)) 6= ∅}

PBij is the set of all points on the path of robotAi at which
Ai could collide withAj , and can be represented as a set of
intervals

PBij = {[ζk
is, ζ

k
if ]} (2)

where each interval is acollision segment, and the subscripts
s and f refer to the start and finish of thekth collision
segment. For each collision segment inPBij there is at least
one collision segment inPBji that could result in collision of
the two robots. We will refer to these corresponding pairs of
collision segments ascollision zones, denoted byPIij . The
set of collision zones can be represented as a set of ordered
pairs of intervals:

PIij = {< [ζk
is, ζ

k
if ], [ζk

js, ζ
k
jf ] >}. (3)

Fig. 2. Two single-link manipulators, with paths and collision zone (in bold)
indicated.

Conceptually, intersection regions of the swept volumes of
pairs of robots give the collision zones. Figure 2 is an example
of two single-link manipulators with paths that overlap in a
collision zone. HerePB12 = {[a1, a2]} andPB21 ={[b1, b2]}.
Collisions can occur only whenζ1 ∈ [a1, a2] andζ2 ∈ [b1, b2].
Thus,PI12 = {< [a1, a2], [b1, b2] >}.

C. Collision Zones: Timing

The collision zones describe the geometry of possible
collisions, but for scheduling the robots, we must describe
the timing of the collisions. For a specified parameterization
τi, the set of times at which it is possible that robotAi could
collide with robotAj is given by:

T Bij(τi) = {t | Ai(γi(τi(t))) ∩ Aj(γj(ζj)) 6= ∅,

for someζj ∈ [0, 1], i 6= j}

= τ−1

i (PBij).

As with PBij , the setT Bij(τi) can be represented by a set of
intervals, indexed by superscriptk, the endpoints of which are
obtained by applying the inverse parameterization (i.e.,τ−1

i )
to the endpoints of the intervals ofPBij given in (2):

T Bij(τi) = {[τ−1

i (ζk
is), τ

−1

i (ζk
if )]} (4)

We refer to each interval as acollision-time interval. For
notational convenience, we introduce the variablesT k

is and
T k

if given byT k
is = τi

−1(ζk
is) andT k

if = τi
−1(ζk

if ), whereT k
is

(respectivelyT k
if ) denotes the time at whichAi starts (resp.

finishes) traversing itskth collision segment iftstart
i = 0.

Although the notationT k
is is ambiguous about the particular

other robot that is involved in the collision, the context will
make clear which other robot is involved. See Figure 3 for a
graphical illustration of these quantities.

As with collision zones, there is a natural correspondence
between collision-time intervals inT Bij and T Bji, and we
refer to these pairs ascollision-time interval pairs. For the
two robotsAi andAj , we denote the set of all collision-time
interval pairs byCIij . The interval pairs inCIij(τi, τj) can
be determined by applying the appropriate inverse parameteri-
zation to the endpoints of the collision zone intervals inPIij .
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Fig. 3. Timelines for robotsA1 andA2. The bold lines correspond to the
collision-time intervals for the robots.

We representCIij as a set of ordered pairs of intervals

CIij(τi, τj) = {< [T k
is, T

k
if ], [T k

js, T
k
jf ] >} (5)

where the first interval[T k
is, T

k
if ] of the kth pair corresponds

to robot Ai and the second interval[T k
js, T

k
jf ] corresponds

to robot Aj . During the time interval[T k
is, T

k
if ], Ai is in a

specific collision zone andAj is in this collision zone during
time interval [T k

js, T
k
jf ]. If [T k

is, T
k
if ] and [T k

js, T
k
jf ] do not

overlap, then the two robots cannot be in thekth collision
zone simultaneously, and therefore no collision will occurin
this collision zone. This observation forms the basis for the
sufficient conditions given in Section III-D.

When the parameterizations are restricted to those that only
delay the robot start times, we have parameterizations of the
form

τ ′(t + tstart) = ζ = τ(t), (6)

for each value ofζ ∈ [0, 1]. Inverting the parameterizationsτ ′

andτ we obtain

τ ′−1(ζ) = τ−1(ζ) + tstart. (7)

Using this notation, we can writeCIij(τ
′

i , τ
′

j) as

CIij(τ
′

i , τ
′

j) = { < [T k
is + tstart

i ,T k
if + tstart

i ],

[T k
js + tstart

j , T k
jf + tstart

j ] >}.

D. Sufficient Conditions for Collision-free Scheduling

To prevent collisions between two robotsAi andAj , it is
sufficient to ensure that the times at whichAi could collide
with Aj do not coincide with the times at whichAj could
collide with Ai. This can be assured if the two robots are not
simultaneously in any collision zone belonging toPIij . This
amounts to ensuring that there is no overlap between the two
intervals of any collision-time interval pair for the two robots.
If [T k

is + tstart
i , T k

if + tstart
i ] ∩ [T k

js + tstart
j , T k

jf + tstart
j ] =

∅ for every collision-time interval pair inCIij(τ
′

i , τ
′

j), then
no collision can occur. This sufficient condition leads to an
optimization problem:

Given a set of robots with specified trajectories, find the
starting times for the robots such that the completion time
for the set of robots is minimized and no two intervals of any
collision-time interval pair overlap.

In Section III-E, we outline a mixed integer linear program
that solves this optimization problem. The sufficient condi-
tion is clearly not a necessary condition. For example, in a

follow-the-leader situation where the robots move in the same
direction along their paths in the collision zone, the follower
robot is delayed unduly as it waits for the leader to exit the
collision zone before it enters the collision zone. For now,
we note that the sufficient conditions provide a conservative
strategy that guarantees that no collision occurs between the
two robots. See [8] for the necessary conditions that provide
the minimum time collision-free schedule.

E. Coordination of Multiple Robots with Specified Trajectories

We developed a mixed integer linear programming (MILP)
formulation for coordinating the motions of multiple robots
with specified trajectories, where only the start times can be
modified (Akella and Hutchinson [8]). The start time for robot
Ai is tstart

i , which is to be computed, andTi is the motion
time required for robotAi to traverse its entire trajectory when
starting at timetstart

i = 0. The maximum time for robotAi

to complete its motion,tstart
i +Ti, is its completion time. The

completion time for the set of robots,tcomplete, is the time
when the last robot completes its task. Thereforetcomplete ≥
tstart
i + Ti for all robots.

Consider trajectory coordination of a pair of robotsAi and
Aj with specified trajectories. For each robot, identify itskth
collision zone and compute the time interval during which it
is in its collision zone. The collision-time interval[T k

is, T
k
if ]

of robotAi, where subscriptss andf indicate start and finish
times respectively, indicates when robotAj can collide with it.
The collision-time interval[T k

js, T
k
jf ] of robotAj is similarly

computed. Ensuring the robots are not in their collision zones
at the same time yields a disjunctive “or” constraint that can be
converted to an equivalent pair of constraints using an integer
zero-one variableδijk andM , a large positive number ([34]).
HereM can be chosen greater than

∑Nrobots

i=1
Ti. When robot

Ai enters the collision zone first, the constrainttstart
i +T k

if <

tstart
j +T k

js holds andδijk = 0, and when robotAj enters the
collision zone first, the constrainttstart

j + T k
jf < tstart

i + T k
is

holds andδijk = 1.
Let Nrobots be the number of robots. LetNij denote the

number of collision-time interval pairs for robotsAi andAj ,
i.e., Nij = |CIij |. We wish to minimize the completion time
while ensuring the robots are not in their shared collision zones
at the same time. The MILP formulation that gives a collision-
free solution for this coordination task is:

Minimize tcomplete

subject to
tcomplete − tstart

i − Ti ≥ 0, 1 ≤ i ≤ Nrobots

tstart
i + T k

if − tstart
j − T k

js − Mδijk ≤ 0,
tstart
j + T k

jf − tstart
i − T k

is − M(1 − δijk) ≤ 0,
for all < [T k

is, T
k
if ], [T k

js, T
k
jf ] >∈ CIij ,

for 1 ≤ i < j ≤ Nrobots

δijk ∈ {0, 1}, 1 ≤ i < j ≤ Nrobots, 1 ≤ k ≤ Nij

tstart
i ≥ 0, 1 ≤ i ≤ Nrobots.



IV. DYNAMIC TIME-SCALING LAW FOR A MANIPULATOR

To incorporate dynamics into the coordination approach of
the previous section, we use Hollerbach’s result on uniform
time scaling of a manipulator trajectory [7]. This result enables
a decoupling of the manipulator path and its timing law,
without recomputing dynamics. Assume a manipulator arm
with n joints whose dynamics is described by:

u(t) = M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + G(q(t))

whereu is the n × 1 vector of input joint torques,q is the
n × 1 vector of joint generalized coordinates,M(q) is the
n × n inertia matrix,C(q, q̇) is the n × n Coriolis matrix,
andG(q) is then×1 gravitational torque vector. The actuator
torques must lie between their maximum and minimum values
umax andumin, which are assumed constant. These actuator
torque limits restrict how fast or slow a manipulator may
move along a trajectory. The time-scaling law identifies valid
trajectory modifications that utilize the available torquerange
and avoid actuator torque limit violations, without requiring
inverse dynamics recomputation.

Consider the acceleration and velocity dependent torque
componentua that remains after removing the position de-
pendent gravitational torque vector:

ua(t) = u(t) − G(q) = M(q)q̈ + C(q, q̇)q̇

Let us
a(t) be the scaled acceleration and velocity dependent

torque component required after time scaling. The simplest
case of time scaling is the case of constant time scaling, where
the time scaling function isr(t) = ct for c > 0. The time
scalingc assumes the values1 > c > 0 for slower motions
and∞ > c > 1 for faster motions. Hollerbach showed that
if the trajectory is uniformly time scaled by a constant time
scaling valuec, the acceleration and velocity dependent torque
ua is scaled by a value ofc2. That is, when the travel time
T travel along a path is uniformly scaled by a valuec to
becomeT travel/c, the torque required for executing the new
trajectory is scaled by a value ofc2, up to the gravitational
torque contribution. The scaled torqueus

a(t) is given by

us
a(t) = c2ua(ct)

and the total torque after scalingus(t) is given by

us(t) = c2ua(ct) + G(q(ct)).

For a given input trajectory, we can compute the interval of
allowed time scaling values for each joint and intersect these
intervals to obtain an interval of allowed time scaling values
[cmin, cmax] for the manipulator based on the torque limits
of its actuators, as described in [7]. We can therefore identify
allowable speeds of movement for a given trajectory without
dynamics recomputation.

V. T IME-SCALED COORDINATION OF MULTIPLE

MANIPULATORS

We now combine the results described in the previous
two sections to tackle theTime-Scaled Coordination Problem:

Given a set of manipulator robots with input paths and velocity
profiles on those paths, find a set of uniform time-scaled
parameterizations for these paths such that the completion
time for the set of robots is minimized, dynamics constraints
along the paths are satisfied, and no collisions occur.

A. Assumptions

We make the following assumptions to generate a collision-
free time-scaled coordination of the robot trajectories:

1. Trajectories for the manipulators are initially provided.

2. The only moving obstacles in the workspace are the
robots.

3. Each robot does not collide with any other robot when
it is at its start or goal configurations.

4. Each robot moves monotonically along its path, that is,
the robot does not back up along its path.

5. The robot motions are sampled at sufficient resolution
so that no collisions occur during the motion between
successive collision-free configurations.

6. The dynamics of each robot is known accurately.

B. Time-Scaled Coordination of Multiple Single-Link Robots

Consider time-scaled coordination of multiple manipulators
given their trajectories. For clarity, we first discuss onlysingle-
link robots. From the actuator torque limits and input trajec-
tory, we can compute an interval of allowed time scaling values
[cmin

i , cmax
i ] for each manipulatorAi. When the trajectory

of robot Ai is uniformly time scaled by a valueci, a travel
time T travel

i in the input trajectory is scaled by a factorsi to
becomesiT

travel
i , wheresi = 1/ci. Whensi > 1, the motion

of robotAi is slowed down (time dilation), and whensi < 1,
the motion of robotAi is sped up (time contraction). Clearly
smin

i = 1/cmax
i andsmax

i = 1/cmin
i .

Now multiple robots, pairs of which may have multiple
collision zones, must be coordinated. As before, the binary
variable δijk is defined to be 0 if robotAi enters itskth

collision zone with robotAj before robotAj and to be 1
if robot Aj enters its correspondingkth collision zone before
robotAi. A valid value forM is M >

∑Nrobots

i=1
smax

i Ti. The
MILP formulation to coordinate the time scaled motions of
the single-link robots is therefore:

Minimize tcomplete

subject to
tcomplete − tstart

i − siTi ≥ 0, 1 ≤ i ≤ Nrobots

tstart
i + siT

k
if − tstart

j − sjT
k
js − Mδijk ≤ 0

tstart
j + sjT

k
jf − tstart

i − siT
k
is − M(1 − δijk) ≤ 0,

for all < [T k
is, T

k
if ], [T k

js, T
k
jf ] >∈ CIij ,

for 1 ≤ i < j ≤ Nrobots

δijk ∈ {0, 1}, 1 ≤ i < j ≤ Nrobots, 1 ≤ k ≤ Nij

tstart
i ≥ 0, 1 ≤ i ≤ Nrobots

smax
i ≥ si ≥ smin

i , 1 ≤ i ≤ Nrobots.

Solving this MILP gives the time scaling factorssi and start
times tstart

i for the individual robots. The resulting solution



is guaranteed to be a collision-free time-scaled trajectory
coordination strategy for all the robots. Figure 4 shows the
timelines for two robots with multiple collision intervals, and
Figure 5 shows the collision-free time-scaled coordination of
the timelines of the robots. The completion time constraints
and disjunctive collision-time interval constraints are necessary
for only those robots that may collide. Note that the MILP
always has a feasible solution; just move the robots in se-
quence with only one robot in motion at any given instant.
Also, the above formulation is not guaranteed to give the true
global optimum since it uses sufficient conditions for collision
avoidance; this is a conservative strategy that does not permit
follow-the-leader motions in a collision zone.

The time-scaled coordination of multiple manipulators is
NP-hard, and follows directly from the complexity of coordi-
nating multiple robots with specified trajectories ([8]).

T2T1

1A

2A

time

Fig. 4. Timelines for robotsA1 andA2 with multiple collision intervals.

1A

2A

t start
1

time

Fig. 5. Collision-free time-scaled timelines for robotsA1 andA2, with A1

being delayed at its start andA2 having its timeline shrunk.

C. Time-Scaled Coordination of Multi-Link Robots

To coordinate manipulator robots with multiple links, we
consider motions of the individual links. An articulated robot
Ai consists of a set of links{Ail}, where linkAil belongs
to robot Ai. For a specified trajectory, the motions of links
of an articulated robot are separated by constant time offsets.
Let Ail begin moving timeT o

il after the first moving link of
Ai starts moving. That is,tstart

il = tstart
i + T o

il wheretstart
il

is the start time of linkAil. The completion time forAil is
tstart
i +T o

il+Til, whereTil is the motion time ofAil. Note that
the start time and motion time of a link may depend on the
start and motion times of links that precede it in the kinematic
chain.

When an articulated robot’s trajectory is time scaled, every
link Ail of robot Ai has the same time scaling factorsi.
Thereforetstart

il = tstart
i + siT

o
il where tstart

i is the start
time of robotAi. The minimum and maximum scaling factors

smin
i and smax

i for each robot are determined as described
previously, andsi lies in the range[smin

i , smax
i ]. Let Nlinks

be the total number of robot links. Then the MILP formulation
for time-scaled coordination of a set of articulated robotsis:

Minimize tcomplete

subject to
tcomplete − tstart

i − siT
o
il − siTil ≥ 0, 1 ≤ i ≤ Nlinks

tstart
i + siT

o
il + siT

kl
if − tstart

j − sjT
o
jm − sjT

km
js

−Mδlm
ijk ≤ 0,

tstart
j + sjT

o
jm + sjT

km
jf − tstart

i − siT
o
il − siT

kl
is

−M(1 − δlm
ijk) ≤ 0,

for all < [T kl
is , T kl

if ], [T km
js , T km

jf ] >∈ CIij ,
for 1 ≤ i < j ≤ Nrobots and i 6= j,

δlm
ijk ∈ {0, 1}, 1 ≤ i < j ≤ Nrobots, 1 ≤ k ≤ Nij

tstart
i ≥ 0, 1 ≤ i ≤ Nrobots,

smax
i ≥ si ≥ smin

i , 1 ≤ i ≤ Nrobots.

The completion time constraints are necessary for all links
of a robot that can potentially have a collision. The collision-
time interval constraints are necessary for only those robots
that have one or more links involved in a potential collision.

D. Specifying Sequencing Constraints

In certain tasks, it may be necessary for one robot to
complete a particular operation or reach a certain point before
another robot performs a subsequent operation. This can occur
in sequenced assembly tasks, or in welding workcells where
the primary welds must be completed before secondary welds.
Consider the constraint thatAi has to reachqi beforeAj

reachesqj . For the unmodified trajectories, let the time taken
for Ai to reachqi be Tqi

and for Aj to reachqj be Tqj
.

The time-scaled sequencing constraint can then be written as
tstart
i + siTqi

< tstart
j + sjTqj

. Such constraints for multiple
robots can be easily added to the formulation.

E. Time-Scaled Coordination Given Input Paths

Consider the time-scaled coordination task when only the
paths for the individual robots are specified. The time-optimal
coordination of multiple manipulator robots when only the
paths are specified is an open problem. We outline a method
to provide feasible and potentially near-optimal coordinated
schedules that respect the dynamics constraints. First generate
the time-optimal trajectory for each individual robot along
its path, following the methods of Bobrow, Dubowsky, and
Gibson [20] and Shin and McKay [21]. Now the problem can
be transformed to the problem of time-scaling the individual
time-optimal trajectories. This will result in a feasible solution
that respects the dynamics constraints. Further, it provides an
upper bound on the time-optimal schedule for the robots given
their paths. Note that since at least one of the joint actuators
is always saturated along the time-optimal velocity profile,
each robot’s motion may only be slowed down or remain
unchanged.



(a) (b) (c)

(d) (e) (f)

Fig. 6. Snapshots of time-scaled coordination of two manipulators, each with two revolute joints. (View from left to right, top row first.)

VI. I MPLEMENTATION

We have implemented time-scaled coordination of ma-
nipulators with input trajectories, and demonstrated the ap-
proach on up to 6 manipulators (Figures 1 and 6). We
compute the collision zones using the PQP collision detec-
tion package (Larsen et al. [35]). We generate the MILP
formulation from the collision-time interval pairs, and solve
it using the CPLEX [36] optimization package. We cur-
rently select the permitted ranges for the time scaling fac-
tors. Valid ranges may also be computed directly from the
robots’ dynamics and trajectories. As Table I shows, solving
time-scaled coordination problems takes the same order of
magnitude of time as solving trajectory coordination prob-
lems with no scaling. Example animations may be seen at
www.cs.rpi.edu/˜sakella/timescale/ .

TABLE I

SAMPLE RUN TIMES ON AN IBM RS6000FOR THEMILP FORMULATION,

COMPUTED FOR THREE TIME SCALING FACTOR RANGES. RANGE I HAS NO

SCALING, RANGE II= [1.001, 1.1], AND RANGE III = [0.9, 1.1].

Num. Num. Num. of MILP MILP MILP
of of collision I II III

robots links zones (secs) (secs) (secs)

2 3 3 0.04 0.033 0.0367
2 4 14 0.06 0.07 0.0567
6 18 24 0.177 0.28 0.3467

We have also experimented with time-scaled coordination
of up to 12 polyhedral robots modeled as double integrators
(since their dynamics are similar to single-link manipulators
and Cartesian manipulators). Sometimes the best solutionsdo
not always have all scaling factors at their minimum values
(i.e., not all robots move as fast as they can). Further, even

when the scaling range only permits robots to slow down, the
completion time is sometimes an improvement over the case
with no scaling.

VII. C ONCLUSION

We have developed an optimization formulation to enable
the uniform time-scaled coordination of multiple manipulators
with input trajectories or input paths. The principal advantage
of our MILP formulation is that it potentially permits the
collision-free coordination of a large number of manipulators,
while considering their dynamics. The problem complexity
depends primarily on the number of collision zones, and to
a lesser extent on the number of robots and their number
of degrees of freedom. Although the problem of time-scaled
trajectory coordination of multiple robots is NP-hard, the
availability of efficient integer programming solvers makes this
approach practical for industrial automation problems, which
typically involve less than twenty manipulators.

This work represents a step towards time-optimal coordi-
nation of multiple manipulators. There are several directions
for future work. The uniform time-scaling formulation pro-
vides an upper bound on the true optimal coordination of a
set of manipulators with specified paths. Incorporating less
conservative conditions for collision avoidance will improve
solution quality. Analyzing the gap between the time-scaled
coordination described here and the true time optimal coordi-
nation is important, as is developing techniques for generating
the time-optimal coordinated trajectories subject to dynamics
constraints. Extending the time-scaled coordination approach
to manipulators with elastic joints, based on recent work by
De Luca and Farina [37], and exploring extensions to other
robot systems would broaden the scope of this approach.
Examining alternative solutions generated by the MILP can



help optimize different actuator performance requirements and
improve robot and workcell design. Finally, extensions to on-
line coordination of robots (as in [38]) that involve timing
uncertainties would be useful.
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