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ABSTRACT

Many visual analytics tools exist to assist users in examining large
amounts of information at once via coordinated views that include
graphs, network connections and maps. However, the cognitive
processes that those users undergo while using such tools remain a
mystery. Many psychological studies suggest that individuals may
undergo some planning stage followed by analysis before finally
making conclusions when examining large amounts of analytical
data with the goal of reaching a decision. While the general order of
these cognitive states has been theorized, the exact states of individ-
uals at specific points during their interaction with visual analytic
systems remain unclear. In this work, we developed models to deter-
mine the cognitive states of users based solely on their interactions
with visual analytics systems via Hidden Markov Models. Hidden
Markov Models allow for the classification of observations through
hidden states (cognitive states in our case) as well as the prediction
of future cognitive states. We generate these models through unsu-
pervised learning and use established metrics such as AIC and BIC
metrics to evaluate our models. Our solutions are designed to help
improve visual analytics tools by providing a better understanding of
cognitive thought processes of users during data intensive analysis
tasks.

Index Terms: Hidden Markov Models; Visual Analytics; Cognitive
States; Sense-making; Intelligence Analysis

1 INTRODUCTION

Visual analytics (VA) tools allow individuals to collect, analyze, and
make sense of large heterogeneous data and accomplish a task or
reach a conclusion. The task of engaging with VA is cognitively
demanding, requiring the user to undertake various cognitive pro-
cesses at different points of their interaction. Researchers, however,
can only access observable data such as user clicks, not users’ actual
cognitive processes. These cognitive processes involve some form
of information retrieval, schema representation, developing insight
and making conclusions, as theorized in prior research [19]. By un-
derstanding what a user is currently thinking or planning, as well as
predicting future behavior through computational models, assistive
technologies can be developed to provide users with information
that would improve their decision-making.

In this paper, our goal is to use a statistical Markov model to iden-
tify cognitive states and understand their effects on users’ decisions
when interacting with VA systems. Specifically, our contribution
is to link sequences of cognitive states and the transitions between
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them with a Hidden Markov Model (HMM) using interaction log
data (mouse clicks). We use HMMs to interpret latent mental states
that we cannot concretely observe – in this context, cognitive states
– by using observable behavior or actions [7]. These observable
actions can be used to make predictions of the most likely future
hidden states. The probabilities associated with each hidden state
are determined in the HMM by using the Baum-Welch algorithm,
in which the values are initially estimated [11]. The values are then
adjusted over iterations – by using a training set of observable se-
quences – until they converge. Once the model is complete, it can
then be used to predict the hidden cognitive state that corresponds
to the observable states in other sequences as well as predict future
hidden states for those sequences.

To train and test our models, we used training data from three in-
laboratory VA studies [5, 12, 23] that employ different, coordinated-
multiple views VA systems designed for two complex decision-
masking tasks: event detection (CrystalBall [6]) and misinformation
identification (Verifi [12]). During all three studies, interaction logs
recorded mouse actions and the time spent per action as participants
were asked to examine large amounts of data in multiple coordinated
views and accomplish a specific assigned task. A major difference
between the studies was whether the decisions of users at critical
stages of their interaction were recorded within the system, as this
affected whether supervised or unsupervised training would be possi-
ble. For one study that used CrystalBall, we employed unsupervised
learning to develop HMMs via the Baum-Welch algorithm as user
decisions were made outside of the system (i.e., paper and pencil)
and therefore do not have labeled data for each user’s decisions. On
the other hand, in the two latter studies [12, 23] that used the Verifi
VA system, users were explicitly asked to submit their decisions
within the system. We can thus use such actions as labels for super-
vised learning of HMM models. Accordingly, for these two studies,
we were able to measure accuracy through decision-making actions
as a proxy for a deciding state.

The structure of this paper is as follows. First, we review related
work, specifically in HMMs. Next, we discuss the data used to
develop and test our models, the process of developing and testing
those models, and assumptions we made to implement our model.
We then provide our results including the use of Akaike Informa-
tion Criterion (AIC) and Bayesian Information Criterion (BIC) to
determine what models most accurately mapped the sense-making
process (i.e., how many hidden states would be in an optimal model).
The AIC and BIC criteria measure goodness of fit by producing
values for all models and comparatively examining them based on
maximized likelihood. The model with the lowest AIC or BIC value
is considered the most optimal. We conclude the paper with a discus-
sion on our major findings and future directions of Hidden Markov
modeling in VA systems.

2 RELATED WORK

Hidden Markov Models have been applied in a wide range of con-
texts including stock market forecasting [10], understanding human
intentions via mobile robots [13], and detection of emergencies in



crowds [4]. Studies have utilized HMMs to better understand human
behavior via clickstreams, which are aggregated sequences of users
click actions on web interfaces. These studies include user profiling
on commercial sites and clickstream sequence clustering, all accord-
ing to behavior [17,21,24] as well as predicting user sequences based
on current clickstream data [14]. Aside from these applications of
HMMs, other research has explored how to determine the optimal
number of hidden states during model training [22].

However, in the context of sense-making, cognitive states of mind,
and behavioral studies, very little research has considered Hidden
Markov Models. Prior research does include the use of Hidden
Markov Models on data gathered from visual analytics tools [16],
though the researchers did not have the goal of determining the
sequences of cognitive states of their users in accordance with their
observable behavior (i.e., actions) but rather to distinguish sequential
patterns of users in different experiment conditions.

Perhaps the most relevant work to our study is Dungs [7], who
developed Hidden Markov Models to better understand the search
process of users of a digital library search system, representing
human cognition based on user actions, and predicting the future
actions of users using current actions. Their goal was to provide sug-
gestions to assist users in their decision-making. Although the data
collected by the digital library search system includes events that the
system can directly observe, such as the execution of a search query,
the training data for the HMMs are user eye fixations on one of four
panels of interest on the search system collected by an eye tracker
as observational data. All fixations on the same area of interest
are treated equally as observable data, regardless of differences in
time spent on each. Additionally, their research utilizes the HMMs
developed to examine correlations between certain hidden states and
observable states based on the emission probabilities in each model.
By contast, our research attempts to garner a better understanding
of the sense-making process [19] represented by the hidden states
(cognitive states) in accordance with their corresponding observable
states (user mouse actions). We make further assumptions as to
which hidden states from each model correspond to which potential
stages of the sense-making process [19] using the start, transition,
and emission probabilities.

In a later study, Dungs et al. [8] used a hybrid form of HMM
utilizing both discrete and continuous observable data to better im-
prove support systems and assistive features of search systems and
interactive retrieval systems. This study focuses on utilizing HMMs
to distinguish between the different phases of searching, which
Dungs et al. [8] treat as a two phase model involving searching and
finding data. However, this study still does not attempt to map the
sense-making process for decision making as described by Pirolli
and Card [19]. We use HMMs to accomplish this and discuss our
process below.

3 METHOD

3.1 Training Data
The data used for training our initial set of HMMs comes from the
user logs recorded in an anchoring bias study [5]. This study used
CrystalBall [6], a social media event detection VA system, in which
81 users were randomly divided into four groups and exposed to
one of two different treatments: a numerical anchor (i.e., the task is
framed to participants around a high or low number) and a visual
anchor (i.e., a training video that reviews straegies using either the
geospatial or temporal Views). Thus, the four experiment conditions
were High Number-Geospatial anchor, High Number-Temporal an-
chor, Low Number-Geospatial anchor, and Low Number-Temporal
anchor.

In CrystalBall, participants could perform five mouse actions:
Click, Navigate, Hover, Scroll and Login. The observable mouse
actions were recorded for each participant and included the time and
interface panel where the action took place. Using psychological

Table 1: Cognitive Significance Categories According to Time Spent

Nonsignificant 0 - 100 ms
Deliberate 101 - 1000 ms
Cognitive 1001+ ms

Table 2: Action + Cognitive Significance Observation Combinations

Cognitive Significance Action

Cognitive
Click

Navigate
Hover

Deliberate
Click

Navigate
Hover

Nonsignificant

Click
Navigate

Hover
Scroll

research on human cognition [15,18], our categories depict different
cognitive processes operating at different intervals of time. Table
1 displays the categorized actions with respect to their cognitive
significance according to the time spent on them. For our purposes,
we modify cognitive behavior to include “unit tasks” which take
˜10000+ ms, and we add a non-significant category to represent
actions that take 100 ms or less. Because the CrystalBall interface
has a coordinated-multiple views interface (i.e., five panels as well
as a menu, a menu datepicker, and an introduction pop-up), only the
actions+cognitive significance were treated as observable data as
opposed to action-panel combinations. This resulted in 120 possible
combinations, making the observable data far too sparse. Further-
more, we reduced our fifteen action+cognitive significance obser-
vations (which were the combinations of the cognitive significance
categories from Table 1 and the five possible mouse actions from
CrystalBall) by excluding combinations that comprised less than
0.1% of the total user log data. This resulted in ten action+cognitive
significance observations being used, as seen in Table 2. User se-
quences varied in length from 241 to 2,016 action+cognitive signifi-
cance observations.

3.2 Baum-Welch Algorithm
In training an HMM, one must provide an observation sequence
O and a set of possible hidden states Q for it to learn a transition
probability matrix A, with each value ai j in the matrix representing
the probability of transitioning from hidden state i to hidden state
j, and an emission probability matrix B, with each value bi(ot)
representing the probability an observation ot is generated from
hidden state i [11].

The Baum-Welch algorithm (also known as the forward-backward
algorithm) is a special version of the Expectation Maximization
(EM) algorithm used to learn matrices A and B through an iterative
approach of calculating initial estimates for all of the values, using
those estimates to produce better estimates, and repeating the process
until they converge to an optimal set of values.

The value of each ai j can be represented by the equation below in
which C(i→ j) represents the total number of times a transition from
state i to state j took place and C(i→q) represents the total number
of transitions from state i to any state q have taken place.

ai j =
C(i→ j)

∑q ∈QC(i→ q)

In an HMM, we do not know the total number of these transitions
for certain as the states are hidden from us. Thus, we must use the
iterative approach of expectation-maximization here. We begin with



the forward algorithm, which tells us the probability of being in state
j after t observations, given the automaton λ .

αt( j) = P(o1,o2...ot ,qt = j|λ )

This value, represented by αt( j), is calculated using the following
equation, which must be calculated recursively given that it relies
on the α of the state preceding state qt , which relies on the state
preceding that, and so on.

αt( j) =
N

∑
i=1

αt−1(i)ai jb j(ot)

The second component of the Baum-Welch (forward-backward)
algorithm is the backward algorithm. As its name suggests, it is the
opposite of the forward algorithm in that it tells us the probability
that a sequence of observations from time t + 1 to time T (the end of
the time of the sequence) will occur given the current state qt and
the automaton λ .

βt(i) = P(ot+1,ot+2...oT |qt = i,λ )

This value, represented by βt(i) is calculated using the following
equation, which must also be calculated recursively given that it
relies on the β of the state succeeding state qt , which relies on the
state succeeding that, and so on.

βt(i) =
N

∑
j=1

ai jb j(ot+1)βt+1( j)

Going back to the equation for estimating the transition probabil-
ity ai j for transitions from state i to state j, we still need to determine
how to calculate the numerator, the number of transitions from state
i to state j. To find this number, we can estimate the probability
that the transition from i→ j took place at a certain time t. We can
then sum these values over all times t to get this total count. This
is represented in the equation below where ξt is the probability of
being in state i at time t and state j at time t + 1, given observation
sequence O and automaton λ .

ξt(i, j) = P(qt = i,qt+1 = j|O,λ )

ξt , however, must be calculated using a similar value not-quite-ξt ,
which differs in that the probability of the observation sequence O
occurring is measured as opposed to O being a given event in the
conditional. This new conditional probability can be found by multi-
plying the forward probability, the estimated transition probability,
the estimated observation emission probability, and the backward
probability.

not-quite-ξt = P(qt = i,qt+1 = j,O|λ )

not-quite-ξt = αt(i)ai jb j(ot+1)βt+1( j)

Using the laws of probability, ξt is found by dividing not-quite-
ξt by P(O|λ ), which represents the probability of the observation
sequence O occurring given the automaton λ .

P(O|λ ) = αT (qF ) = βT (q0) =
N

∑
j=1

αt( j)βt( j)

ξt(i, j) =
αt(i)ai jb j(ot+1)βt+1( j)

αT (qF )

The numerator in our equation for ai j , the number of transitions
from i→ j, can be found by summing ξ over all t. The denominator,
the number of transitions from state i to any state k, can be found
the same way by simply replacing j with k as demonstrated below.

âi j =
∑

T-1
t=1ξt(i, j)

∑
T-1
t=1 ∑

N
k=1ξt(i,k)

To estimate the emission probability b j(vk) we can simply esti-
mate the number of times an observation vk will be emitted when in
state j and divide that by the total expected number of times of being
in state j. We need to determine the probability of being in state j at
time t, which is represented by γt( j)

γt( j) =
αt( j)βt( j)

P(O|λ )

The emission probability is found by summing γt( j) over all time
t where the state was j and the observation ot was vk divided by the
summation of γt( j) over all time t.

b̂ j(vk) =

∑
T
t=1s.t.Ot = vkγt ( j)

∑
T
t=1γt( j)

With this means of estimating ai j and b j(vk), the expectation-
maximization iterative process of the Baum-Welch (forward-
backward) algorithm can be conducted until the transition and emis-
sion probability values converge [11].

3.3 Model Generation
For implementation of the Baum-Welch algorithm, we use the
JAHMM library [2, 9]. The action+cognitive significance obser-
vation sequences for each user were fed into the KMeansLearner
constructor as vectors. This class uses k-means clustering to identify
groups of similar observations and develops an HMM with initial
transition and observation emission probabilities based off a defined
number of hidden states, a uniform distribution of the probabilities
for the defined number of observable states, and the observation se-
quence that is fed into the constructor [9]. Additionally, it generates
a start probability for each hidden state, which gives the likelihood
that a sequence will begin with that state.

The initial HMM is then used as a starting point for the Baum-
Welch learning algorithm. The number of iterations for the learner
is defined by the user. For our purposes, we used ten iterations for
all HMMs generated. Increasing the number of iterations resulted
in negligible differences (less than 0.001%) on the transition and
observation emission probabilities, indicating that the HMM values
have converged. The number of observable states is set to ten given
the action+cognitive significance combinations from our data as
described in Section 3.1.

Using the parameters above, we developed HMMs with hidden
states ranging from 3 to 6. We also developed other HMMs with
3-6 hidden states based on the four experiment conditions: the High
Number-Geospatial anchor, the High Number-Temporal anchor, the
Low Number-Geospatial anchor, and the Low Number-Temporal an-
chor, as described in Section 3.1. In addition, we developed HMMs
by combining the anchor conditions to test whether participants
assigned to different visual anchor treatments follow similar cog-
nitive processes. For example, in one combination, we combined
the High-Geospatial and High-Temporal groups as a high numerical
anchor group. In total, we developed 36 HMMs.

Because the hidden states were undefined in the generation of
these HMMs, we sought to infer the cognitive states corresponding
to each hidden state generated. We referred to the sense-making
process described by Pirolli et al. [19]. From this we show empiri-
cally that decision-making begins with some form of planning/data
collecting state, followed by one or more intermediary analyzing
states, ending with a concluding/deciding state. As described by



Pirolli et al. [19], such transitions are typically not concrete; for ex-
ample, one may begin by planning, move on to analyzing, and may
return to planning/data collecting once more after a certain point of
analysis or realizing that more data must be collected. An example
representation of this sense-making process (which is hidden to us)
can be seen in Figure 1, where a possible corresponding sequence
of behaviors and interactions (which can be observed) are displayed
in parallel. We assumed that the state with the greatest probability
of starting a sequence was the planning/data collecting state. We
also assumed that the state with the lowest probability of starting
a sequence was the concluding/deciding state, which was typically
0.00. Figures 2, 3, and 4 represent the 3-state HMM generated using
all 81 user sequences as training data. We have labeled the hidden
states based on the assumptions described above. These diagrams
are of the same model; they are only separated to make the model
easier to present and interpret.

We noticed that based on our assumptions, planning/data collect-
ing states were typically associated with cognitive actions, given the
high emission probabilities for those observable states and zero/near-
zero emission probabilities for other observable states. Similarly,
analyzing states corresponded to “deliberate” actions while conclud-
ing/deciding states corresponded with “nonsignificant” actions. This
strongly points to the notion that longer thought processes go into
the earlier stages than the later stages of intelligence analysis [19].

3.4 Measuring Accuracy

CrystalBall user log data are unlabeled with regards to the cognitive
states corresponding to each action+cognitive significance observa-
tion. Therefore, we used data from another set of studies using a
VA system called Verifi. The user log data from Verifi was used
to test the accuracy of our models. In the Verifi studies [12, 23],
participants were tasked to submit a form when they were ready to
make their decisions. Each user was tasked with making eight deci-
sions regarding the veracity of eight Twitter accounts; however, each
user had the option to resubmit decisions. We therefore assumed
that at the time when a user submitted a form, they were in a con-
cluding/deciding state. HMM accuracy is measured by counting the
number of accurate classifications of the hidden state corresponding
to the “click” action associated with submitting a form (also known
as a “submit” action) and dividing it by the total form submissions
from the Verifi interaction logs. Moreover, testing our models with
new data from a different visual analytics system provides a more
stringent, out-of-sample evaluation of model performance.

3.5 Verifi Evaluation

The Verifi logs contained user actions at a finer level of granularity
than the CrystalBall data (scroll down or scroll up instead of simply
scroll). As such, we mapped them to their CrystalBall equivalents.

After mapping, the mouse actions were further grouped according
to their cognitive significance as described in Section 3.1. Because
our HMMs do not have “Cognitive Scroll” nor “Deliberate Scroll”
in the observation vocabulary, all such instances were removed from
the Verifi user observation sequences.

We evaluated our model on two sets of user log data for the Verifi
interface. The first set consisted of logs including 60 users in the
Verifi study involving confirmation bias, which we will refer to as
Verifi 1.0. The second data set included 94 users of the same Verifi
interface, but for the study of the anchoring bias, which we will refer
to as Verifi 1.1 [23]. Verifi 1.0 user sequences varied in length from
631 to 2,829 action+cognitive significance observations, whereas
Verifi 1.1 user sequences ranged from 569 to 3,531 action+cognitive
significance observations. All of the HMMs generated (as described
in Section 3.3) were tested on both Verifi user log data sets using the
methodology described in Section 3.4.

4 RESULTS

4.1 Viterbi Algorithm and Preliminary Results
For generation, we implemented the Viterbi algorithm for the cogni-
tive states in which the action+cognitive significance observations
from the user sequences in CrystalBall were used. The Verifi 1.0 and
1.1 data sets were used as the test data sets. The Viterbi algorithm is
a type of dynamic programming that uses a given HMM along with
its start, transition, and observation emission probabilities to deter-
mine the most probable sequence of hidden states corresponding to
a given observation sequence [11].

Once the predicted hidden state sequences were generated, we
measured the accuracy of each HMM. However, all HMMs had a 0%
accuracy, making the preliminary results inconclusive with regards
to which number of hidden states best represented the intelligence
analysis and sense-making process. The inconclusive results are
likely due to the “submit” action taking anywhere from 20000 ms
to over 150000 ms. The “submit” action includes all of the events
that took place from the time a user opened a form to the time they
submitted it (individual actions within the form were not recorded).
They are thus treated as “cognitive” actions, and because the HMMs
classified “cognitive” actions as planning/data collecting or early an-
alyzing cognitive states, these observations were likely misclassified
for the same reason.

4.2 AIC and BIC
Given our inconclusive preliminary results, we turned to statisti-
cal estimators of models to measure the relative strengths of the
HMM models of different hidden states conditioned on the model’s
complexity. We used the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) for our measurements of
model fit. AIC and BIC values depend on the “maximized like-
lihood” of a model (as derived from the likelihood function) and
the number of parameters (or complexity) in the model [20]. The
BIC value further depends on the length of the observation sequence
in question. The equations for both can be seen below where l
represents the log of the “maximized likelihood,” K represents the
number of parameters, and n represents the length of the observation
sequence.

AIC =−2l +2K

BIC =−2l +K log(n)

When comparing models of varying parameters, the model with
the lowest AIC (or lowest BIC) is said to be the model with the
best fit. As can be seen in the equations above, a large “maximized
likelihood” will lower the AIC and BIC value. A greater number
of parameters will add to that value; this means that a model will
have to have a larger “maximized likelihood” to justify the use of
extra parameters in a model. Such measures help prevent overfitting
when looking for the model with the greatest fit. The key difference
between AIC and BIC is that BIC penalizes extra parameters (i.e.,
model complexity) more than AIC.

4.3 AIC and BIC Results
We use the HMMpa package in R [1] to find the AIC and BIC values
for each user sequence from the CrystalBall, the Verifi 1.0, and the
Verifi 1.1 data sets. Additionally, we find the AIC and BIC values
on modified versions of the Verifi 1.0 and Verifi 1.1 data sets which
include “Cognitive Scroll” and “Deliberate Scroll” in the observation
vocabulary (as described in Section 4.1), and we treat all instances
of the “submit” action as a separate observation, disregarding the
cognitive significance associated with them (although they all have
a significance of “cognitive” due to each taking no less than 20000
ms). This gives the latter two data sets 13 possible observable
states as opposed to 10. The modified Verifi 1.0 data set has user
sequences ranging from 683 to 3,164 action+cognitive significance



Figure 1: We use the behaviors and interactions of users as observable data, as described in Section 3.1, to predict the corresponding mental
states, which are hidden to us. Any consecutive mental states that are the same can be treated as one large state.

Figure 2: Planning/Data Collecting state emission probabilities

Figure 3: Analyzing state emission probabilities



Figure 4: Deciding/Concluding state emission probabilities

observations, and the modified Verifi 1.1 data set ranges from 598 to
3,737 action+cognitive significance observations.

However, we cannot directly use the original HMMs in the
HMMpa package, so we must instead use its HMM training function
which reads a single observation sequence and develops multiple
HMMs, each with a predefined number of hidden states. It also
calculates the corresponding AIC and BIC values for each model. A
Poisson distribution is used for the probabilities of the observable
states, and the Baum-Welch algorithm is used to find the optimal
HMMs. All other parameters are left at their default values.

We ran this function on each user observation sequence for each
of our five data sets. The models with the lowest AIC and BIC
values for each sequence were recorded and the total counts were
tallied up for each model. Additionally, the AIC and BIC values
were averaged for each model in each data set, and the model with
the lowest average was recorded as well. These results can be seen
in Tables 3 and 4.

To examine whether or not AIC and BIC simply favored the
models with the least parameters (the number of hidden states), we
ran the HMM training function again and had it generate a 2-state
HMM along with the 3-6 state HMMs. Tables 5 and 6 provide the
results.

We find that AIC largely favored the 3-state model while BIC
found the 2-state model to be a better fit overall. Nevertheless, we
select the 3-state model over the 2-state model for two reasons. First,
BIC penalizes extra parameters more than AIC. Second, a 2-state
model does not intuitively fit our application of intelligence analysis
and the sense-making process. It is worth noting, however, that the
4-state model was the most favorable in the following instances:

• Verifi 1.1 with 13 observable states (Only in AIC when models
with 3-6 hidden states are examined)

• Verifi 1.0 with 13 observable states (Only in AIC when models
with 2-6 hidden states are examined)

While these instances are only favored with regards to AIC, they
indicate that perhaps the best representation of intelligence involves
somewhere between 3 and 4 cognitive states. Moreover, the different
tasks to identify cognitive biases (anchoring, confirmation, etc.)
may also influence this representation. Finally, the layout of a
visual analytics interface could play another role in the sense-making
process an individual undergoes when completing a task.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we find that a 3-state HMM provides the best fit among
plausible models for intelligence analysis and the sense-making
process. However, various assumptions were made in this study,

which limited the strength and certainty of our conclusions overall.
To further improve this work, certain aspects must be re-evaluated.

The data used are perhaps the most important detail that must be
addressed. All of the user logs used in this study [5, 6, 12, 23] were
not originally collected for the purposes of determining or predicting
the cognitive states of mind of individuals. As such, the data were
unlabeled for our purposes, leading to our assumptions regarding
when a user was in a concluding or deciding state. Even then, the
“form submit” action that we assumed corresponded with that state
was not truly reflective of the submission of a form alone. The user
logs did not record individual actions while completing the form and
instead treated the entire filling of the form (and its submission) as
one complete “form submit” action. Therefore, that action is thus
recorded as taking far longer than it actually did. This affects that
action’s cognitive significance as it is an inaccurate observable state
and led to inaccurate predictions from all of the original HMMs.

One solution could be to design future experiments that explicitly
label decision-making steps. This could involve asking participants
to state their cognitive state of mind during their analysis process. Of
course, one possible complication would be that this could interfere
with their decision-making process, leading to biased results (i.e.,
the Hawthorne Effect [3]). One way to mitigate such an effect would
be for participants to perform tasks while being recorded and then
retroactively be asked to state what their thought processes were as
they watch the video recording of their actions. However, in both of
these labeling procedures, one is assuming a set number of cognitive
states that each user would have to choose from to properly, and
consistently, label their actions in the interface. This could be solved
by having different groups of participants, each given a separate list
of possible cognitive states to choose from when labeling their data.
Obviously there are other downsides such as participants not being
aware of what cognitive state they were in as well as the length of
time this entire process would take for each individual.

Another future aspect to examine is the type of user behavior
recorded for observable states. In our study, we sought to use prim-
itive data, thus focusing on mouse actions. However, eye tracking
logs [7] were not included nor were keyboard actions recorded as
neither were important for the studies’ original purposes. If either
approach were to be used, all possible actions would need to be
defined properly and observation vocabularies would have to be set
to ensure that they are not too long to avoid data sparsity problems.
A reclassification method as described in Section 4.1 could also be
utilized for such purposes.

Finally, other models could very well produce more improved re-
sults. This study only examined the effectiveness of Hidden Markov
Models and the number of optimal states for such a model. How-
ever, Recurrent Neural Networks have offered promising results in
more recent times and could very well produce improved models



Table 3: AIC and BIC Lowest Value Counts

AIC BIC
3-state 4-state 5-state 6-state 3-state 4-state 5-state 6-state

CrystalBall 63 17 1 0 81 0 0 0
Verifi 1.0 (10 observable states) 57 3 0 0 60 0 0 0
Verifi 1.1 (10 observable states) 60 34 0 0 91 3 0 0
Verifi 1.0 (13 observable states) 39 15 4 2 60 0 0 0
Verifi 1.1 (13 observable states) 48 29 14 3 92 2 0 0

Table 4: AIC and BIC Averages

AIC BIC
3-state 4-state 5-state 6-state 3-state 4-state 5-state 6-state

CrystalBall 3403.89 3412.13 3438.24 3475.64 3481.43 3553.53 3661.74 3799.49
Verifi 1.0 (10 observable states) 6370.17 6391.72 6422.35 6463.17 6458.27 6552.37 6676.29 6831.11
Verifi 1.1 (10 observable states) 7523.28 7527.15 7557.82 7597.76 7614.41 7693.32 7820.49 7978.35
Verifi 1.0 (13 observable states) 7672.69 7677.68 7700.55 7733.97 7762.94 7842.24 7960.67 8110.89
Verifi 1.1 (13 observable states) 8311.55 8308.48 8325.53 8358.56 8403.81 8476.71 8591.45 8743.87

Table 5: AIC and BIC Lowest Value Counts

AIC BIC
2-state 3-state 4-state 5-state 6-state 2-state 3-state 4-state 5-state 6-state

CrystalBall 8 51 19 3 0 46 35 0 0 0
Verifi 1.0 (10) 12 44 3 1 0 49 11 0 0 0
Verifi 1.1 (10) 16 75 2 0 1 79 15 0 0 0
Verifi 1.0 (13) 16 19 18 5 2 44 12 3 1 0
Verifi 1.1 (13) 22 34 22 14 2 76 17 1 0 0

Table 6: AIC and BIC Averages

AIC BIC
2-state 3-state 4-state 5-state 6-state 2-state 3-state 4-state 5-state 6-state

CrystalBall 3464.03 3407.19 3413.18 3439.09 3476.66 3495.96 3484.73 3554.58 3662.60 3800.51
Verifi 1.0 (10) 7404.52 6377.70 6395.91 6424.50 6463.57 6440.80 6465.80 6556.56 6678.43 6831.51
Verifi 1.1 (10) 7541.25 7514.41 7535.99 7567.93 7607.45 7578.77 7605.54 7702.17 7830.59 7988.04
Verifi 1.0 (13) 7732.62 7689.90 7680.67 7700.85 7732.69 7769.78 7780.15 7845.24 7960.98 8109.61
Verifi 1.1 (13) 8319.11 8291.61 8296.67 8314.92 8350.88 8357.10 8383.86 8464.90 8580.83 8736.18



of intelligence analysis and the sense-making process. With the
proper labeled data, models can be better tested and model com-
parison can be done with much greater certainty. The generation
of such accurate models could help researchers better understand
cognitive thought processes and could offer significant applications
in assistive technologies for various user interfaces including but not
limited to visual analytics tools. Such assistive technologies could
help users make better, more informed decisions by providing the
right information at the right time in accordance with their thought
processes.
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