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ABSTRACT 

 
In image-guided neurosurgery, preoperatively acquired 
diagnostic images (e.g., brain MRI) should be accurately 
registered to the physical space that is specific to the patient’s 
intraoperative neuroanatomy. A popular framework of 
registration requires manual defining corresponding positions 
of fiducial markers on the patient head and the preoperative 
brain MRI. The procedure is time-consuming and subjective 
to intra- and inter-observer variations. Therefore, markerless-
based registration becomes increasingly popular. In this paper, 
we propose an automated markerless registration framework. 
Instead of using physical markers, we automatically detect 
feature points in face depth maps. The preoperative facial 
depth map is extracted from MRI, while the intraoperative 
map is reconstructed with structured light projection, using 
phase shifting interferometry. Then, we automatically detect 
and match the feature points on these two depth maps, using 
a robust method based on the extended SIFT algorithm. The 
transform matrix between the two coordinate systems can be 
computed accordingly. Our experiments on real data result in 
reasonable registration efficiency, while synthetic testing 
reveals promising accuracy. Average online processing time 
is no more than 1s totally in a MATLAB implementation. 

Index Terms— image-guided neurosurgery, registration, 
depth map, SIFT, robust, efficient 
 

1. INTRODUCTION 
 
Image-guided neurosurgery becomes increasingly popular 
with the emphasis on minimal-invasive surgery procedures, 
and it is getting more precisely controlled and well-organized 
with the advance of volumetric CT and MRI. 

In image-guided neurosurgery, preoperative planning (e.g. 
biopsy needle trajectories based on preoperative volumetric 
brain MRI) and intraoperative data should be registered. It 
can be interpreted as an alignment of preoperatively obtained 
diagnostic image series (e.g., volumetric brain MRI image) to 
a coordinate system that is specific to the intraoperative 
patient’s neuroanatomy [1]. 

A popular framework for the registration involves the 
identification of common landmarks which are localized on 
the patient and can be identified from the preoperative images. 

For example, homogenous landmarks (e.g. the nasal tip, and 
the inner or outer canthi of the eyes) are selected manually by 
a tracked pointer on patient face and preoperative diagnostic 
image series. An alternative way uses probe to sample points 
on the surface of the patient, and then determines the best 
match of this point-cloud to an extracted surface from the 3-
D patient image [2]. Unfortunately, such manual selection is 
time-consuming and would be subjective to intra- and inter-
observer variations. Therefore, markerless-based registration 
becomes increasingly popular. However, the achieved 
accuracy is often reported to be lower. In 2007, R. 
Konietschke et al. [3] proposed a markerless and contact free 
registration method, using DLR handheld 3D-Modeller 
(3DMo) for acquiring patient intraoperative surface. Their 
registration accuracy was better than 3mm, yet it is expensive 
to build. 

 In this paper, we propose a very efficient and accurate 
markerless framework for registration. Instead of using 
physical markers, we use face depth maps to represent face 
surfaces's 3D location. The preoperative face depth map is 
extracted from brain MRI, while the intraoperative map is 
reconstructed with structured light projection, using phase 
shifting interferometry [4]. Since depth map is in 2D format 
yet contains 3D information (i.e., depth), it can remarkably 
speed up the traditional 3D operations without sacrificing the 
accuracy. To register two surfaces, a set of feature points are 
automatically detected on each depth map, based on the 
extended SIFT [5]. These two sets of points are matched 
based on their locations and attached feature vectors. Once 
these points are matched, the global transform matrix 
between the two coordinate systems can be computed 
straightforwardly using procrustes analysis [6].  

Our proposed framework is automatic, robust and fast 
enough to satisfy the real-time demand owing to 1) the 
homogenous points detection based on extended SIFT 
method and 2) dimension reduction from 3D data to 2D depth 
map. Our experiments on real data result in reasonable 
registration efficiency, while synthetic testing reveals 
promising accuracy.  Average self-time for online processes, 
which are extended SIFT point detection, point matching and 
procrustes analysis in our framework, is totally no more than 
1s in a MATLAB implementation. 



 
Fig. 1. Framework overview diagram. Depth map 1 is reconstructed with structured light projection, using phase shifting 
interferometry, and depth map 2 is obtained by volumetric brain MRI segmentation. Coordinate of the whole head can be traced 
accordingly. Curvature maps are generated from two depth maps, on which SIFT points are detected. The point matching is 
constrained by priori knowledge. After matching these points, alignment is accomplished using procrustes analysis. 
 

2. METHODOLOGY 
 
Framework Overview: Our proposed framework is based 
on point matching between preoperative and intraoperative 
depth maps. The intraoperative depth map is reconstructed 
with structured light projection, using phase shifting 
interferometry [4], which computes 3D information of 
surface by detecting the distortion when structured light are 
projected to facial surface.  The preoperative depth map is 
segmented from the volumetric MRI. Points in the MRI are 
clustered with Quick shift [7] for better edge detection, and 
histogram-based threshold method is employed for 
computing threshold in each slice. For consistency, we set 
both face surfaces to be frontal, which can be achieved as 
follows: the intraoperative projector is placed straightly 
towards patient's frontal face, and the preoperative brain MRI 
is aligned to a standardized coordinate system, where the 
head is upright so as to get frontal face's depth map [8].  The 
value D(𝒙𝒙,𝒚𝒚) on depth image maps to the distance between 
point (𝒙𝒙,𝒚𝒚) on frontal face and the back plane. 

 SIFT method is widely used for extracting features from 
images,  these features were proved to be effective in medical 
image alignment by Matthew Toews et al. [9] in 2012, yet 
their method was applied on 3D data and required pre-aligned 
image learning, which is time and space consuming. Our 
method, on the other hand, is based on 2D maps for better 
computational efficiency. Indeed, information on depth map 
is limited. The lack of pattern on depth map prevents a good 
performance of SIFT method. Therefore, we calculate 
Gaussian curvature from depth map, reshaping it into a 
curvature map, where the value of each pixel 𝐾𝐾(𝑥𝑥,𝑦𝑦) maps to 
its Gaussian curvature on the surface. The variety of features 
and patterns on curvature map meets the requirement of SIFT 
method, using which two sets of interest points are detected, 
with specific descriptor attached. These points on two maps 
are matched as per their locations and descriptors. To 
improve the robustness, Random Sample Consensus 

(RANSAC) [10] is employed to prune outliers during point 
matching. We also use priori knowledge to constrain the pair 
matching, which is detected on depth map and can further 
exclude outliers generated from symmetric characteristic of 
faces. With the matching results, global transform aligning 
two coordinate systems is computed straightforwardly. In the 
following, we introduce several major modules in our 
framework. 

SIFT Point Detection on Curvature Map: SIFT method 
has been widely used to extract distinctive and invariant 
features from images that can be used to perform reliable 
matching between different views of an object. It is able to 
provide robust matching across a substantial range of affine 
distortion, changes in 3D viewpoint, presence of image noise, 
and variations of illuminations, which are common 
dissimilarities our two depth maps may have. However, 
simply applying SIFT method on two depth maps does not 
work well due to limited information, i.e., depth map of face 
tends to be oversimplified without enough patterns for precise 
location. Therefore, we compute the curvature from depth 
map, reshaping it into a curvature map. Curvature is specific 
to anatomy, tolerant to a range of rotating and meets the 
demand of pattern variety. The SIFT method is then applied 
on curvature maps. 

In SIFT method, potential interest points are identified by 
scanning the image over locations and scales. This is 
achieved efficiently by constructing a Gaussian pyramid and 
searching for local peaks (termed keypoints) in a series of 
difference-of-Gaussian (DoG) images. 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥,𝑦𝑦,𝜎𝜎|𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑘𝑘𝑘𝑘) − 𝑓𝑓(𝑥𝑥,𝑦𝑦,𝜎𝜎)|          (1) 
 

Where 𝑓𝑓(𝑥𝑥,𝑦𝑦,𝜎𝜎) is the convolution of the curvature map 
𝐾𝐾(𝑥𝑥,𝑦𝑦)  with a Gaussian kernel of variance  𝜎𝜎2 , 𝑘𝑘  is a 
multiplicative scale sampling rate, and the expression 
′𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 {𝐹𝐹(𝑋𝑋)}′  denotes a set of values of the 
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argument X that locally maximize 𝐹𝐹(𝑋𝑋). A descriptor vector 
for each keypoint is built. 

Matching with Extended Constraints: For point 𝑃𝑃𝑖𝑖 ∈
𝑆𝑆1 , its nearest neighbor 𝑃𝑃𝑗𝑗  in 𝑆𝑆2  can be defined as the 
keypoint with minimum Euclidean distance for the invariant 
descriptor vector. To discard points that do not have any good 
match to the database, we should compare the distance of the 
closest neighbor to that of the second-closest neighbor. In our 
case, we reject all matches in which the distance ratio is 
greater than 0.8, i.e., if 𝑃𝑃𝑗𝑗  reliably matches  𝑃𝑃𝑖𝑖 , then  �𝐷𝐷𝑖𝑖 −
𝐷𝐷𝑗𝑗� /|𝐷𝐷𝑖𝑖 − 𝐷𝐷𝑘𝑘|  ≤ 0.8 (𝑃𝑃𝑘𝑘 ∈ S2 , k ≠ j) , where 𝐷𝐷𝑖𝑖  denotes 
the descriptor of point 𝑃𝑃𝑖𝑖 . 

To improve the robustness, Random Sample Consensus 
(RANSAC) [10] is employed to prune outliers, however, 
there are still outliers generated from symmetric 
characteristic of face, which cannot be excluded by previous 
process. We employ priori knowledge for correction, which 
can be achieved using integral projection [11] and sparse 
shape composition [12]. For example, facial medial axis can 
be located by detecting the highest vertical line on depth map, 
points from different side of the line should not be paired.  

Alignment of 3D Data Using Procrustes Analysis: 
Reshaping the depth maps into 3D surfaces, where the 
keypoint sets are now S1{𝑝𝑝1, 𝑝𝑝2 … 𝑝𝑝𝑛𝑛} and  S2{𝑞𝑞1, 𝑞𝑞2 … 𝑞𝑞𝑛𝑛}. 
With one-to-one correspondence matching, the 
transformation (translation matrix T and rotation matrix  R) 
between the S1 and S2 is computed easily using procrustes 
analysis: 

 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇,𝑅𝑅�‖(𝑅𝑅𝑝𝑝𝑖𝑖 + 𝑡𝑡) − 𝑞𝑞𝑖𝑖‖ 2   
𝑛𝑛

𝑖𝑖=1

                (2) 

 
T and R can be employed for rigid alignment between the 

two surfaces. 
 

3. EXPERIMENTAL SETUP AND RESULT 
 
Experimental Setting: Our proposed framework is validated 
on 10 volunteers, generating 10 groups of real preoperative 
volumetric brain MRI series, which were obtained from GE 
Hdxt 3.0T, using fast SPGR pulse sequence in gradient echo 
family, with voxel size 0.43 × 0.43 × 1mm. Their 
intraoperative surface depth map reconstruction system 
consists of a low-end CMOS Color camera and a SONY 
XPL-CX80 LCD projector. Another 20 groups of synthetic 
data are also used for testing, within which the preoperative 
MRI series are scanned using sequences above and the 
intraoperative data are obtained by transferring preoperative 
data to another coordinate system and changing scales or 
adding noises. All experiments were performed on a 2.5 GHz 
PC with 2 cores and 4G RAM, in MATLAB implementation. 

Evaluation of the Accuracy and Robustness with 
Synthetic Data: In our framework, the preoperative depth 
map is of good quality, but the reconstructed intraoperative 
depth map would have scale change from the preoperative 

map and is interfered by stripe noise. To test the robustness 
of our algorithm in above occasions, we first introduce tests 
on synthetic data.  
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Intensity=0.0002 Intensity=0.0004 Intensity=0.001 

   
Intensity=0.002 Intensity=0.004 Intensity=0.01 

   
Intensity=0.02 Intensity=0.03 Intensity=0.04 

(c) 
Fig.2. (a) Average number of matched SIFT points and 
registration error (average point to point distance among the 
whole surface compared with manually selecting landmarks) 
when image scale changes in intraoperative map; (b) Average 
number of matched SIFT points and registration error when 
stripe noise added while scale ratio is 1.0. The value of noise 
intensity is defined as maximal(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)

maximal(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ)
; (c) Visual comparisons 

between manually selecting points and using our auto 
algorithm when noise added. The color maps to registration 
errors. 
 

In Fig.2. (a), when the scale change is no larger than 2, 
averagely more than 10 groups of point pairs would be found, 
ensuring high registration accuracy with the error no more 
than 0.6 mm. The robustness is good enough because the 
scale change in our framework is within that range. 

In Fig.2. (b), when noise intensity is below 0.03, the 
registration error is slight (no more than 1mm) and grows 
slowly, whereas the error would suddenly climb up to 4mm 
when noise intensity reaches 0.04. Therefore, the extended 
SIFT method would have good performance when noise 
intensity is under certain threshold (the threshold is 0.04 in 
our tests). Fig.2. (c) shows the visualization of such errors. 
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Evaluation of the Accuracy and Robustness with Real 
Data: Among the 10 groups of real data, the average 
registration error is 3.613 mm, and the variance is 0.126.  

   
Synthetic Data: 

Noise Intensity=0.03 
 

Synthetic Data: 
Noise Intensity=0.04 

Real Data 
 

Fig. 3. Visualization of registration error when testing 1) 
synthetic data with noise intensity of 0.03, 2) synthetic data 
with noise intensity of 0.04 and 3) real data. The color maps 
to registration errors. 

 
Fig.3 visualizes the numerical relationship of above three 

tests. The result of real data is numerically an intermediate 
state between noise intensity of 0.03 and 0.04 in synthetic 
data tests.  These results indicate that, the noise intensity in 
real data is above yet close to the intensity threshold. Since 
patient’s head is fixed during neurosurgery, factors such as 
facial movement can be excluded. Thus the dominant factor 
affecting accuracy in real data is noise intensity. Therefore, 
even a slight reduction of noise in real data might lead to 
changes that are far more positive in accuracy. Had the 
current reconstruction system improved, the registration 
would perform far better as well.  

Evaluation of  Computational Efficiency: The running 
time of major online processes, i.e., SIFT point detection, 
point matching and procrustes analysis, are averagely 
0.464639s, 0.290894s and 0.079896s, summing up to no 
more than 1s, being suitable for real-time applications. 
 

4. CONCLUSION AND DISCUSSION 
 
In this paper, we proposed an efficient markerless framework 
of registration for image-guided neurosurgery. This is 
achieved by extended SIFT point matching in preoperative 
and intraoperative depth maps. The preoperative depth map 
is segmented from MRI and the intraoperative depth map is 
reconstructed with structured light projection. Compared 
with previous markerless frameworks, such as what R. 
Konietschke et al. [3] proposed in 2007, our framework is 
thoroughly automatic without any intraoperative interaction, 
reducing setup time and cost at the same time.  

In our experiment, the distance between surfaces 
registered by manually selecting points and our auto method 
averages to 3.613mm in real data tests, with a variance of 
0.126. However, in synthetic data test, with scale changing 
no more than 2 times and noise intensity less than 0.03, the 
distance can be restricted within 1mm. Our registration 
algorithm is proved to maintain reasonable robustness, yet the 
stripe noise in reconstructed intraoperative depth map notably 
reduced the registration accuracy. According to the 
reconstruction process, the main errors in our current 
reconstructing system result from camera calibration and 

coordinate transformation. Had these system errors fixed, the 
registration accuracy would be further improved, enabling us 
to realize a markerless framework with greater accuracy yet 
far lower cost than previous work has achieved. Therefore, 
our future work would focus on improving the reconstructing 
system for better quality of intraoperative depth map. 
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