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Purpose: To improve the accuracy and the robustness of the segmentation in living donor liver trans-
plantation (LDLT) surgery planning system, the authors present a new segmentation framework that
addresses challenges induced by the complex shape variations of patients’ livers with cancer. It is de-
signed to achieve the accurate and robust segmentation of hepatic parenchyma, portal veins, hepatic
veins, and tumors in the LDLT surgery planning system.
Methods: The segmentation framework proposed in this paper includes two important modules:
(1) The robust shape prior modeling for liver, in which the sparse shape composition (SSC) model is
employed to deal with the complex variations of liver shapes and obtain patient-specific liver shape
priors. (2) The integration of the liver shape prior with a minimally supervised segmentation algo-
rithm to achieve the accurate segmentation of hepatic parenchyma, portal veins, hepatic veins, and
tumors simultaneously. The authors apply this segmentation framework to our previously developed
LDLT surgery planning system to enhance its accuracy and robustness when dealing with complex
cases of patients with liver cancer.
Results: Compared with the principal component analysis, the SSC model shows a great advantage in
handling the complex variations of liver shapes. It also effectively excludes gross errors and outliers
that appear in the input shape and preserves local details for specific patients. The proposed segmen-
tation framework was evaluated on the clinical image data of liver cancer patients, and the average
symmetric surface distance for hepatic parenchyma, portal veins, hepatic veins, and tumors was 1.07
± 0.76, 1.09 ± 0.28, 0.92 ± 0.35 and 1.13 ± 0.37 mm, respectively. The Hausdorff distance for these
four tissues was 7.68, 4.67, 4.09, and 5.36 mm, respectively.
Conclusions: The proposed segmentation framework improves the robustness of the LDLT surgery
planning system remarkably when dealing with complex clinical liver shapes. The SSC model is
able to handle non-Gaussian errors and preserve local detail information of the input liver shape. As
a result, the proposed framework effectively addresses the problems caused by the complex shape
variations of livers with cancer. Our framework not only obtains accurate segmentation results for
healthy persons and common patients, but also shows high robustness when dealing with specific
patients with large variations of liver shapes in complex clinical environments. © 2013 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4802215]
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I. INTRODUCTION

Liver cancer has been one of the most life-threatening dis-
eases with high mortality and poor prognosis all over the
world. In 2008, it was estimated that about 750 000 people
were diagnosed with liver cancer and nearly 696 000 people
died from this disease worldwide.1 Since it is hard to de-
tect the early signs, most liver cancers are in end-stage when
they are diagnosed. The best treatment method is liver trans-
plantation, and an important alternative is liver resection, un-
der the consideration of the scarcity of donor.2 Living donor
liver transplantation (LDLT) plays a crucial role to extend
the scarce donor pool, which prevents waiting list mortality.3

A detailed knowledge of patient-specific liver anatomy is of

great significance in the surgery strategy planning for LDLT.
To achieve the best resection plan, surgeons need to identify
the location of the liver portion that would be cut off, together
with the distribution of intrahepatic vessels and tumors. As a
result, the preoperative planning based on medical image is
highly important.

The most essential module in the LDLT surgery plan-
ning system is the segmentation of liver, intrahepatic ves-
sels, and tumors. However, there are several challenges in
the liver segmentation. First, the gray levels of liver and its
adjacent organs are very similar. Therefore, there may not
be obvious boundaries between these organs and thus tra-
ditional methods, such as edge detection and region grow-
ing, may include adjacent organs easily. Second, in clinical
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FIG. 1. Examples of the complex variations of liver shapes. (a) shows a transverse slice through the porta hepatis of a healthy person. (b)–(d) show the
counterparts of (a) from three patients with liver cancer. The right and left circles show the left and right lobe of the liver, respectively. Notice the large variations
of liver shapes.

environments, some special pathologies such as tumor and
metastasis usually lead to inhomogeneous gray level appear-
ance. In these cases, tumor and metastasis are quite different
from healthy liver regions in terms of gray levels, which may
result in under-segmentation of these tissues by traditional
methods relying on gray level information. To address these
two challenges, shape priors are greatly helpful, since they
can assist to separate adjacent organs and preserve intrahep-
atic tissues despite of the inhomogeneous gray level caused
by tumor and metastasis.

Though shape prior-based segmentation seems promising,
the effectively modeling liver shape prior is extremely chal-
lenging. The reason is that liver shapes and anatomies from
different individuals vary considerably, and tumor and metas-
tasis usually make liver shapes even more complex and harder
to model. The liver shape variations induced by liver cancer
and other pathologies mainly include four types: (1) the ex-
pansion of hepatic lobes, (2) the shrinkage of hepatic lobes,
(3) the bending of liver shapes, and (4) local gross shape
changes due to tumors. In addition, combinations of these
basic types result in more complex liver shape variations.
Figure 1 shows some liver images from a healthy person
and three patients with liver cancer. These images are from
computed tomography (CT) scans and include the porta hep-
atis, a special anatomic structure of the liver. In Fig. 1(b),
the right liver lobe is much narrower than the normal one in
Fig. 1(a), while the left liver lobe extends to the left of the
body in a larger degree than the normal one. In Fig. 1(c),
the left liver lobe shrinks greatly and the right lobe is also
much smaller than the normal one. In Fig. 1(d), the tumor
in the left lobe expands the liver dramatically. It can be no-
ticed that both the shape of the whole liver and the local de-
tails change in a very large scale among different persons. The
variations of liver shapes are so complex that it is very chal-
lenging to model them effectively. In clinical environments,
it is also very common that tumor and metastasis largely de-
form the liver, and the resulting high variations of liver shapes
among different patients make the accurate modeling and seg-
mentation extremely difficult.

In this paper, we propose a novel shape prior based seg-
mentation framework to address the aforementioned chal-
lenges in the segmentation module of the LDLT surgery plan-

ning system. The main contribution of this work is three-
fold: (1) To address the challenges caused by the complex
variations of liver shapes, we employ the sparse shape com-
position (SSC) to model the shape prior of liver. The SSC
model does not have any assumption of the parametric distri-
butions of liver shapes, and it preserves local details of liver
shapes well. As a result, the shape prior is patient-specific
and accurate enough to model the complex variations of liver
shapes. (2) The shape prior method is combined with a mini-
mally supervised segmentation algorithm to segment hepatic
parenchyma, intrahepatic vessels and tumors simultaneously.
(3) The novel segmentation framework is successfully applied
to the clinical application of the LDLT surgery planning sys-
tem. It achieves robust segmentation when dealing with com-
plex cases of liver cancer patients in clinical environments.

II. RELATED WORK

Many approaches have been proposed for the segmentation
in liver surgery planning systems. In some early researches,
the segmentation framework in such systems relied greatly
on user interactions, and the liver was segmented slice by
slice. For example, the German Cancer Research Center in
Heidelberg proposed a framework for liver surgery operation
planning system.4 The segmentation framework in this system
is based on anatomical landmarks identified by user interac-
tions in each slice. Though the user interaction helps achiev-
ing accurate segmentation results, it is time consuming. The
Center for Medical Diagnostic Systems and Visualization in
Germany also developed a software application for the preop-
erative planning of liver surgery.5 The liver segmentation in
that system is performed with a semiautomatic edge-oriented
algorithm. It requires users to specify a few seed points per
slice to identify the liver contour. In the following years, 3D
image segmentation approaches were employed and some ef-
forts were made to reduce user interactions. Researchers in
Graz University of Technology proposed a liver surgery plan-
ning system using virtual reality.6 The segmentation module
in this system employs the active appearance model (AAM)
(Ref. 7) to separate the heart and the liver in CT data, with
an extended 3D multiobject fuzzy connectedness approach
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that lets users contribute their knowledge to improve the final
segmentation.

Besides, the aforementioned segmentation methods that
have been incorporated into liver surgery planning systems,
a variety of other effective approaches have also been pro-
posed in recent years. To achieve the automatic segmentation,
Ruskó et al.8 developed a region growing method that in-
volves several pre- and postprocessing steps to eliminate over-
segmentation. Rikxoort et al.9 and Klein et al.10 employed
methods based on atlas matching. Kainmüller et al.,11 and
Zhang et al.12 incorporated statistical shape models into their
liver segmentation methods. In addition, learning-based liver
segmentation methods were also proposed. The algorithm
proposed by Ling et al.13 employs a hierarchical shape rep-
resentation and a learning-based boundary localization tech-
nique. Zhan et al.14 also proposed a learning-based hierarchi-
cal deformable model that can be used across different imag-
ing modalities. However, automatic methods are not always
robust in clinical environments. Thus, a lot of semiautomatic
approaches were proposed to improve the robustness of the
segmentation. Liu et al.15 used a gradient vector flow (GVF)
snake for the delineation of liver contours slice by slice.
Beichel et al.16 combined a graph cut method with a 3D vir-
tual reality based refinement approach for liver segmentation.
Zheng et al.17 also developed a graph cut-based segmenta-
tion algorithm to refine coarse manual segmentation results
of liver tumors. Oliveira et al.18 proposed an effective de-
formable segmentation model based on level set for surgical
planning. However, it is implemented at each slice sequen-
tially. Fernandez-de-Manuel et al.19 employed 3D level set
in a semiautomatic liver segmentation method based on ac-
tive surface, but it is designed for the segmentation of healthy
cases of the liver. The newest proposed methods can usually
obtain satisfactory performance when dealing with healthy
persons and common patients. However, most of them have
the same problem: the robustness cannot be ensured in many
special cases where the tumor and metastasis deform the liver
regions to unusual and complex shapes. Therefore, a lot of
user interactions are frequently needed to refine the segmen-
tation results. In order to make these systems applicable in
complex clinical environments, improving the robustness of
the segmentation is still under research.

In recent years, the shape priors have shown great impor-
tance for liver image segmentation. Shape prior-based meth-
ods usually achieve better performance than methods solely
relying on the appearance cues.20 However, to our knowledge,
there is a lack of LDLT surgery planning systems employing
the shape prior-based segmentation method to robustly handle
complex cases of patients with liver cancer.

A key problem of shape prior-based segmentation is how
to model the complex shape variations appropriately. Many
statistic shape modeling methods have been used in medi-
cal image segmentation, among which the active shape model
(ASM) (Ref. 21) and its variations22 are the most prevalent.
However, the modeling of liver shapes of patients with liver
cancer is much more challenging than that of many other or-
gans. The variations of liver shapes from different patients
are too complex to accurately model with parametric proba-

bility distributions. Besides, since the shape prior should be
patient-specific and adaptive in LDLT surgery planning sys-
tems, it is critical to handle gross errors and outliers and pre-
serve local details for different patients. The sparse shape
composition23, 24 proposes a new way to implicitly model the
shape prior and it is effective in modeling complex shape
variations.

A variety of methods have also been proposed to extract
vessels form medical images.25, 26 Zheng et al.27 proposed a
learning-based scheme using a set of features for the detec-
tion of vessels from retinal fundus images. These features are
used to describe the variation patterns of the image’s local
geometric structures across various scales. Goch et al.28 pro-
posed an approach based on the GVF for the segmentation
of hepatic vascular system. This approach avoids multiscale
analysis and related scale space problems. Bauer et al.29 pre-
sented a method based on shape priors and graph cuts for the
segmentation of tubular tree structures and applied it to the
segmentation of portal and hepatic veins in liver surgery plan-
ning. However, despite the large amount of previous methods,
the segmentation of 3D liver vessels is still a challenging task,
due to the complex vascular anatomy and the high variability
of size and curvature of vessels.25, 30

III. METHODS

The novel shape prior-based segmentation framework in
the LDLT surgery planning system proposed in this paper fo-
cuses on addressing the challenges in the modeling of liver
shape priors for patients with liver cancer, as well as the chal-
lenges in the accurate segmentation of liver, intrahepatic ves-
sels and tumors. The segmentation framework includes two
important modules: (1) Shape prior modeling for liver. The
SSC model is employed to deal with the complex variations
of liver shapes with its ability to handle non-Gaussian errors
and preserve local detail information. (2) Accurate segmenta-
tion of hepatic parenchyma, portal veins, hepatic veins, and
tumors using clinical enhanced CT scans. It is based on a
combination of the patient-specific shape prior and a mini-
mally supervised segmentation algorithm. This algorithm can
segment multiobjects simultaneously. We apply this segmen-
tation framework to our previously developed LDLT surgery
planning system to enhance its accuracy and robustness when
dealing with complex cases of patients with liver cancer. Be-
sides the proposed segmentation framework, our system also
consists of another two basic components in a typical liver
surgery planning system: one is the liver segment approxi-
mation that partitions the liver into several functionally inde-
pendent segments based on intrahepatic vessels, and the other
is the visualization of the segmentation results and different
liver segments.

III.A. Sparse shape representation for liver

The SSC model represents the shape prior by a sparse lin-
ear combination of shapes in the shape repository. It does not
rely on any assumption of parametric distribution models. It
can also preserve the local detail information that presents in
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the training set. Therefore, it addresses the main challenges
in the modeling of the complex shape variations and patient-
specific shape priors.

In the segmentation framework proposed in this paper, a
repository consisting of training shapes from a large range
of healthy persons is constructed. Each training shape is ob-
tained from the manually segmented result by experienced
experts, and it can be regarded as the gold standard of the
corresponding liver. All the manual segmentation results are
converted to surface meshes. The number of vertices on the
mesh is chosen as a tradeoff between the shape prior vari-
ability and the computation time: a small number of vertices
might not be enough to model the complex shape variations,
while a large number increases the computation time. As a
compromise, we set the number of vertices to near 1000 ac-
cording to our empirical experience. Since the spatial posi-
tion and orientation of different meshes in the repository vary
a lot, prealignment of the training shapes is performed based
on the generalized Procrustes analysis,31 so that they are in a
common coordinate system. The one-to-one correspondence
of vertices on different meshes is obtained by taking an ar-
bitrary shape in the repository as the reference and register-
ing it to the others using adaptive focus deformable model
(AFDM).32, 33 To remove the bias caused by the selection of
the reference, the mean shape is computed and then is regis-
tered to all the shapes again. For a patient who needs a surgery
plan, a rough initial liver segmentation based on simple re-
gion growing method is rapidly performed. The initial seg-
mentation result is converted to a surface mesh. The point
correspondence between the new mesh and the mean shape
of the repository is also computed using AFDM. In our ap-
plication, the appearance cues of some CT images, such as
scans from patients with liver cancer, may be weak or mis-
leading and can easily result in the oversegmentation or the
under-segmentation in the segmented shapes, i.e., gross er-
rors. These gross errors can be very large but these regions are
relatively sparse compared with the whole shape. Traditional
shape models such as ASM usually represent shape distribu-
tions by the mean shape and the major variations, based on
the assumption that the errors follow some Gaussian distribu-
tions. However, this assumption does not hold for gross and
sparse errors. As a result, we explicitly model the errors as a
sparse vector e. The liver shape of the patient is approximated
by an optimized sparse linear combination of a subset of the
repository. The optimization problem is formulated as24

arg min
x,e,β

‖T (y, β) − Dx − e‖2
2 + λ1 ‖x‖1 + λ2 ‖e‖1 , (1)

where D is a matrix that describes the training set. Each col-
umn of D is a vector representing the vertices’ coordinates of
one mesh in the shape repository. x represents the coefficients
for the training samples. y is a column vector representing
the input shape which needs to be refined. T(y, β) is a global
transformation operator with parameter β, which is estimated
using the generalized Procrustes analysis.31 It aligns the in-
put shape y to the mean shape of the repository. e denotes the
gross errors or outliers in the input shape. In our application,
it means the oversegmentation or the under-segmentation that

appears in the initial segmentation result of liver. λ1 and λ2

control the sparseness of x and e, respectively. The optimized
sparse shape representation Dx − e is transformed to the orig-
inal coordinate system of y by the inverse transformation of
T(y, β). The result of the transformation is treated as the shape
prior for y.

III.B. Accurate segmentation based
on SSC shape prior

After the patient-specific shape prior is achieved by the
SSC model, it can be employed to guide the accurate segmen-
tation of hepatic parenchyma, portal veins, hepatic veins, and
tumors. A minimally supervised classification method that
considers both statistical and spatial information is employed
to segment these tissues in the liver region. This method was
originally designed for 2D image segmentation,34 and we ex-
tended it to 3D image segmentation and incorporated it with
the SSC shape prior.

The segmentation method is an iterative classification ap-
proach using Bayesian level set method.35 It can be described
as a growing of high-confidence (HC) points of each tissue.
HC points are points with the least chance to be misclassi-
fied. In the first iteration, HC points of each tissue are se-
lected based on the statistical threshold of intensity and size
threshold of the connected blobs of HC points. We consider
the image histogram as a Gaussian mixture model (GMM)
and use the expectation maximization (EM) (Ref. 36) algo-
rithm to estimate the mean value and the standard deviation of
each tissue from seed points. Then a narrow intensity range is
obtained to select HC points with the least chance of misclas-
sification. In addition, when the image’s signal-to-noise ra-
tio (SNR) is low or intensity ranges of different tissues (such
as portal veins and hepatic veins) have large overlap, a size
threshold of HC points blobs is used to get rid of misclassi-
fied points. This is because the HC points blob in very small
size is more likely to be noise due to the spatial continuity of
tissues. Based on the statistical threshold and size threshold,
the HC points of one given tissue are approximately evenly
distributed throughout the region of that tissue. Examples of
HC points are shown in Fig. 4.

After the selection of HC points in the first iteration, a fast
marching level set method37 is used to compute the march-
ing process of the surface of HC points blobs, thus the arrival
time at each unclassified point can be obtained. The marching
speed at each unclassified point is based on its intensity and
the spatial relationship between that point and the liver shape
prior

V (x, c) = ωVintensity(x, c) + (1 − ω)Vshape(x), (2)

where x denotes the unclassified point. c indicates one certain
tissue. ω and 1 − ω are coefficients controlling the weights of
the intensity term Vintensity and the shape term Vshape. ω is in a
range of 0.0–1.0,

Vintensity(x, c) =
1 + min

m
(|I (x) − I (m)|)

1 + |I (x) − I (c)| , (3)
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where I(x) is the intensity of voxel point x. I (c) is the av-
erage intensity of HC points of tissue c. The maximum of
Vintensity(x, c) is obtained when I(x) is the closest to I (c),

Vshape(x) = �(x)

max(�(x))
, (4)

where �(x) is a signed distance function based on the liver
shape prior. The sign of �(x) is positive if x is inside the shape
prior, while negative if x is outside the shape prior. For one
certain tissue c and an unclassified point x, the larger the dif-
ference between I (c) and I(x), or the lower value of �(x), the
slower the marching speed V (x, c).

After the marching process, the arrival time of HC points
marching to each unclassified point is obtained. We classify
each point into the tissue with the least arrival time at that
point, based on which new HC points are selected for each
tissue again, and then a new iteration step begins. The itera-
tion will terminate when the percentage of increase in the vol-
ume of hepatic parenchyma is below a given threshold. Thus,
the simultaneous segmentation of hepatic parenchyma, portal
veins, hepatic veins, and tumors is achieved.

III.C. Liver segment approximation and visualization

The proposed segmentation framework is incorporated
into our previously developed LDLT surgery planning system,
which also includes the liver segment approximation and vi-
sualization modules. The liver segment approximation mod-
ule partitions the liver into several functionally independent
segments that can be used as ablation units according to the
branching structure of portal veins. In our system, the nearest
neighbor segment approximation (NNSA) (Ref. 38) approach
and the visualization toolkit (VTK) (Ref. 39) are employed
for liver segment approximation and 3D data visualization,
respectively.

IV. RESULTS

Clinical abdominal image data of enhanced CT from
Shanghai Renji Hospital was used in the experiments. The
data were acquired using a GE Discovery CT750 HD sys-
tem with the following scanning protocol: slice thickness
= 1.25 mm, image resolution = 512 × 512, pixel spacing
= 0.683594 × 0.683594 mm. The scanning was automatically
triggered when the system detects the contrast agent flowing
into the hepatic artery, portal veins, and hepatic veins, respec-
tively. The average time delay for the three scans was about
25, 40, and 70 s, respectively after the injection of the contrast
agent. We collected the manual segmentation results of liv-
ers from 50 healthy persons, aged from 18 to 75, to construct
the training data. The image datasets from 18 patients were
analyzed by the liver surgery planning system. Most of the
patients had tumors or metastasis close to major vessels, and
some patients had one part of the liver resected previously.
The gray levels of tumor and metastasis are significantly dif-
ferent from those of healthy liver regions. The liver shapes of
these patients also vary in a large range.

In our previous study, we found that the performance of
SSC is not sensitive to λ1 and λ2, and a fixed set of ω also
gives stable results for different patients. Therefore, we fixed
these parameters when dealing with different patients. The
best parameter set was found offline using the training dataset.
It was achieved by traversing each parameter within a large
range to find its optimum. During each iteration step, one pa-
rameter was tuned, while other two parameters were fixed.
Finally, we obtained the best parameter set and fixed it dur-
ing the experiments. The parameter set for SSC was λ1 = 50,
λ2 = 0.3. ω in Eq. (2) was set differently for four tissues. For
hepatic parenchyma, we enhanced the weight of the shape
term in the speed function, and we set ω to 0.6. For portal
veins, hepatic veins and tumors, ω was set to 0.2, 0.2, and 0.8,
respectively.

IV.A. Sparse shape composition

For each patient, the SSC shape prior of liver region was
compared with the corresponding gold standard and the PCA
shape prior. The same training set was used by PCA and SSC
for fair comparisons. All the experiments were performed on a
2.4 GHz PC with 2G RAM, with PYTHON 2.5 and C++ im-
plementations. The average running time of using PCA and
SSC was 3.44 and 6.52 s, respectively. Figure 2 shows some
visual comparisons between the shape priors based on PCA
and SSC. Each column shows one case. The initial segmen-
tation result, the manual segmentation result, the PCA shape
prior and its visualized errors, the SSC shape prior and its vi-
sualized errors are shown from the top row to the bottom row,
respectively. The shortest Euclidean surface distance is mea-
sured in millimeters (mm) in the visualization of errors.

In the first column of Fig. 2, a large region of tumor ap-
pears in the posterior portion of the right liver lobe. Since the
gray level of the tumor region is much lower than that of the
healthy liver region, the region growing method fails to ex-
tract the tumor region in the initial segmentation result. Both
PCA and SSC models restore the posterior portion of the right
liver lobe, since a liver lacking that portion does not appear in
healthy liver shapes and it will not present in the shape reposi-
tory. However, the PCA model only restores and preserves the
principal components of the input liver shape, which leads to
some local details, such as the corner of the left liver lobe, be-
ing discarded in the outputted shape prior. However, the SSC
model effectively preserves the local details in the corner of
the left lobe when it restores the posterior portion of the right
liver lobe.

In the application of LDLT surgery planning system, the
undersegmentation is mainly caused by tumor and metastasis
due to the difference in the intensity between these regions
and healthy liver regions. The oversegmentation also occurs
frequently, since the heart and abdominal organs, such as the
kidney and the spleen, are very close to the liver and they have
similar gray levels. In the second column of Fig. 2, the over-
segmented region in the heart leads to gross errors in the ini-
tial segmentation result. The oversegmented region does not
appear in the training set, but it is still well reconstructed by
the PCA model. Statistically, the oversegmented region in the
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FIG. 2. Visual comparisons between shape prior based on PCA and SSC in four cases. (First column) a liver with a large region of tumor in the posterior portion
of the right lobe. (Second column) a liver that is adjacent to the heart. (Third column) a liver that is adjacent to the kidney. (Forth column) a liver with a tumor
in the interior portion of the left lobe. Notice the SSC shape prior has much less errors compared with PCA shape prior.

heart is approximately in the first mode of liver shapes (i.e.,
along the direction of the PCA’s first principal component).
The eigenvalue of the first principal component is large so
that the first mode of liver shapes has a large variance, which
can easily cover the oversegmented region in the heart. As a
result, this region is usually well reconstructed and preserved
by PCA during the shape refinement procedure (even includ-
ing the gross errors). In contrast, such gross errors near by
the heart region can be captured by the SSC model success-
fully. This is benefited from the explicitly modeling the gross
and sparse errors. Thus, the SSC model excludes the overseg-

mented region in the heart effectively. PCA and SSC represen-
tations of the oversegmentation occurring in the kidney region
are similar to the situation in the heart region, as shown in the
third column of Fig. 2. Another case is shown in the fourth
column of Fig. 2, where both the undersegmentation and the
oversegmentation appear in the initial segmentation result of
a liver with cancer. All these results illustrate that the SSC
model handles gross errors in the initial segmentation results
robustly, but almost does not affect correctly segmented re-
gions that are consistent with training samples in the shape
repository.
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FIG. 3. The segmentation result of a liver with one portion resected and
its SSC representation. (a) Segmentation result of a liver with one portion
resected; (b) The SSC representation of the segmentation result.

For the patient a part of whose liver has been resected pre-
viously, the integrated liver could not be found in the CT scans
so that a common liver surgery planning system could just
segment and visualize the remaining part of that liver. How-
ever, it is still necessary for surgeons to estimate the whole
volume of such liver in order to analyze the liver function
change. Figure 3 shows an example of a patient who accepted
a resection treatment followed by a radiofrequency ablation
in the past. The SSC representation of the liver segmentation
result restores the resected portion, which helps surgeons ana-
lyze the function of the remaining liver for a comparison with
the whole one. Benefited from its robustness against outliers,
the SSC model has the capability to reconstruct the integrated
liver region, which assists surgeons in achieving a better un-
derstanding of the whole liver when making surgery strategy
as well as evaluating the surgery result.

IV.B. Accurate segmentation

The hepatic parenchyma, portal veins, hepatic veins, and
tumors are accurately segmented with the liver shape prior.
For each patient with liver cancer, the final segmentation re-
sults of two methods are compared: Method I is the origi-
nal minimally supervised classification method without shape
prior.34 Method II is our method that employs SSC shape
prior.

Figure 4 shows the segmentation results of three typical
patients with liver cancer. The first, third, and fifth rows il-
lustrate the segmentation results of Method I, while the sec-
ond, fourth, and sixth rows show the segmentation results of
Method II. The first column shows the initial HC points of
hepatic parenchyma, portal veins, hepatic veins, and tumors
in the first iteration. The four types of HC points are labeled in
four different colors respectively. The second column shows
the segmentation results of these tissues, and the third column
shows the 3D visualization of them. The segmentation errors
of hepatic parenchyma are visualized in the fourth column.
We also use the shortest Euclidean surface distance measured
in millimeters in the visualization of errors. Yellow curves are
the corresponding liver shape priors based on SSC.

The minimally supervised classification method works
well on 2D CT data,34 but 3D abdominal images are more
challenging due to the similar gray levels of adjoining organs.
The first row of Fig. 4 shows that the initial HC points of hep-

atic parenchyma cover not only the region of liver but also
the region of spleen. The reason is that the two tissues ad-
join in 3D space and the gray levels of them are almost in the
same range. The second row shows the corresponding result
of segmentation based on our proposed method using SSC
shape prior. The HC points outside the shape prior are ex-
cluded in the first iteration and the spleen does not appear
in the final segmentation result. Since the SSC shape prior
describes the liver shape adaptively, the segmentation results
based on the shape prior are quite accurate, with overcoming
undersegmentation and oversegmentation effectively.

Experiments on other two patients in Fig. 4 also show that
the SSC shape prior plays a great role in improving the ac-
curacy and robustness of the segmentation. In addition, high
order branches of intrahepatic vessels are extracted success-
fully by our proposed method: for hepatic veins, the fourth
order branches are captured; and for portal veins, the fifth and
higher order branches are segmented, as shown in Figs. 4 and
6. Compared with previous methods30, 40 capturing the third
and fourth order branches, our algorithm has a better perfor-
mance in extracting high order vessel branches. This is use-
ful for surgeons to analyze the location relationship between
portals veins, hepatic veins, and tumors, based on which an
accurate and optimal surgery plan can be achieved.

The performance of the SSC shape prior modeling and the
accurate segmentation was measured using radius of curva-
ture (ROC) curves with respect to each parameter, as shown
in Fig. 5. We plotted the fraction of true positive rate versus
false positive rate for a wide range of each parameter. The
true positive rate is the sensitivity and the false positive rate
is defined as one-specificity. Since the modeling of the shape
prior and the segmentation are two independent modules in
the framework, we analyzed the ROC curves of the two mod-
ules, respectively. Figure 5(a) shows the ROC curve of the
SSC shape prior for a wide range of λ1, with λ2 fixed to 0.25.
Figure 5(b) shows the ROC curve of the SSC shape prior for
a wide range of λ2, with λ1 fixed to 50. Figure 5(c) shows
the ROC curves of the segmentation of hepatic parenchyma,
hepatic veins, portal veins, and tumors. These four curves are
produced by varying the set of ω, with λ1 and λ2 fixed to 50
and 0.25, respectively.

We employ the average symmetric surface distance (ASD)
(Ref. 20) and Hausdorff distance41 to evaluate the accuracy
of the segmentation method quantitatively. Both the segmen-
tation results of Methods I and II are compared with the gold
standard manually segmented by experienced experts

ASD(A,B) = 1

|S(A)| + |S(B)|

⎛
⎝ ∑

SA∈S(A)

d(SA, S(B))

+
∑

SB∈S(B)

d(SB, S(A))

⎞
⎠ , (5)

where S(A) and S(B) denote the set of surface voxels of two
segmentation results A and B, respectively. SA is an arbitrary
point on surface S(A), and d(SA, S(B)) is the shortest Euclidean
distance of SA to the surface S(B).
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FIG. 4. Segmentation results of hepatic parenchyma, portal veins, hepatic veins, and tumors for three patients with liver cancer. Every two rows show one case.
The first, third, and fifth rows are results of segmentation without shape prior, while the second, fourth, and sixth rows employ SSC shape prior.

The Hausdorff distance is defined as the maximum of all
the Euclidean distances from a point on the surface of the
segmentation result to the closest point on the surface of the
gold standard. The average ASD mean value and standard de-
viation from the 18 patients are shown in Table I. The av-
erage Hausdorff distances from these patients are shown in

Table II. Method II, the SSC shape prior-based method,
achieves better performance than Method I, the original
minimally supervised classification method without shape
prior. The SSC shape prior not only significantly im-
proves the accuracy and robustness of the segmentation
of hepatic parenchyma but also contributes to the accurate
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FIG. 5. ROC curves of the SSC shape prior and the segmentation. (a) ROC curve of the SSC shape prior with respect to λ1; (b) ROC curve of the SSC shape
prior with respect to λ2; (c) ROC curve of the segmentation with respect to ω.

segmentation of intrahepatic vessels and tumors. In addition,
we measured the runtime of the whole segmentation process.
The initial segmentation of the liver and the modeling of the
shape prior, which were required for Method II but not for
Method I, consumed an average time of 4.25 min. The run-
time of the classification algorithm in the segmentation stage

was 18.22 min with eight iterations in average for Method I,
while 10.53 min with four iterations in average for Method
II, as shown in Table II. The result shows that less iteration
is required for Method II, which reduces the runtime remark-
ably. In each iteration, the most time consuming portion is
the computation of the arrival time of HC points marching to

FIG. 6. Liver segment approximation and visualization. (First column) accurate segmentation result. (Second column) different portions of the portal veins.
(Third column) different liver segments. (Fourth column) a semitransparent visualization of the liver segments, portal veins, and tumors. Some liver segments
are hided in the third row for a better visualization of the intrahepatic tumor.
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TABLE I. Comparison of ASD between Methods I and II. Method I: the
original minimally supervised classification method without shape prior.
Method II: our method that employs the SSC shape prior.

Hepatic Portal Hepatic Tumors
Method parenchyma (mm) veins (mm) veins (mm) (mm)

Method I 4.69 ± 2.84 1.42 ± 0.35 1.30 ± 0.41 1.58 ± 0.45
Method II 1.07 ± 0.76 1.09 ± 0.28 0.92 ± 0.35 1.13 ± 0.37

each unclassified point. It is achieved by sequential computa-
tion for hepatic parenchyma, portal veins, hepatic veins, and
tumors. However, it is possible to significantly accelerate this
process by using parallel computation based on GPUs imple-
mentation of the algorithm.

Figure 6 shows some results of liver segment approxima-
tion and visualization. The first column shows the accurate
segmentation results and the second column illustrates the
portal veins in each liver segment labeled in different colors.
Different liver segments are shown in the third column. The
last column shows a semitransparent visualization of these
liver segments, portal veins, and tumors.

V. CONCLUSIONS

In this paper, we proposed a new shape prior-based seg-
mentation framework for the LDLT surgery planning system.
The strengths of this proposed method include: (1) model-
ing complex liver shape variations effectively, (2) achieving
patient-specific liver shape prior, and (3) accurate and robust
segmentation of liver, intrahepatic vessels, and tumors. We
applied this framework to our previously developed LDLT
surgery planning system. The framework was validated on a
large range of clinical data from patients with liver cancer,
and it achieved good performance in shape prior modeling
and segmentation. The SSC model is employed in this frame-
work to deal with complex variations of liver shapes and it
preserves local detail information of the input shape well, so
that the shape prior is adaptive to different patients. The SSC
shape prior is combined with a minimally supervised segmen-
tation algorithm. The framework achieves an accurate seg-
mentation of hepatic parenchyma, portal veins, hepatic veins,
and tumors simultaneously. Compared with the segmentation
methods in state-of-the-art liver surgery planning systems, our
framework not only obtains accurate segmentation results for
healthy persons and common patients but also shows high ro-
bustness when dealing with specific patients with large vari-
ations of liver shapes in complex clinical environments. As a

TABLE II. Comparison of Hausdorff distance and runtime between Methods
I and II.

Hepatic Portal Hepatic Tumors Runtime
Method parenchyma (mm) veins (mm) veins (mm) (mm) (min)

Method I 21.49 7.06 6.84 8.45 18.22
Method II 7.68 4.67 4.09 5.36 10.53

result, the framework improves the reliability and applicabil-
ity of the LDLT surgery planning system remarkably.

Compared with our previous work only modeling the
shape prior of healthy livers, the contribution of this paper
mainly includes the application of the SSC model in the seg-
mentation of liver with cancers in complex clinical environ-
ments, which is significantly more challenging. In addition,
we combined it with the minimally supervised segmentation
method to obtain accurate and robust results. Our future work
will focus on improving the efficiency of the proposed frame-
work by implementing the algorithms on GPUs. We will con-
struct the training dataset with more shape samples, and the
extraction of the most representative shapes in the repository
will be a research interest in the future.
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