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Abstract—Computer-aided diagnosis of masses in mammo-
grams is important to the prevention of breast cancer. Many
approaches tackle this problem through content-based image
retrieval techniques. However, most of them fall short of scala-
bility in the retrieval stage, and their diagnostic accuracy is, there-
fore, restricted. To overcome this drawback, we propose a scalable
method for retrieval and diagnosis of mammographic masses.
Specifically, for a query mammographic region of interest (ROI),
scale-invariant feature transform (SIFT) features are extracted and
searched in a vocabulary tree, which stores all the quantized fea-
tures of previously diagnosed mammographic ROIs. In addition,
to fully exert the discriminative power of SIFT features, contex-
tual information in the vocabulary tree is employed to refine the
weights of tree nodes. The retrieved ROIs are then used to de-
termine whether the query ROI contains a mass. The presented
method has excellent scalability due to the low spatial-temporal
cost of vocabulary tree. Extensive experiments are conducted on a
large dataset of 11 553 ROIs extracted from the digital database
for screening mammography, which demonstrate the accuracy and
scalability of our approach.

Index Terms—Breast masses, computer-aided diagnosis (CAD),
content-based image retrieval (CBIR), mammography.

I. INTRODUCTION

FOR years, breast cancer remains the second leading cause
of cancer-related death among women [1]. Nevertheless,

early diagnosis could improve the chances of recovery dramat-
ically: the five-year relative survival rate rises from 24% when
breast cancer is diagnosed at distant stage to 99% if it is diag-
nosed at localized stage [2]. Currently, among all the imaging
techniques for breast examination, mammography is the most
effective and the only widely accepted method, and it is rec-
ognized as a gold standard for breast cancer detection by the
American Cancer Society (ACS) [1].
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The major indicators of breast cancer are masses and mi-
crocalcifications. Generally speaking, the detection of mammo-
graphic masses is even more challenging than that of microcal-
cifications, since masses have large variation in shape, margin,
size, and are often indistinguishable from surrounding tissue [3],
[4]. Moreover, even experienced radiologists have substantial
interobserver and intraobserver variability in their interpreta-
tion of mammograms [5]. Besides, they are often overwhelmed
by the enormous mammogram volume generated in widespread
screening [6]. Consequently, a considerable portion of retro-
spectively visible masses is missed by radiologists, and biopsies
are frequently conducted on normal tissues [7].

Due to the clinical significance and great challenge of mam-
mographic mass detection, numerous computer-aided diagnosis
(CAD) methods have been proposed to facilitate this procedure
since the 1960s [8]. A majority of these approaches first seg-
ment a query mammogram into several regions, then extract
certain features from each region, and finally, classify these re-
gions as mass or normal tissue using the extracted features and
pretrained classifiers [3], [4], [6], [9], [10]. For example, Tai
et al. [11] first segmented adaptive regions of interest (ROIs) as
suspicious areas, and then, classified each ROI using complex
texture features and stepwise linear discriminant analysis. How-
ever, these classifier-based methods are likely to miss masses of
“uncommon” appearance or sizes, since it is very difficult for
classifiers to model all the training masses. Besides, their per-
formance may be affected by the obscure boundaries of masses,
since many of them need to perform image segmentation before
mass detection.

During the past decade, content-based image retrieval (CBIR)
techniques have gradually gained their popularity among CAD
methods for mammograms as well as other medical images.
CBIR addresses the problem of searching query images from
an image database using visual content inherent in the images
[12]–[16], as opposed to text-based image retrieval that utilizes
manually annotated keywords. Typically, certain visual char-
acteristics referred to as features are extracted from database
images and usually organized in an index structure. Then, for
each user-specified query image, the same feature is extracted,
and similarities between query feature and database features are
calculated with the aid of index. At last, those database im-
ages with highest similarities, referred to as retrieval set, are
presented to the user.

Mammograms are expected to be an ideal application of CBIR
techniques [17], [18], since they depict a limited number of ob-
jects and have standard interpretation schemes, such as the breast
imaging reporting and data system (BI-RADS) [19]. Specifi-
cally, CBIR-based CAD methods first prompt radiologists to
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Fig. 1. Overview of the proposed approach.

label an ROI in the query case, then compare it with database
ROIs extracted from previously diagnosed cases, and finally,
return the most similar cases along with the likelihood of a mass
in the query case. Such approaches have several advantages over
classifier-based methods. First of all, they could detect unusual
masses as long as there are several similar database ROIs. Sec-
ond, the obscure mass boundary problem is eliminated, since
no segmentation is required. Third, they provide more clinical
evidence to assist the diagnosis. Last but not least, they can also
help improve the performance of picture archiving and commu-
nication systems (PACS), augment teaching quality in medical
schools, and facilitate radiologist training.

The existing CAD methods have shown great value of CBIR
techniques in retrieval and analysis of medical images. How-
ever, a vast majority of them fall short of scalability. Instead of
utilizing indexing schemes, they compare a query image with at
least a considerable portion of database images, making the pro-
cessing time linear to the total size of database. Consequently,
the current mammogram retrieval methods are tested on at most
thousands of mammographic ROIs. In contrast, it takes about
2.5 petabytes to store all the mammograms generated in U.S.
each year, and all the medical images are estimated to reach 30%
of the overall data storage in the world [20]. Apparently, lack of
scalability would hamper the utilization of these valuable medi-
cal images. On the one hand, it limits the diagnostic accuracy of
CAD applications, since the larger a database is, the more likely
that relevant cases are found and a correct decision is made
[21], [22]. On the other hand, it is infeasible for a practical
PACS to retrieve medical images using these techniques. As a
result, a scalable CBIR technique has become one of the most
urgent problems in medical imaging [23].

In this paper, we propose to solve the above problem through
a comprehensive and scalable image retrieval framework, which
is illustrated in Fig. 1. Specifically, scale-invariant feature trans-
form (SIFT) features extracted from database ROIs are quan-

tized and indexed in a vocabulary tree. To enhance the discrim-
inative power of SIFT features, statistical information about
neighbor nodes in the tree is utilized to refine the weights of
tree nodes following [24]. Given a query ROI, SIFT features
are extracted and searched in the tree to find similar database
ROIs. These ROIs along with the similarities to the query ROI
are used to determine whether the query contains a mass or not.
Preliminary results have been published in [25]. Compared with
[25], this paper has undergone significant changes. First of all,
it is considerably extended to provide more details about our
method as well as the techniques at the base of it. Second, the
dataset is rebuilt, which now includes 2 340 mass ROIs and
9 213 CAD-generated false positives. Finally, the experiments
are substantially improved by adding two compared methods,
more evaluation metrics, and a discussion of parameters.

The major contribution of this study is threefold. 1) We in-
troduce the vocabulary tree framework to retrieval of mammo-
graphic masses, which is among the first few attempts to tackle
the large-scale medical image analysis problem. 2) A general
vocabulary tree refinement [24] is selected for the specific mam-
mographic mass retrieval task, which improves the retrieval pre-
cision and diagnostic accuracy. 3) We build a dataset with 11 553
mammographic ROIs, which is the largest dataset to our best
knowledge and will be released to public soon. Thorough exper-
iments are conducted on this dataset, demonstrating the efficacy
of the presented approach.

The rest of this paper is organized as follows. Section II
reviews some relevant work on general CBIR and CBIR-based
CAD. Section III describes the proposed approach. Section IV
presents the experimental results. Finally, Section V draws a
conclusion.

II. RELATED WORK

A. General CBIR Methods

The retrieval accuracy and efficiency of a CBIR method rely
heavily on the adopted visual feature. A good feature should
obtain a tradeoff between robustness to intraclass variance and
discriminability to interclass difference, as well as efficiency of
calculation and comparison. Visual features may describe vari-
ous properties of either a whole image or a local image region,
which are usually known as local features and global features.
Frequently utilized properties include color, texture, shape, and
spatial relationship. Among the numerous features, a local fea-
ture named SIFT [26] stands out attributed to its excellent ro-
bustness and discriminative power [27]. High-dimensional local
features such as SIFT are often quantized for fast retrieval. A
quantized local feature is referred to as a “visual word,” which is
an analogue of “word” in text retrieval, and an image is charac-
terized by a “bag of words” (BoW) [28]. A BoW can be further
represented as a histogram, which is regarded as a global feature
during indexing and similarity measure.

Another crucial factor to retrieval performance is indexing
scheme. In practice, it is infeasible to conduct exhaustive search,
which computes a similarity score between the query image and
each database image. To solve this problem, an index should
be incorporated to narrow down the database images/features
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need to be considered during a search. Of all the index schemes,
inverted files and hash tables are the most widely used ones
for local and global features, respectively. In particular, visual
words (quantized local features) extracted from database im-
ages are stored in inverted files, which list all the database
images per word. During each search, only those files corre-
sponding to query visual words need to be considered [24],
[28], [29]. Global features extracted from the database could
be indexed in hash tables, where similar features are highly
likely to fall into the same bucket in each table, and a query
feature is only compared with those database features in its own
buckets [30], [31].

Besides visual features and indexing schemes, other tech-
niques such as feature dimension reduction, feature fusion [32],
[33] and user interaction [34] can also contribute to CBIR per-
formance. Comprehensive surveys on general CBIR techniques
can be found in [12]–[16].

B. CBIR-Based CAD Approaches

The past decade has witnessed many CBIR-based mammo-
graphic CAD methods. For instance, template matching is uti-
lized to retrieve similar mammographic ROIs, which are then
used to determine whether the query contains a mass [35], [36].
This approach is accelerated by restricting template matching
to those database ROIs that share similar entropy values with
the query ROI [22]. In order to find similar mammographic
masses, features related to texture, shape, and edge sharpness
are adopted in [37], intensity, texture, and shape features are
fused in [38]. For better visual similarity, users are prompted
to rate the margin spiculation of query ROI, and the system
only searches from database ROIs with similar spiculation lev-
els [39]. This study is further improved by removing poorly
effective ROIs from the database [21]. Several works try to
find mammographic masses with similar BI-RADS character-
istics [19], such as shape, margin, and pathology. For example,
intensity, shape, and texture features are combined using adap-
tive weights, and user interaction is exploited to optimize the
retrieval set [40]. Shape and texture features from two views
[cranio-caudal (CC) and mediolateraloblique (MLO)] are fused
together, and the retrieved masses are then used to annotate
the query mass [41]. A mass ROI is first curvelet transformed,
and then, characterized by its marginal curvelet subband distri-
bution [42]. To find similar microcalcification clusters that are
consistent with human perception, a similarity learning scheme
is proposed to predict radiologists’ observations [18]. Features
related to intensity, texture, shape, and granulometric measures
are employed to retrieve mammograms with similar tissue com-
position [43]. Recently, Liu et al. [44] introduced hashing-based
scalable image retrieval to diagnosis of mammographic masses.
Specifically, anchor graph hashing (AGH) [31] is employed to
compress two features, histogram of SIFT BoW and a global
feature named GIST [45], into compact binary codes, and sim-
ilarity search is performed in Hamming space.

CBIR techniques have also been applied to other medical im-
ages and videos. Relevant positron emission tomography (PET)
images of human brains are retrieved using a physiological
kinetic feature [46]. This method is further extended to deal

with 4-D dynamic PET images, which are first segmented into
volumes of interest, and then, retrieved using visual, functional,
and textual features [47]. Computed tomography (CT) images
of chest are first classified to one disease category, and then,
searched for similar images using features corresponding to
this disease, which are automatically chosen from 125 features
related to intensity, texture, and geometric properties [48]. Sim-
ilarly, a subset of more than 300 features related to intensity,
texture, morphology, and spatial relationship is selected to re-
trieve images of lymphoma cells [49]. Several methods adopt
the BoW framework [28] to quantize local features like SIFT.
For instance, each endomicroscopy video is represented as a
BoW of “dense” SIFT features, which are derived from dense
grids instead of difference of Gaussians (DoG) space [50]. Sim-
ilarly, a 2-D medical image is described using a BoW of SIFT
features derived from superpixels [51]. Similar to [44], Zhang
et al. [52], [53] employed hashing-based retrieval techniques for
diagnosis of histopathological images. Two features, SIFT and
histograms of oriented gradients [54], are fused and compressed
using composite AGH (CAGH) to achieve fast and scalable re-
trieval. Retrieved database images are then utilized to classify
the query image through online learning. Some other CBIR-
based CAD methods are investigated in [17] and [55].

III. PROPOSED APPROACH

In this section, we first introduce our mammographic ROI
retrieval framework based on vocabulary tree, then present the
refinement on the weights of tree nodes, and finally, describe
how to make a diagnostic decision using the retrieval set. The
overview of our approach is shown in Fig. 1.

A. Mammogram Retrieval With a Vocabulary Tree

Our approach builds upon a popular CBIR framework that
indexes local image features using vocabulary tree and inverted
files [24], [29], [32]. The local feature we choose here is SIFT
[26]. Briefly speaking, SIFT features are extracted in four steps.
First, scale-invariant keypoints are detected by finding local ex-
trema in the DoG space. Second, the accurate location and scale
of each keypoint are determined using model fitting, and those
keypoints with low contrast or poorly localized on an edge are
eliminated. Third, for each remaining keypoint, a gradient ori-
entation histogram of its surrounding region at the selected scale
is calculated, and the histogram peak is chosen as the keypoint’s
dominant orientation. Finally, the surrounding region is divided
into 4 × 4 subregions, an 8-bin histogram of gradient orienta-
tions relative to the dominant orientation is computed for each
subregion, and all the 16 histograms are concatenated to form a
128-D feature vector. The aforementioned procedure is designed
so that the extracted SIFT features are invariant to translation,
rotation, scale, a substantial range of affine distortion, view-
point/illumination change, and noise addition. SIFT is also very
discriminative, i.e., a single feature can be correctly matched
from a large database of features. The outstanding robustness
and discriminative power catapult SIFT and its variations to the
top of local feature performance rankings [27]. Naturally, the
SIFT family are widely adopted by numerous general image
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Fig. 2. Matching SIFT features using exhaustive search. The mammogram
shown on the left contains two malignant masses within red and green bounding
boxes. The mass shown on the right is transformed from the red bounding box
using 45◦ rotation, two-time scale up, 30% contrast enhancement, and addition
of 5% Gaussian noise. The SIFT features extracted from the transformed mass
are matched with all the features extracted from the mammogram. The 50
matches with largest uniqueness are shown, others are omitted for clarity. 49 of
the 50 matches are correct.

retrieval methods, such as [24], [29] and [32]. They have also
been successfully applied to medical image retrieval and analy-
sis [50], [51], [56].

In image retrieval, a straightforward way to match SIFT fea-
tures would be exhaustive search. Specifically, a query SIFT fea-
ture is matched with all the database features, and the database
feature with minimum Euclidean distance is identified as the
best match. To prune false matches, the second closest database
feature is also found, and the ratio of the second-shortest dis-
tance to shortest distance, referred to as “uniqueness,” can be
calculated. Correct matches are expected to have higher unique-
ness. An example is given in Fig. 2, which also demonstrates the
remarkable robustness and discriminability of SIFT features.

However, exhaustive search of SIFT feature is extremely time
consuming, therefore it cannot be conducted in large-scale re-
trieval. To overcome this problem, we adopt vocabulary tree and
inverted files to quantize and index SIFT features. In this frame-
work, a large set of SIFT features extracted from a separate
database are used to train a vocabulary tree through hierarchical
k-means clustering. The process is illustrated in Fig. 3. Specifi-
cally, k-means algorithm is first run on the entire training data,
defining k clusters and their centers. It is then recursively ap-
plied to all the clusters, splitting each cluster into k subclusters.
After L recursions, a vocabulary tree of depth L and branch
factor k is built. Each tree node corresponds to a cluster center,
and is commonly referred to as “visual word.”

Then, all SIFT features extracted from database ROIs are
quantized and indexed using this vocabulary tree and inverted
files. As shown in Fig. 4, each feature is propagated down the
tree by choosing the closest node at each level. Thus, a 128-D
SIFT feature is quantized to a 1-D leaf node ID, which repre-
sents a path from tree root to leaf. The ID of associated database
ROI is then added to the inverted file attached to the leaf node.
Note that an inner tree node also has a virtual inverted file, which

Fig. 3. Training process of a vocabulary tree with depth L=2 and branch
factor k=3. The circles and dashed lines represent the centers and Voronoi
boundaries of the clusters, respectively. A cluster center is referred to as a
“visual word,” and all the visual words form a “vocabulary tree.”

Fig. 4. Quantization and indexing of a database SIFT feature using vocabulary
tree and inverted files. Query SIFT features are quantized in the same way, but
are not indexed. Each leaf node in the tree has an inverted file (shown in solid
lines), which records the IDs of database ROIs containing an instance of the
node. An inner node has a virtual inverted file (shown in dashed lines), which
is calculated as the concatenation of the files associated with its descendant leaf
nodes.

is actually a concatenation of all the inverted files attached to
its descendant leaf nodes. Unlike a forward file, which lists all
the visual words extracted from a ROI, an inverted file records
the database ROIs that contain a certain visual word. (The name
of inverted files comes from the fact that they are opposite to
forward files.) Inverted files significantly outperform forward
files with regard to retrieval speed. Given a query image rep-
resented as a bag of visual words, querying the forward files
would require sequential iteration through each file and to every
database feature, therefore, it is technically unrealistic for large-
scale real applications. On the contrary, searching inverted files
only needs to consider those files corresponding to the query vi-
sual words, which account for a small portion of all the inverted
files. Such advantage is dramatically enhanced with the aid of
vocabulary tree, which contains millions of leaf nodes attached
with inverted files.

At last, given a query ROI q, SIFT features are extracted and
quantized in the aforementioned manner. The similarity score
between q and a database ROI d is calculated based on how
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similar their paths are. Normally, the tree nodes are weighted
using term frequency-inverse document frequency (TF-IDF)
scheme or its variations. TF-IDF [57] is widely adopted in vo-
cabulary tree-based CBIR methods. It reflects the importance of
a visual word to an image in a collection of images. In brief, TF
means the weight of a node is proportional to its frequency in
a query ROI, and IDF indicates that the weight is offset by its
frequency in all database ROIs.

Formally speaking, q is represented by a set of paths (features)
q = {Pq

i }m
i=1 , where m is the number of features. Each path

consists of L nodes Pq
i = {vq

i,�}L
�=1 , where vq

i,� denotes the node
on the �th level. Similarly, d is represented by d = {Pd

j }n
j=1 ,

where n is the number of features, and Pd
j = {vd

j,�}L
�=1 , where

vd
j,� denotes the node on the �th level. The similarity score

between q and d is calculated as the average similarity between
all pairs of paths

s (q, d) =
1

m · n
∑

i,j

sP

(
Pq

i , P d
j

)
(1)

where the normalization factor 1/ (m · n) is used to achieve
fairness between database ROIs with few and many features.
The similarity between two paths is defined as the weighted
count of their common nodes

sP

(
Pq

i , P d
j

)
=

∑

�

w
(
vq

i,�

)
· δ

(
vq

i,� , v
d
j,�

)
(2)

where w is a weighting function, and δ is the Kronecker delta
function, i.e., δ (a, b) = 1 if a = b and δ (a, b) = 0, otherwise.
In [29], w is defined following the IDF principle as follows:

w (v) = idf (v) = log
N

Nv
(3)

where N is the total number of database ROIs and Nv is the
number of ROIs with at least one path through node v. Note that
multiple features in q quantized to the same node v contribute
w (v) multiple times to s (q, d), which is equivalent to TF.

The aforementioned framework allows the use of a very large
vocabulary, since its computational cost is logarithmic in the
number of visual words. As the vocabulary size increases, leaf
nodes become smaller and more discriminative. Therefore, the
retrieval precision is improved. In addition, smaller nodes mean
that less features from the database need to be considered during
similarity calculation. Thus, the retrieval speed is accelerated.

B. Adaptive Weighting of Vocabulary Tree Nodes

The IDF scheme calculates a node’s weight based on the
whole database, ignoring how frequently it occurs in a spe-
cific mammogram. However, generally speaking, features with
high frequencies in a mammogram are less informative than
those with low frequencies. As shown in Fig. 5, a majority
of features are extracted from normal tissue around a mass.
Although their IDFs are generally smaller than those of the fea-
tures extracted from the edge of the mass, they still dominate the
similarity score due to large TFs. To avoid such overcounting,
inspired by descriptor contextual weighting [24], we incorporate
the mammogram-specific node frequencies into IDF scheme to
down-weight these features.

Fig. 5. Effect of adaptive weighting. The left image shows the original IDF
weights of the features (only 300 are drawn), and the right image shows the
refined weights. The radius of a circle associated with a feature is proportional
to its weight.

Suppose the node paths Pq
i of query ROI q and Pd

j of database
ROI d have the same node v∈Pq

i ∩ Pd
j ={vq

i,�}L
�=1∩{vd

j,�}L
�=1 ,

the node’s weight w (v) in (3) is modified to

wq,d
i,j (v) = wP (Pq

i ) · wP

(
Pd

j

)
· idf (v) (4)

where the adaptive weight factors wP (Pq
i ) and wP

(
Pd

j

)
are

calculated based on the frequencies of nodes along paths Pq
i

and Pd
j , respectively. Specifically, let tf

(
vq

i,� , q
)

be the TF of

vq
i,� in q, i.e., the number of paths of q that pass through node

vq
i,� , wP (Pq

i ) is defined as

wP (Pq
i ) =

√√√√√
∑

� w
(
vq

i,�

)

∑
� w

(
vq

i,�

)
· tf

(
vq

i,� , q
) (5)

where w(vq
i,�) is a weighting coefficient, usually set to idf(vq

i,�)
empirically. wP (Pd

j ) is defined in the same way. The square
root in the aforementioned definition is due to the weighting of
both wP (Pq

i ) and wP (Pd
j ).

Note that wP (Pq
i ) is shared for all nodes vq

i,� along path Pq
i .

In order to determine the importance of a feature Pq
i , wP (Pq

i )
takes into account the features in q quantized to neighbor tree
leaves since they also contribute to tf(vq

i,� , q). Consequently,
nodes in a subtree with more features are heavily down weighted.
The effect of adaptive weighting is illustrated in Fig. 5.

C. Diagnosis of Mammographic Masses

After the retrieval stage, a query mammographic ROI is classi-
fied according to its best matched database ROIs using majority
logic. Currently, our aim is to distinguish between mass and nor-
mal tissue. Malignant and benign masses are not discriminated,
since they could be visually indistinguishable and need to be
diagnosed through other methods such as biopsy.

Formally speaking, let {di}K
i=1 denote the top K similar

database ROIs for q, each di has a class tag c (di) ∈ {⊕,�},
with the label ⊕ for mass and � for normal tissue. q is classified
by a weighted majority vote of {di}K

i=1 , where the contribution
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Fig. 6. Construction of our dataset. (a) Original mammogram in gray level
format. (b) Normalized mammogram in optical density format. (c) Visually
enhanced mammogram. (d) Radiologist-annotated mass and CAD-generated
false positive.

of di is weighted by its similarity to q

c (q) = arg max
c

∑

i

s (q, di) · δ (c, c (di)) . (6)

Note that our strategy is similar to the weighted k-nearest neigh-
bor (k-NN) classifier used in [39] and [41].

IV. EXPERIMENTS

This section validates the proposed mammogram retrieval
and diagnosis approach. First, experimental settings, including
dataset, compared methods, and evaluation environment, are de-
scribed. Then, experimental results are presented and analyzed.
Finally, impact of parameters is discussed.

A. Experimental Settings

Our experimental dataset is constructed from the digital
database for screening mammography (DDSM) [58], [59].
DDSM is currently the largest public mammogram database.
It is comprised of 2 604 cases, and every case consists of four
views, with two views, CC and MLO, for each breast. The
masses have diverse shapes, sizes, margins, breast densities as
well as patients’ races and ages, and are associated with anno-
tations labeled by experienced radiologists.

To simulate practical scenario, a series of ROIs depicting
masses and suspicious normal tissues are extracted following
the conventions in [21], [36] and [39]. This process is demon-
strated in Fig. 6. First of all, mammograms are mapped from
gray level to optical density according to DDSM’s instructions
[59] to eliminate visual difference caused by different scanners
[49], [60]. Second, normalized mammograms are processed for
better visual quality using inversion, breast segmentation, and
contrast enhancement. Third, 2 340 ROIs centered on masses
are extracted. Fourth, 9 213 false positives asserted by a CAD
system from healthy cases are used as normal regions. This
CAD system is based on a cascade of boosted Haar classifiers
[61] and trained on a separate mammogram dataset. Note that
compared with experiments, which randomly select normal re-
gions [35], our experiment setting is more consistent with prac-
tice and more challenging. Finally, of the aforementioned ROIs,

TABLE I
RETRIEVAL PRECISION AT DIFFERENT K

K Method Mass Normal Total

NMI 73.5% 75.2% 74.4%
1 BoW 76.8% 78.9% 77.9%

VocTree 82.5% 85.8% 84.2%
VocTree+AdaptWeight 86.9% 89.3% 88.1%

NMI 72.6% 74.4% 73.5%
5 BoW 76.3% 79.6% 78.0%

VocTree 82.4% 85.2% 83.8%
VocTree+AdaptWeight 87.7% 89.1% 88.4%

NMI 68.9% 71.5% 70.2%
20 BoW 75.6% 75.3% 75.5%

VocTree 80.1% 82.2% 81.1%
VocTree+AdaptWeight 84.5% 86.3% 85.4%

500 mass ROIs, and 500 normal ROIs are randomly selected
as queries. The remaining 1 840 mass ROIs and 8 713 normal
ROIs, 10 553 ROIs in total, form a large database. The query
and database ROIs are selected from different cases in order to
avoid positive bias. For a more reliable performance evaluation,
the random selection of query ROIs is repeated for five times.
After each selection, all the methods are tested, and the average
performance from five runs is reported.

We also implement two other medical image retrieval sys-
tems for comparison. The first one, presented in [35] and [36],
performs a template matching between query ROI and each
database ROI based on normalized mutual information (NMI).
Experiments in [36] show that NMI obtains good retrieval pre-
cision and best diagnosis accuracy among eight information-
theoretic similarity measures. The second one, similar to [50]
and [51], represents each ROI with a SIFT BoW and measures
the χ2 distance between query ROI and each database ROI.
While SIFT feature is derived from dense grids or superpix-
els in [50] and [51], our implementation employs the traditional
SIFT derived from DoG extrema. This is to better test the vocab-
ulary tree framework under the condition that the same feature
is utilized. For this method, a vocabulary containing kBoW =
1 000 visual words is constructed using k-means clustering. Our
method is tested twice, with the adaptive weighting scheme de-
activated for the first time, and activated for the second time.
Both of them employ a vocabulary tree of branch factor k =
10 and depth L = 6. These four approaches are denoted as
NMI, BoW, VocTree, and VocTree+AdaptWeight in the follow-
ing analysis.

All the methods are implemented in C++ and evaluated on
a high-performance laptop with Intel Core i7 processor (6M
cache, 2.40 GHz), 16GB memory, and Windows 7 operating
system.

B. Results and Analysis

First of all, retrieval precision is evaluated, which is defined
as the percentage of retrieved database ROIs that are relevant
to query ROI. Overall the precision changes slightly as the size
of retrieval set K increases from 1 to 20. The precisions at top
K = 1, 5, and 20 retrievals are summarized in Table I. Two
retrieval sets returned by VocTree+AdaptWeight are provided
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Fig. 7. Two query ROIs (left) and their top K=10 retrieved database ROIs calculated by VocTree+AdaptWeight (right). For each ROI, its class is shown below.
Both query ROIs are correctly classified according to a weighted majority vote of their retrieval sets.

TABLE II
CLASSIFICATION ACCURACY AT DIFFERENT K

K Method Mass Normal Total

NMI 73.5% 75.2% 74.4%
1 BoW 76.8% 78.9% 77.9%

VocTree 82.5% 85.8% 84.2%
VocTree+AdaptWeight 86.9% 89.3% 88.1%

NMI 73.3% 76.1% 74.7%
5 BoW 78.7% 80.3% 79.5%

VocTree 84.9% 86.7% 85.8%
VocTree+AdaptWeight 90.1% 91.5% 90.8%

NMI 71.2% 74.6% 72.9%
20 BoW 77.0% 76.2% 76.6%

VocTree 81.9% 84.1% 83.0%
VocTree+AdaptWeight 86.1% 87.7% 86.9%

in Fig. 7 for visual evaluation. The results show that our meth-
ods, especially VocTree+AdaptWeight, surpass the compared
approaches. Detailed results show that many incorrect retrievals
are due to the visual similarity between malignant masses and
normal ROIs with bright cores and spiculated edges. It is also
notable that retrieval precisions for normal regions are gener-
ally higher than those for masses. A possible reason is that the
database has more normal ROIs than masses, therefore it is
easier for a normal query ROI to find similar database ROIs.

Second, classification accuracy is measured, which refers to
the percentage of query ROIs that are correctly classified. The
classification accuracies at top K = 1, 5, and 20 retrievals are
reported in Table II. Once again, our methods consistently out-
perform the other two approaches. In addition, the classification
accuracy is even better than the retrieval precision, since ir-
relevant retrievals would not cause a misclassification as long
as they remain a minority of the retrieval set. Especially, Voc-
Tree+AdaptWeight achieves a classification accuracy as high as
90.8% at K = 5, which is pretty satisfactory.

Finally, efficiency and scalability are investigated. Efficiency
is assessed using the average processing time needed to re-
trieve and classify a query ROI. Since the classification step
is merely a vote on the retrieval set, processing time is actu-
ally equal to retrieval time. Besides, as K increases from 1
to 20, a retrieval procedure only needs to change the size of
the max/min heap, which records the similarity/distance scores
of the retrieved database ROIs. Therefore, the processing time
barely changes as K varies, and we only report the time at

TABLE III
PERFORMANCE AT DIFFERENT DATABASE SIZES

Size Method Retri. Prec. Class. Accu. Time (sec)

NMI 66.4% 68.8% 3.19
2,600 BoW 70.6% 72.7% 0.71

VocTree 75.7% 80.1% 0.29
VocTree+AdaptWeight 81.6% 84.4% 0.34

NMI 67.9% 69.6% 6.23
5,200 BoW 73.3% 74.5% 1.14

VocTree 79.6% 81.2% 0.32
VocTree+AdaptWeight 83.8% 86.1% 0.39

NMI 70.2% 72.9% 12.31
10,553 BoW 75.5% 76.6% 1.95

VocTree 81.1% 83.0% 0.39
VocTree+AdaptWeight 85.4% 86.9% 0.48

K = 20. Scalability of a method is measured by testing how
its performance changes as the database expands. To this end,
two smaller databases are constructed by randomly sampling a
half and a quarter of database ROIs, and all the methods are
evaluated again on these two databases. Their retrieval preci-
sions, classification accuracies, and average processing time at
top K = 20 retrievals are summarized in Table III. Accord-
ing to this table, we can reach several conclusions. First of
all, our methods are consistently superior to the compared ap-
proaches with respect to all three evaluation metrics, especially
efficiency. VocTree+AdaptWeight obtains even better retrieval
precision and classification accuracy than those of VocTree at
the cost of a little more processing time. Second, the vocabu-
lary tree framework demonstrates excellent scalability. In this
framework, as we explained in Section III-A, the similarity cal-
culation only needs to consider those database features that fall
into neighbor leaf nodes as the query features do, which ac-
count for a small portion of all the database features. What is
more, as the database expands, we can use a larger vocabulary
tree (with bigger branch factor k and/or depth L) to reduce the
portion of database features that need to be considered. There-
fore, the time cost of similarity computation is not only small
but also sublinear in database size. On the contrary, NMI and
BoW calculate a similarity/distance score between a query ROI
and each database ROI, which takes a linear time regarding
database size. (The time for query feature extraction and quanti-
zation in BoW remains unchanged for different database sizes.)
Last but not least, as the database grows, all the methods obtain
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TABLE IV
PERFORMANCE OF VOCTREE+ADAPTWEIGHT AT DIFFERENT L

L Retri. Prec. Class. Accu. Time (sec)

3 73.8% 75.3% 1.69
4 78.7% 80.8% 0.91
5 83.1% 85.2% 0.62
6 85.4% 86.9% 0.48
7 86.2% 87.1% 0.47

better retrieval precisions and classification accuracies. This re-
sult agrees with the experiments in [21] and [22] and confirms
our assumption that it is more likely to find relevant cases and
make a correct diagnosis using a large database.

All the experiments lead to several conclusions. 1) NMI ob-
tains the worst results among all the tested methods. The reason
is that masses have diverse shapes, sizes, and cluttered back-
ground, therefore, it is not suitable to match two entire ROIs
without extracting certain features from invariant keypoints.
2) Our method is superior to BoW. Although both employing
SIFT feature, they implement different quantization, indexing,
and similarity calculation schemes. Specifically, first, BoW uses
a single-level k-means clustering for feature quantization, whose
computational cost is linear in vocabulary size. As a result, the
vocabulary typically has a small size (100 in [50], 1 000 in
[51] and our implementation). Instead, our method utilizes hi-
erarchical k-means, whose computational cost is logarithmic in
vocabulary size. Thus, it can afford a much larger and more dis-
criminative vocabulary (106 in aforementioned experiments).
Second, BoW performs exhaustive search without the aid of
any index. On the contrary, in our model, quantized database
features are indexed using inverted files so that only a small
portion of them is considered during similarity computation,
and the portion of involved features can be further decreased
by increasing vocabulary size (L or k). Actually, experiments
on general CBIR datasets demonstrate that our method could
retrieve in real time from millions of images. Finally, all the vi-
sual words in BoW are treated equally, whereas their weights are
elaborately adjusted according to the whole database (IDF) and
each query (TF and adaptive weighting). 3) Adaptive weighting,
which down weights the excessive features extracted from nor-
mal regions, could improve retrieval precision and classification
accuracy without considerably reducing efficiency.

C. Discussion of Parameters

To test the impact of parameters on our method’s perfor-
mance, we have trained several vocabulary trees of branch fac-
tor k = 10 and depth L = 3, . . . , 7. For each vocabulary tree,
the performance of VocTree+AdaptWeight at top K = 20 re-
trievals is measured using five randomly selected query sets,
and the average performance from five runs is summarized in
Table IV. From this table, we can see that the retrieval pre-
cision, classification accuracy, and computational efficiency of
VocTree+AdaptWeight improve substantially as L goes from 3
to 5, then improve slightly as L increases to 6 and 7. Two con-
clusions can be drawn from this observation. On the one hand,

larger vocabulary trees tend to achieve better performance. As
explained in Section III-A, a larger vocabulary tree has smaller
and more discriminative leaf nodes, which result in better re-
trieval precision as well as classification accuracy. Besides, as
the total number of leaf nodes increases, the portion of database
features that need to be considered during similarity calculation
is reduced, therefore, the efficiency is also improved. On the
other hand, the vocabulary tree framework could benefit from
more training features. The performance gain from L = 6 to
7 is very small. It is probably due to the limited number of
training features, since nearly a third of leaf nodes are empty
during the training process when L becomes 7. These two con-
clusions are consistent with the observations in general image
retrieval [24], [29].

V. CONCLUSION

Mammography has played a key role in the early diagnosis
of breast cancer. To facilitate mammographic masses detection,
numerous CAD methods are developed, and a growing num-
ber of them begin to utilize CBIR techniques. Compared with
classifier-based approaches, CBIR-based methods can detect
masses of uncommon appearance or size, bypass the obscure
mass boundary problem, provide more clinical evidence, and
improve PACS systems. However, lack of scalability remains a
major drawback of current CBIR-based CAD methods and sets
a limit on their retrieval precision as well as diagnostic accuracy.

In this paper, we propose to use scalable CBIR for the au-
tomatic diagnosis of mammographic masses. To retrieve effi-
ciently from a large database, which leads to better retrieval
precision and diagnostic accuracy, vocabulary tree framework
is employed to hierarchically quantize and index SIFT features.
Furthermore, contextual information in the vocabulary tree is
incorporated into TF-IDF weighting scheme to improve the
discriminative power of tree nodes. A query mammographic
ROI is classified using a weighted majority vote of its best
matched database ROIs. Extensive experiments are conducted
on a dataset including 2 340 mass ROIs and 9 213 CAD-
generated false positive ROIs, which is the largest dataset to
the best of our knowledge. Excellent results demonstrate our
method’s retrieval precision, classification accuracy, efficiency,
and scalability.

Future endeavors will be devoted to improve retrieval preci-
sion. One possible solution is to utilize several visual features.
Specifically, intensity, texture, and shape features can comple-
ment the adopted SIFT feature. Most of them are global features
and can be indexed using hash tables [30] to achieve sublinear
similarity search. In order to combine multiple features, exist-
ing methods either concatenate them to form a new feature [37],
[39], [41], [42], [48], [49], or aggregate individual retrieval sets
according to similarity/distance scores [38] or ranks [47]. How-
ever, these approaches use fixed or user-defined parameters, e.g.,
weight of each feature in similarity calculation. Consequently,
they cannot completely integrate the strengths of complemen-
tary features, which may work well for different kinds of queries.
To overcome this problem, we can employ feature fusion strat-
egy [32], [33], such as graph fusion [32] that adaptively merges
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individual retrieval sets through a link analysis on a fused graph.
Besides, the proposed method can be applied to other medical
domains, such as retrieval and diagnosis of nodules in lung
CT images.
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