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ABSTRACT

Anchoring effect is the tendency to focus too heavily on one piece
of information when making decisions. In this paper, we present a
novel, systematic study and resulting analyses that investigate the
effects of anchoring effect on human decision-making using visual
analytic systems. Visual analytics interfaces typically contain multi-
ple views that present various aspects of information such as spatial,
temporal, and categorical. These views are designed to present
complex, heterogeneous data in accessible forms that aid decision-
making. However, human decision-making is often hindered by
the use of heuristics, or cognitive biases, such as anchoring effect.
Anchoring effect can be triggered by the order in which information
is presented or the magnitude of information presented. Through
carefully designed laboratory experiments, we present evidence of
anchoring effect in analysis with visual analytics interfaces when
users are primed by representation of different pieces of information.
We also describe detailed analyses of users’ interaction logs which
reveal the impact of anchoring bias on the visual representation
preferred and paths of analysis. We discuss implications for future
research to possibly detect and alleviate anchoring bias.

Keywords: Visual Analytics, Anchoring Effect, Sense Making,
Cognitive Bias, Interaction Log Analysis
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1 INTRODUCTION

Researchers in multiple fields, including psychology, economics and
medicine have extensively studied the effect of cognitive biases on
decision making [7, 8, 17]. Cognitive biases are rules of thumb or
heuristics that help us make sense of the world and reach decisions
with relative speed [28]. Decision making, the process of identifying
solutions to complex problems by evaluating multiple alternatives
[46] has been increasingly exacerbated due to explosion of big
data [44]. To facilitate human decision-making processes on large
and complex datasets, Visual Analytics (VA) combines automated
analysis techniques with interactive visualizations to increase the
amount of data users can effectively work with [31]. Evidently,
the effectiveness of VA to support decision making is an area that
warrants study. Our goal in this work is therefore to conduct a study
which incorporates three complementary strands of research, given
the premises that VA supports decision making, and that decision
making is impacted by cognitive biases. Specifically, we investigate
how users’ decision making processes are impacted by cognitive
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biases when using VA systems to analyze large and complex datasets.
Moreover, we explore if and how cognitive biases are reflected in
the way that users interact with visual analytic interfaces.

In the context of VA research, many recent VA systems [9, 16,
21, 30, 34] designed to facilitate the decision making on large and
complex datasets contain coordinated and multiple views (CMV).
By presenting different visual representations that show various
aspects of the underlying data and automatically coordinating opera-
tions between views, multiple coordinated views support exploratory
analysis to enable insight and knowledge discovery [39]. In visual
interfaces that employ CMV design, users often have choices on
which views serve as primary vs. supporting views for their analysis
and on the strategies to switch between different views.

The flexibility of visual interfaces with coordinated and multiple
views make cognitive biases such as anchoring bias particularly
relevant to study. People find cognitive biases to be useful heuris-
tics when sorting through large amounts of information, when task
constraints or instructions prime them to focus on specific types of
information, or when asked to make quick decisions and analyses.
This has been demonstrated for several biases and shown that bi-
ases affect decision-making processes in predictably faulty ways
that can result in decision-making failures when information is dis-
counted, misinterpreted, or ignored [29]. Additionally, the biases
affect not only regular users, but also expert users, when thinking
intuitively [29]. One type of bias, the anchoring effect describes the
human tendency to rely too heavily on one/the first piece of informa-
tion offered (the “anchor”) when making decisions [17]. Research
has demonstrated that individuals anchor on a readily accessible
value and adjust from it to estimate the true value, often with insuf-
ficient adjustments. For instance, if a person is asked to estimate
the length of the Mississippi River, following a question on whether
the length is longer or shorter than 500 miles, their answer will be
adjusted from the ‘anchor’ value of 500 miles and will underestimate
the true length of the Mississippi River. The effect of such anchors
have been extensively studied in multiple tasks in the laboratory and
in the field (for a detailed review see [19]). However, the effect of
anchoring in Visual Analytics interfaces have not been systemati-
cally studied. More importantly, the effect of anchoring bias on the
strategies that users deploy to interact with the visual interface and
their analysis outcomes remains an open question.

In this paper, we study the effect of anchoring on users exploration
processes and outcomes. When interacting with visual interfaces
employing CMV design, there is a possibility that users rely too
heavily on one particular view. The reasons for such reliance in-
clude but are not limited to prior experience, familiarity with certain
visualizations, and different ways they were trained to use the visual
interface. The significance and impact of such anchoring is the
subject of our study.

Prior work in the VA community provides empirical data on
cognitive costs of visual comparisons and context switching in
coordinated-multiple-view visual interfaces [11, 38]. Findings from
these experiments inform design guidelines of CMVs. However,
there is little research on how cognitive biases transfer to visualiza-
tions, in particular to visual interfaces with coordinated multiple
views. MacEachren [33] argues that prior efforts in visualization of
uncertainty deal with representation of data uncertainty, but do not



address the reasoning that takes place under these conditions. We
therefore aim to investigate the impact of anchoring effect on human
decision-making processes when using VA systems, because it has
been shown to be overwhelmingly affect decision-making [17]. Our
experiment design addresses several challenging requirements that
are necessary to derive meaningful implications: first, the experi-
ments need to be conducted using a VA system with tasks relevant
to decision-making based on large and complex datasets; second,
measures and experiment data that reflect users’ decision making
processes (beyond task completion time and accuracy) need to be
collected; third, novel analyses methods need to be developed to
tease out the effect of anchoring bias on decision making with VA
systems. Accordingly, our work makes the following original contri-
butions:

• To situate our study in complex decision making tasks with
visual interfaces, the experiments are conducted with a sophis-
ticated visual analytics system [10] with multiple coordinated
views. The design of the visual analytics system enables the vi-
sual anchor on either geo or time related representation through
tutorial/training.

• In order to study the effect of anchoring bias on the decision-
making processes with greater nuance and granularity, we col-
lect not only quantitative measures about users’ performance,
including questionnaire responses, but we also collect detailed
interaction logs within the visual interface. The interaction
logs capture the decisionmaking process at a action level. Sig-
nificant differences in actions were found between subjects
assigned to different visual anchors.

• In addition to running statistical tests on the quantitative mea-
sures collected through pre- and post-questionnaires, we apply
two novel methods of analysis - graph analysis and structural
topic modeling - to analyze the paths and patterns of users
interactions and identify the effect of anchoring bias. Our
analysis revealed that visual anchors impact users’ decision-
making processes while numerical anchors affect the analysis
outcomes.

2 BACKGROUND AND RELATED WORK

In this section, we describe literature in the areas relevant to our
study.

2.1 Background on Anchoring Effect
Humans have the tendency to rely on heuristics to make judgments,
which can lead to efficient and accurate decisions [22], however
these heuristics may also lead to systematic errors known as cog-
nitive biases [29]. Psychologists have long studied the presence of
cognitive biases in human decision making process [29, 45]. The
anchoring and adjustment bias, defined as the inability of people to
make sufficient adjustments starting from an initial value to yield a
final answer [45], is one of the most studied cognitive biases that
can lead individuals to make sub-optimal decisions. In the classic
study by Tversky and Kahneman [45], the authors found evidence
that when individuals are asked to form estimates, they typically
start with an easily accessible value or reference point and make
adjustments from this value. While such an approach may not al-
ways lead to sub-optimal decisions, research has demonstrated that
individuals typically fail to adjust their estimates away from their
initial starting point the anchor. Research has shown that anchor-
ing affects decision making in various contexts, including judicial
sentencing [3], negotiations [32] and medical diagnoses [7]. Given
this documented prevalence of anchoring bias in various contexts of
decisionmaking activities, we hypothesize that such effects may also
be present when individuals interact with data while using visual
analytics.

2.2 Visual Analytics and Cognitive Biases
Sacha et al. [43] investigate how uncertainties can propagate through
visual analytics systems and examine the role of cognitive biases
in understanding uncertainties, and also suggest guidelines for the
design of VA systems that may further facilitate human decision-
making. Similarly, research in the detection of biased decision
making with VA software is in the early stages [36]. Harrison et al.
found through a crowd-sourcing experiment that affective priming
can influence accuracy in common graphical perception tasks [23].
George et al. [20] examined robustness of anchoring and adjustment
effect in the context of decision support systems. Although their
study revealed the presence of anchoring bias in the user’s decision
making task of estimating the price of house, their decision support
system did not contain a highly complex visual interface consisting
of coordinated multiple view. Researchers have also investigated
the role of various other biases such as confirmation bias [12] and
attraction effect [14] in the context of visual analytics. Dimara et
al. [14] studied attraction effect using crowdsourcing experiments to
determine that attraction bias did in fact generalize to information
visualization and that irrelevant alternatives may influence users
choice in scatterplots. Their findings provide implications for future
research on how to possibly alleviate attraction effect when design-
ing information visualization plots but no study to date has explored
the anchoring bias in visual interfaces. Additionally, no research
to date has examined the interaction patterns and activities of users
in decisionmaking while these users are explicitly anchored under
controlled experimental conditions.

In the next section, we describe a novel approach to analyzing the
users’ interaction patterns which is grounded in the analysis of web
log data.

2.3 Use of Topic Models for Analyzing Web Logs
For our analysis of the interaction logs, we employ a variant of topic
models, structural topic modeling (STM), that facilitates testing
the effect of document-level variables on topic proportions. By
characterizing the temporal sequence of actions taken by the user
during their interactions with the interface as a ’text document’ and
characterizing actions as ’topics’, we are able to test the effects of
several factors, which include not only demographic variables such
as age and gender, but also the effects of anchoring bias on the
user’s actions, and hence their decision-making processes. Although
topic models have been used to analyze web logs previously, our
application of STM to user interaction logs is novel by providing
a mechanism to test the effect of independent variables on actions
(topic proportions). Early applications of topics models [13, 26] to
analyze web log behavior used probabilistic latent semantic indexing
(pLSI) [24], a predecessor model to LDA-based topic models [5]. In
the case of analyzing web log data, the pLSI model has been helpful
in capturing meaningful clusters of users’ actions, and found to
surpass state-of-the-art methods in generating user recommendations
for Google News [13].

One limitation of this method was that it did not consider time or
user-level attributes (independent variables) within the model. To
address the issue of time, Iwata et al. [25] created a LDA-based topic
model (Topic Tracking Model) to identify trends of individuals’ web
logs on two large consumer purchase behavior datasets. In their
model, they created a time component to identify the dynamic and
temporal nature of topics. As we will discuss in section 5, we address
the same concern by creating a time component in our STM model.
Further, we employ STM’s flexible causal inference framework as
a mechanism to test anchor bias by treating each anchor group as
additional independent variables.

3 USER EXPERIMENT

In this section, we first describe our research questions and provide
a detailed description of the visual analytic system used in the exper-



Figure 1: Crystalball interface: the interface has 4 main views: (A)
calender view, (B) map view, (C) word cloud view, and (D) social
network view. The calendar view shows the future event overview (a)
by default. The event list (b) is shown when the user selects a subset
of future events. The tweet panel (E) is shown when the user clicks
the Twitter icon.

iment. We then describe the experiment design rationale and tasks
designed to elicit and test anchoring bias, and provide details about
the experimental procedures and participants next.

3.1 Research Questions
Given that our research lies at the intersection of anchoring bias, de-
cision making processes, and visual analytics systems, we designed
two types of anchors, namely visual and numerical to evaluate their
effects in the context of visual analytics systems. The numerical
anchor is based on many psychology studies to test whether the
participants can adjust away from the numerical anchor in their fi-
nal answers. The visual anchor is designed specifically to prime
people with different views in visual analytics interfaces with CMV
design. The design of the numerical anchors is to evaluate if users
are subject to anchoring bias when using visual analytics interfaces
to aid decision making in a way similar to whats found by previous
experiments conducted without the use of a visual analytics inter-
face; while the design of the visual anchors is to test specifically
whether users can be anchored visually and how that affects the anal-
ysis process and outcome. More specifically, we seek to answer the
following research questions with respect to the impact of anchoring
on decision-making activities using visual analytics systems:

• RQ1 - Visual Anchor: Can individuals be anchored on a spe-
cific view in a CMV?

• RQ2 - Numerical Anchor: Are the effects of numerical priming
transferable to VA?

• RQ3 - Interaction Patterns I: How does anchoring influence
the paths of interactions?

• RQ4 - Interaction Patterns II: Are there systematic differences
in the interaction patterns and information seeking activities of
individuals primed by different anchors?

To answer these questions, we designed and conducted a controlled
experiment using a custom VA system, which is described next.

3.2 CrystalBall - a visual analytics system used for the
experiment

To study the anchoring effect during complex decision making tasks
performed in a visual analytics system, we conduct the experiment
with Crystalball, a visual analytics system that facilitates users in

Figure 2: Event list. The flower glyph shows 5 measures of the
future event and the number of tweets in the center (A). The three bar
charts in the center show hourly distribution of tweet positing time (B),
the number of tweets pointing to the event in last 30 days (C), and
averages of emotion scores of the tweets (D). A list of keywords that
summarize the tweets are displayed next to the bar charts (E). The
user can bookmark the event by clicking the star icon (F).

identifying future events from Twitter streams [10]. Detecting fu-
ture events from tweets is a challenging problem as the signals of
future events are often overwhelmed by the discussion of on-going
events. Crystalball is designed to detect possible future events from
streaming tweets by extracting multiple features and enables users
to identify potentially impactful events.

3.2.1 Analyzing large and noisy Twitter data

On average, around 500 million tweets are posted on Twitter per day
by more than 300 million Twitter users [1]. However, many of them
discuss past and ongoing events, and news headlines. To find, iden-
tify and characterize possible future events, the Crystalball system
pipeline contains multiple components, including entity extraction,
event identification and a visual interface.

The pipeline first extracts location and date from tweets. If the
extracted date refers a future time and the extracted location is
valid, then the tweet goes to the event identification component.
Even if a tweet may mention a future time and valid location, it
is possible that the tweet does not contain any informative content.
Thus, in order to determine the quality of tweets as indicators of
future events, we employ 7 measures: Normalized Pointwise Mutual
Information (NPMI) of time-location pairs, link ratio, hashtag ratio,
user credibility, user diversity, degree centrality and tweet similarity.

3.2.2 Multiple Coordinated views in the CrystalBall Interface
and User Interactions

Figure 1 shows the Crystalball interface. The interface has 4 main
views: a calendar view, map view, word cloud view and social
network view. The calendar view displays a list of future events
(Figure 1A). By default, it shows overview of future events (event
overview, Figure 1a). The event overview shows all identified events
and connections among them. Circles represent identified future
events. The circles are grouped by dates. Events that have a same
location are connected with a solid line and events that have same
keywords are connected with a dotted line.

The event view shows detailed event information (event list)
when the user selects a subset of the future events as shown in Figure
1b. Figure 2 shows enlarged image of Figure 1b. A flower glyph
visualizes 5 of 7 measures of a future events with the number of
tweets in the center (Figure 2A). The 5 measures are link and hashtag
ratios, NPMI, user diversity and tweet similarity. Two timeline
bar charts visualize distribution of tweet positing time (Figure 2B)
and the number of tweets in last 30 days (Figure 2C). The bottom
bar chart shows average emotion scores of the tweets (Figure 2D).
Keywords that summarize tweets of the event is displayed on the
right side of the view (Figure 2E). The event can be bookmarked as
favorite by clicking the star icon (Figure 2F). The bookmarked events
are stored in database so that the user can review them anytime.
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Figure 3: User interaction logs: the figure displays main user in-
teraction logs of the Crystalball interface. Each view has different
interaction logs based on its visual elements.

The map view shows identified events on the map to indicate
where they will occur (Figure 1B). Events are aggregated based on
the zoom level and are shown as rings. The color of ring proportions
represent event dates ranging from tomorrow (dark blue) to more
than a month (light blue). Clicking a ring will show its tweets as
circles. Clicking a circle will show a tooltip showing the tweet.

There are two facilitating views to help users explore and further
analyze the future events: word cloud view and social network
view (Figure 1 C and D). The word cloud view shows keywords
extracted from tweets of the identified events. The size of keywords
represent frequencies of the keywords. The word cloud view is
updated when selected events are changed. The social network view
represents relationships between future events and Twitter users.
Clusters in the view represent future events in same locations. In
many cases, a cluster has several future events in a same location.

User Interactions: The highly interactive and exploratory na-
ture of the Crystalball interface enables users to start their explo-
ration and analysis of future events from any of the four main views
present in the interface.

A user can start with the calendar view in order to know when
the event will occur. Hovering the mouse over a circle in the event
overview will highlight the corresponding events on the map, word
cloud and social network view. The user can find events that share a
same location or keywords by examining links. The user can select a
particular date then the event list will be shown in the calendar view
that shows all events of the date with detailed information. Other
views will be automatically updated to show corresponding events
in the views.

Alternatively, the user can start the analysis from the map view to
make sense of where the event will occur first. The map view shows
detailed evenets when zooming into a region of interest. When the
zoom factor is lower than a zoom threshold, the calendar, word
cloud and social network views are updated to show the events in
the current map extent. The user can open the event list to show all
the events in the map extent by clicking the “show events” button on
the bottom right of the map view.

The interactions implemented in CrystalBall allows users to per-
form exploratory analysis to support decision-making tasks. Con-
sequently, the decision making process is reflected by the actions
participants take within CrystalBall. In our experiment, in order
to analyze the effect of anchoring bias on a decision making task
conducted in CrystalBall, we defined and logged 39 unique user
interactions. Figure 3 lists 36 user interactions, situated in their
corresponding views. The rest of the 3 interactions were used rarely
but our participants during their interactions with CrystalBall. The

interface records all user interaction logs with a timestamp and a
user’s name to database which are analyzed in Section 5 in order to
show users’ decision making process.

3.3 Design Rationale
The anchoring effect has been replicated in numerous studies in the
laboratory and in the field [17]. Our experiment design is thoroughly
grounded in these best practices of controlled experimental studies in
that we use priming to elicit the anchoring bias. First, we focused the
participants experience around a well-defined cognitively engaging
decision-making task - we asked participants to estimate the number
of protest events in a given period of time and in a given location. We
conducted our experiment with the CrystalBall interface to predict
and detect protest events from Twitter data. The Calendar View and
the Map View as described in Section 3.2 serve as the time and geo
(visual) anchor. In order to test our hypotheses, we followed a 2×2
between-subjects factorial design with two factors (numerical and
visual) and each factor had two levels as described below.

3.4 Experimental Stimuli
The visual and numerical anchors for the experiments were devised
in order to prime the participants in two ways. The numerical anchor
primed participants on a number (High or Low) and the visual
anchor primed participants on a specific view in the CrystalBall
interface (map view, representing geo anchor or calendar view, which
represented the time anchor). The decision-making task presented
to the participants is one of the four choices presented below:

Geo + high/low anchor: Do you think that the number of
protest events in the state of California <geo anchor first> was
higher or lower than 152 (or 8) <high (or low) numerical an-
chor> between November 10, 2016 and November 24, 2016 <time
anchor>?

Time + high/low anchor: Do you think that the number of
protest events between November 10, 2016 and November 24, 2016
<time anchor first> was higher or lower than 152 (or 8) <high (or
low) numerical anchor> in the state of California <geo anchor>?

As can be noted, the magnitude of the numerical anchor, either
high or low, is subject to the experimental condition. These high
and low numerical anchors were chosen based on the actual num-
ber of protest events present in the data (as determined by trained
annotators). Additionally, the order of presentation of the visual
anchors varies in the two questions. The visual anchors were further
reinforced through custom training videos orienting the participants
to the use of the CrystalBall interface.1 The two training videos
reinforce the visual anchors by starting and driving the analysis from
either the map view (geo) or the calendar view (time).

3.5 Experiment Design
3.5.1 Procedures
The data collection for this study involved in-person laboratory
participation. Participants were recruited via in class recruitment,
email to listservs and the psychology research pool at our univer-
sity. Sessions were conducted between February 10th, 2017 and
March 15th, 2017. After signing up for the study, participants were
assigned a unique code for secure identification. Associated with
this code, was the random assignment to one of four experiment con-
ditions (High/Geo, Low/Geo, High/Time, Low/Time). Participants
were asked to come to the lab for the duration of one hour. The
experimenter would first elicit their responses to informed consent.
Next, the participants would view two training videos specifically
designed for this experiment. The first video was a general training
video (duration 5 minutes) which oriented them to the use of the
Crystal Ball interface and its basic functionality (e.g., primary and

1Please refer to supplemental materials for the two training videos.



Table 1: Distribution of participants in 4 conditions. Row-Numerical
anchor; column-Visual anchor.

Geo Time Grand Total

High 20 21 41
Low 22 18 40
Total 42 39 81

supporting interactions). This video was shown to all the partici-
pants, regardless of experimental condition. Next, the participants
were shown a priming video (duration of 3 minutes) based on their
visual anchoring group. The priming video was designed to guide
the users through a case scenario through either Geo or Time Visual
Anchors.

Following the training, the participants were asked to complete a
pre-test questionnaire. The pre-test questionnaire consisted of ques-
tions related to participant’s demographics (age, gender, education),
their familiarity with visual analytics systems and social media, and
Big-5 personality questions [27]. The informed consent, training
video and pre-test questionnaire typically took around 20 minutes to
complete. The participants were then assigned the task, and asked
to interact with CrystalBall for about 25 minutes. We designed and
implemented interaction logging with the CrystalBall interface to
capture their timestamped actions as they proceeded through the
task. The interaction logging is transparent to the participants. At
the end of their interaction, participants were asked to estimate the
number of protest events based on their analyses within CrystalBall.

Next participants were asked to complete a post-test questionnaire.
The completion of the post-test questionnaire ended their partici-
pation in the study. The post-test contained questions regarding
the usability of the system (ease, attention, stimulation, likability),
level of engagement during the task and questions to gauge their
susceptibility to bias. The bias questions consisted of eight questions
designed to measure the level of bias. Participants were compen-
sated by either a $5 gift card or class credit assigned at the discretion
of the class instructor willing to assign extra credit.

3.5.2 Participants

A total of 85 participants completed the study. We discarded the data
for four participants due to usage of incorrect identification codes
during the experiment. Distribution of participants across experi-
ment conditions was relatively even and is represented in Table 1.
Figure 4 shows a summary of the demographic characteristics of par-
ticipants across factors including age, gender, education and major.
We note that there is an even balance of participants across vari-
ous demographic characteristics such as gender (male vs. female),
age (different age ranges) and education background (computing vs.
other majors), although there is some skewness in the data towards
students pursuing Masters degrees. Participant demographic charac-
teristics were also balanced across the four experiment conditions
due to random assignment of participant to experiment condition.
Males and females participants were uniformly distributed across
experiment conditions (25% in each condition, SD = 10% for males,
SD = 6% for females). Average ratio for males to females was 1.02
in each experiment condition. Average proportion of undergraduate,
masters and PhD education level in each experiment condition was
also 25% (SD = 13%, 10% and 24% resp.).

4 EXPERIMENT RESULTS: ANALYZING QUANTITATIVE
MEASURES

Two types of quantitative analyses are conducted to answer research
questions RQ1 and RQ2 introduced in Section 3.1.

43 38Gender

Male Female

22 36 23Age

18-22 23-27 >=28

25 45 7 4Education

Undegraduate Masters Ph.D Other

7 11 6 11 14 18 14Major

Business Social Sciences Architecture Other non-computing

Data Science Computer Science Other computing

Computing (46)Non-Computing (35)

Figure 4: Demographic. A summary of demographic information of
the participants based on gender, age, education and major.

4.1 RQ1 - Visual Anchor: Can individuals be anchored
on a specific view?

To quantitatively evaluate whether participants can be anchored on
a view in CrystalBall, we conducted two types of stastical analysis
- two-way ANOVAs and Bonferroni-corrected pairwise t-tests. We
extracted the overall time duration a participant spent in geo or time-
oriented views from the interaction logs by taking into account the
time stamp of each action occurred in a particular view.

A two-way ANOVA was conducted on the influence of two inde-
pendent variables (numerical and visual anchor) on the amount of
time spent in different views (map vs. calendar). The main effect
for visual anchor was statistically significant and had an F ratio of
F(1,78) = 11.57, p < .001. The main effect for numerical anchor
indicated that the effect for numerical anchoring did not significantly
affect the time spent in map vs. calendar view (p > 0.05). The
interaction effect was not significant, F(1,77) = 0.12, p > 0.05.

Bonferroni corrected pairwise t-tests (α=0.05/4) were conducted
to compare the duration of time spent in the different conditions
with α=0.0125 level of significance. We found that visual anchor
had significant effect on the time spent in map view vs. calendar
view across both conditions (p < 0.01 in both cases) whereas the
numerical anchor did not (p > 0.05 in both cases).

In Figure 5, we show the duration of time spent in each view
for each participant across all four experimental conditions. The
x-axis represents the time in minutes, with the blue bars representing
duration in calender view and the black bar representing duration in
map view; the y-axis are the participant ids in each condition. We
see from charts labeled High/Geo and Low/Geo that participants
spent significantly more time in the map view vs. the calendar view
in the geo anchoring conditions. The charts labeled High/Time
and Low/Time reveal that in the Time priming conditions, the time
spent in each view was variable and no statistical trends can be ob-
served. We have included four separate charts in Figure 5 to provide
sufficient comparative detail across the experiment conditions.

4.2 RQ2 - Numerical Anchor: Are the effects of numeri-
cal priming transferable to VA?

The effect of numerical anchor on time spent within Crystal-
Ball. As reported in Section 4.1, two-way ANOVAs conducted in
order to determine the effects of numerical anchoring indicated the
main effect for numerical anchor did not significantly affect the time
spent in map vs. calendar view (p > 0.05). The interaction effect
was also not significant, F(1,77) = 0.12, p > 0.05.

These findings indicate that being primed by a numerical anchor
did not have an effect on the amount of time spent in map view
compared to the calendar view. We discuss the implications of these
findings further in the discussion section, and suggest that more
investigation is needed to determine the cause of these effects.

The effect of numerical anchor on the decision-making out-
come. To further asses the impact of numerical anchoring, we
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analyzed the responses given by participants in the pre- and post-
tests. The participants were asked to estimate the number of protest
events, before and after their interactions with the data and the in-
terface. The findings are shown in Figure 6. On the x-axis we show
the two groups in the numerical anchoring condition High and Low.
On the y-axis are each participant’s estimates regarding the number
of protest events, before the interaction (in orange) and after the
interaction (in red). Mean post-test responses are in black. Our
findings indicate that participants were consistently anchored on
initial number presented to them in the framing of the questions
(p < 0.05). Our findings suggest that the effects of the classic an-
choring bias elicited by priming with numerical anchors in previous
laboratory studies can be replicated in VA. We did not find any ef-
fects of the visual anchoring (geo vs. time) on the final outcome
(t(40) = 2.02, p > 0.05), suggesting that the effects of the visual
anchor may be more subtle than can be determined via post-test
questionnaire responses. We conducted detailed analyses to capture
these effects, which we shall describe in the next section.

5 EXPERIMENT RESULTS: ANALYZING INTERACTION LOGS
FOR USER ACTIVITY PATTERNS

To test the hypothesis that user interaction logs reflect the partici-
pants’ decision making processes, we applied two additional types
of analyses on the logs in order to evaluate the impact of anchoring
effect on the patterns of user interactions. The two analyses address
research questions RQ3 and RQ4 (Section 3.1).

5.1 RQ3: How does anchoring effect influence the
paths of interactions?

To analyze the paths users take during their analysis with Crystal-
Ball and the effect of anchors on these paths, we developed a novel
method to study the sequences of users interactions as a network of
interaction nodes. We constructed the interaction network as follows:
each interaction is logged with five attributes: time stamp of the inter-
action, the view it took place in, the type of interaction, and detailed
description for each interaction (e.g., 12:56:35.56, Calendar view,
Click, Zoom 89.55 36.00). As shown in Fig 3 there are 36 main inter-
actions as well as 3 main secondary interactions over multiple views.
Each of these interactions form the nodes in a network. The edges
in the network are chronological pairs of interactions. For example,
if a user has zoomed on the map and then hovered on a particular
location in the calendar view, this would add an edge between the
Map Zoom and Calendar Location Hover nodes. The edge weight
would incrementally increase for each additional observed pair. For
visualization purposes, we disregarded self-loops (i.e, repeated ac-
tions) because we are more interested in the relationship between
different interactions and the paths of interactions taken by our users.
This method yields a weighted directed graph which enables us to
cluster interactions through community detection, rank each action
by multiple centrality measures and compare aggregate user path
differences controlling for each anchor. The network visualizations
in this section were created with Gephi [2].

In this section, first we take actions of all users into account
to get a complete picture of users’ paths of interactions. We then
analyze differences in users paths to detect different user strategies
controlling for the two anchors (visual and numerical). We studied
the network of all user logs, as well as our four experiment anchors.
We did not find significant differences in the networks created from
logs of users primed on the two numerical anchors. Hence in this
discussion, we will focus on the three remaining networks: a full
network (AllNetwork), a Geo-anchored network (GeoNetwork) and
a Time-anchored network (TimeNetwork).

5.1.1 Analyzing the network of all interactions
By adopting an exploratory data analysis method, we started by
analyzing different features of AllNetwork (39 nodes and 640 edges)
(Figure 7). We first utilized the community detection algorithm
developed by Blondel et al. [6], which resulted in 5 different commu-
nities of interactions. Most of these communities are comprised of
interactions that occur within the same view or have a close semantic
relationship to each other. The community detection results allowed
us to categorize nodes in our network into three main groups that
were in line with our initial system design strategies: preliminary
interactions, primary interactions, and supporting interactions. The



Figure 7: The directed network of all interactions. Nodes are interac-
tions and edges are interactions that occur after each other. The size
of nodes are proportional to Pagerank values and width of edges are
proportional to the edge weights. Note, if a line is drawn between a
start-node and an end-node, the outgoing edge from the start node is
on the relative left side of that line.

primary interactions include those that users have to go through in
order to find the events of interest. The supporting interactions are
those that users perform in order to find supporting information to
confirm the previously found events. The preliminary interactions
such as login and clicking on the menu bar were used infrequently
as they are not critical to the analysis process. Figure 7 shows the
network colored and annotated based on the community detection
results.

In order to measure the importance of different interactions, we
utilized the Pagerank algorithm [37]. Since Pagerank takes into
account the weight of edges between interactions, it is much more
powerful than simply calculating the frequency of each interaction.
Pagerank assigns probability distributions to each node denoting the
importance of the node. These probability distributions are appropri-
ate metrics for importance of the interactions in our system as they
show the likelihood of a random surfer in the network to traverse
to a specific end node. The top ranked interactions in our interface
are all from the primary action communities with the exception of
Word Hover. As seen in Figure 7, edge weights between important
nodes in the same community are higher than ones between different
communities. Furthermore, we can observe mutual higher weighted
paths between these higher ranking interactions. Some exceptions
to this observation is when the users are moving away from a view
to another conduct more in depth analysis. For example, in AllNet-
work, the edge between Events Location Hover to Events Location
Click is weighted very strong, but the path of opposite direction is
not. We can interpret Events Location Click as an interaction that
drives users out of this community to others such as Word Cloud
and Social Network to get complementary information of an event
( See Fig 7). The AllNetwork and the analyses resulting from it
serve as a reference for the comparisons we wish to make across the
GeoNetwork and TimeNetwork.

5.1.2 Comparing interaction networks of Geo- vs. Time-
anchored users

To answer our research questions of whether visual anchor has an
effect on the way different groups of participants interact with the
visual interface, we constructed two networks based on the actions
of the geo and time-anchored groups. These networks consist of the
same 39 action nodes but have different edges and weights allowing
us to compare the interactions of participants primed on the two
visual anchors through the lens of their respective networks.

Similar to our analysis of AllNetwork, we first started by detect-
ing communities within GeoNetwork and TimeNetwork. Interest-
ingly, the results show similar community structures to AllNetwork.
However, there are subtle differences that point to the differences
regarding the usage of CrystalBall between the two groups. For
example, the action of Favorite Icon Click (through which users can
save an event to view later in the Favorites Menu) in GeoNetwork is
part of the preliminary actions community, but for TimeNetwork it
is part of the Time related primary actions community. This subtle
change could indicate that the time primed users had more interac-
tions between saving an event as a favorite and then viewing the list
of favorite actions in comparison to our Geo primed users.

We calculated Pagerank for interaction nodes in both these net-
works. Comparing these values would allow us to understand im-
portant interactions within each network and how they are affected
by the visual anchor. Figure 8 illustrates significant differences of
the two networks. In the GeoNetwork, the top nodes are a mixture
of interactions from the Map and Event views, with the highest
ranked interaction from the Map view. This pattern is consistent
with the strategies shown in the Geo priming video. In contrast,
in the TimeNetwork, the top ranked nodes are interactions within
the Events view and the Calendar View, which is also consistent
with the strategy shown in the time-anchor video. Other important
but lower ranking actions in TimeNetwork are from the Map View.
Furthermore, by observing the paths between the Events community
(colored purple in Figure 8) in both GeoNetwork and TimeNetwork,
we see that weight of the edge between Events Location Hover and
Events Location Click is relatively higher in the GeoNetwork in
comparison to the TimeNetwork. This could indicate that our Geo
primed users use maps to explore and primarily use hovering and
clicking on a location together to view more details in the map, word
cloud, and social network views. Our time primed users on the other
hand, utilize the hovering on locations to explore events. These
differences show interesting behavioral variations in sequences of in-
teractions between our two groups. These differences show that time
primed users are more likely to use the Calendar and Events view
actions as their primary exploratory tool. Figure 8 shows the com-
parisons between these two networks and two bar charts comparing
the top 5 ranked nodes in each network.

Analyzing the interactions of our participants as a network has
many benefits. It allows us to take into account the sequence of
interactions, as well as the paths taken by users to arrive at the
conclusion. The paths taken reflect the strategies users employ
during the decision-making process. Furthermore, we can take an
overview of all interactions within the CrystalBall interface and
analyze what strategies need to be improved to make the interface
more effective.

5.2 RQ4: Estimating the effects of anchoring bias on
interaction patterns and information seeking activi-
ties

One drawback of the network analysis is that the estimated impact
for each anchor is measured without standard errors to calculate
the statistical significance of each result. To address this problem,
we use structural topic modeling (STM) to measure the impact of
the anchors and user-level attributes on users’ actions [40]. Origi-
nally built for text summarization, STM is a generalized topic model



Figure 8: Side by side visualization of GeoNetwork and TimeNetwork. The size of nodes is proportional to Pagerank values of nodes in each
graph, the color of nodes corresponds to the detected community of each node, and the width of each edges corresponds to the weight of that
edges. The bar charts show the top 5 nodes based on their Pagerank value and is color coded based the community the nodes community.

framework for testing the impact of document-level variables. For
our model, topics are clusters of interactions measured as probability
distributions over the action space. We test our hypotheses of the
effect of anchoring on the topic proportions through an embedded
regression-component. STM is a consolidation of three predecessor
models: the correlated topic model (CTM) [4], the sparse additive
generative model (SAGE) [15] and the Dirichlet multinomial regres-
sion model (DMR) [35]. The CTM model introduces a correlation
structure for topic distributions while the DMR and SAGE models
provide mechanisms to estimate the effect of independent variables
on either topic proportions (via DMR model) or word distributions
for each topic (via SAGE model). 2

Table 2: Independent Variables Tested

Type Independent Variable Level

Condi�on
Visual Anchor Time / Geo

Numerical Anchor High /Low

Time Percent of Ac�ons Ac�on Deciles (b-spline)

A�ribute

Gender Make / Female

Major Compu�ng / Non Compu�ng

Age Under 23 / Over 23

Educa�on Undergraduate / Graduate

Personality

Extroversion High / Low

Agreeableness High / Low

Conscien�ousness High / Low

Openness High / Low

Neuro�cism High / Low

However, as with most topic models, STM is built from the
bag-of-words (BoW) assumption that provides a key advantage and
disadvantage in our analysis. The advantage is that it yields statis-
tical properties (exchangability) that identifies topics as clusters of
co-occurring interactions and facilitates statistical testing through

2We used the stm R package [41] for our analysis. This package includes
additional tools for topic modeling including a spectral initialization process
that aids in addressing the multi-modality problem (stability of the results).

Table 3: This table provides the seven actions with the highest proba-
bilities for three sample topics: Map View, Calendar View and Event
List (all tools). Action combinations (bi- or tri-grams) are denoted by
the plus sign.

the DMR (GLM regression) component. On the other hand, a disad-
vantage of the BoW assumption is that it ignores the order of interac-
tions. To address this issue, we made two modifications: extracting
bi-/tri-grams and creating a session time variable by interaction
deciles. First, we extracted every bi- and tri-gram as chronological
action pairs and triplets from the interaction logs. Including bi- and
tri-grams and the single actions, we had 237 unique features after
removing sparse features. Second, we created a time variable that
divided each user’s session into ten evenly distributed groups (inter-
action decile). Given that each user’s session averaged nearly 800
individual actions, each decile maintained sufficient interactions to
facilitate topic inference. Additionally, inclusion of the time variable
had the advantage of increasing our sample size (number of docu-
ments) from 81 to 810 as the document-level went from each user to
a user’s interaction decile (e.g. first 10% of user X’s interactions).

To test the effect of anchoring bias on users’ interactions, our



Figure 9: The figure on the left provides the expected topic (action-cluster) proportions with judgmental labels to aid in interpretation. The figures
on the right provide the estimated effect of the visual and numerical anchors on each of the eight topics’ proportions. The dot is the point estimate
and the line represents a 95 percent confidence interval. The red dots/lines are topics that are significant with 95% confidence.

baseline model to explain topic proportions (dependent variable)
incorporates three independent variables: the visual anchor, the
numerical anchor, and time as interaction deciles. After analyzing
the model, we tested other demographic attributes including gender,
major, age, education level, and the Big-5 personalities. Table 2
above provides a list of the independent variables tested and the
categorical levels. We binned the user attributes into binary levels.
Similarly, we converted the Big-5 personality results into binary
levels in which users who scored above the mean were categorized
as High while users who scored below the mean were categorized as
Low.

5.2.1 The effect of visual anchor on interaction patterns esti-
mated by topic proportions

We find the visual anchor has a significant effect on the proportion
of users’ interactions as topics clustered automatically in view-based
groups (e.g., map, calendar, events). Figure 3 provides the top seven
interactions for three sample topics. We observe that the interactions
tend to cluster into groups related to each interaction’s associated
view hierarchy as shown in Figure 3. For example, topic 8 includes
interactions related to the map view including Map Zoom, Map Pan,
Map Circle Click and Map Click Cluster. Therefore, we gave topic
8 the manual label of Map View since its interactions are all related
to that view. Following this approach, we created manual labels
for the other seven topics. Further, we find that the topics tend to
cluster in groups consistent with our network communities found in
Section 5.1. For instance, the four prominent interactions of the Map
View topic (by probability) have the strongest connections as well as
highest PageRank in the Map View community cluster (green nodes)
in Figure 7.

Second, we find in Figure 9 that the Map View and Flower Glyph
topics had the largest topic proportions. Alternatively, the social
network and word cloud were the smallest topics. To test our num-
ber of topics, we followed the procedure recommended by [42] by
considering multiple topic scenarios (5, 8, 10, 15, 20, 25, 30, 40) and
comparing each model’s held-out likelihood and average semantic
coherence. We decided on an eight topic model given a high aver-
age semantic coherence and parsimony of topics (see supplemental
materials).

We observe that the visual anchor had a significant effect on the
Map View and Calendar View topics. Figure 9 provides the effect
the anchors had on the topic proportions. In this plot, each dot is
the estimated topic proportion difference for each topic by the two
levels of each anchor. The line represents a 95% confidence interval

around each estimate. From these figures, we find that the Map View
and the Calendar View topic proportions have the most significant
differences between the two groups. Consistent with our findings
in sections 4.1 and 5.1, Geo primed users are anchored more to the
view they were primed on while we see less of an effect in Time
primed users. On the other hand, we found that the visual anchor
had an unexpected effect with the Event List: All Tools (topic 3).
Geo primed users tended to use tools like the Keyword More and
Emotion Bar more than Time primed users. Alternatively, we find
that the numerical anchor had only a marginal effect on two topics
(Calendar View (topic 6) and Event List: All Tools (topic 3)). These
results imply that the visual anchor had a more significant impact
on the proportion of users’ interactions than the numerical anchor.
This is important as we observed opposite effect (numerical anchor
was significant, visual anchor was not) in the users’ estimation of
the event outcome.

5.2.2 The effect of visual anchor on interactions used over
time estimated by topic proportions

We find evidence of a temporal effect on the topic proportions. To
measure this effect, we divided each user’s interaction path into
interaction deciles (see Section 5.1). To aid estimation, we used a
b-spline to smooth the values. Figure 10 provides the effect of the
visual anchor (line color) and time (x-axis) for the Map View and
Calendar View topic proportions. We observe a significant impact of
the time of the user’s session on this topic proportions. For example,
Map View topic proportion is nearly twice during the user’s first
twenty percent of interactions than users’ remaining 80 percent of
interactions. Moreover, we see this distinct drop for both visual
anchor groups. This observation implies that users tended to use
the Map View more in the beginning of the session as they were
getting acclimated to the interface. Alternatively, the Calendar View
topic trended down resulting in much lower use by session end (15%
Time, single digits Geo). We found marginal effects of time for
the other six topics, with most nearly flat given already low topic
proportions (less than 10%).

5.2.3 The effect of demographic variables on interaction pat-
terns estimated by topic proportions

To test other possible variables, we ran five additional model sce-
narios replacing the numerical anchor variable (as it showed only
marginal significance) with the demographic variables (gender, ma-
jor, student level and Big-5 personality). We found that none of



Figure 10: This figure provides two charts on the effect between the
visual anchors (line color) and time as measured by interaction deciles
(x-axis) for two topics (Map View and Calendar View). Each line is
the estimated topic proportions across the session and controlling for
the visual anchor. The solid line is the point estimate and the dotted
line is a 95 percent confidence interval. For the interaction deciles
(time), we divided users’ sessions into ten evenly distributed groups.
A b-spline was used to smooth the curve across the ten points.

the variables produced significant (95%) changes in topic propor-
tions, although some produced marginally significant effects (see
supplemental materials). For example, most variation occurs in
the secondary view topics (Word Cloud, Social Network and an
interaction topics).

6 DISCUSSION AND LIMITATIONS

In this section, we provide implications of our experiment results on
anchoring effect in visual analytics, and point out possible limitations
related to the study design and analysis.

Experiment implications As shown by our data analysis (sec-
tion 4 & 5), our experimental results indicate that anchoring bias
does transfer to visual analytics. Most interesting finding is that
the visual anchor seems to significantly impact the decision-making
process, while the numerical anchor has a significant effect on the
decision-making outcome. The decision-making process reflects the
way that users interact with CrystalBall; the outcome is the final an-
swer that the participants provided at the end of the decision-making
process.

Such findings have implications for user training on visual ana-
lytics systems with CMV, as well as how decision-making tasks are
framed. With respect to training/tutorial, the visual analytic systems
development team should provide multiple scenarios employing
strategies that involve the use of different views as the primary visu-
alization to drive the analysis. As of decision-making task framing,
one should avoid accidentally anchoring the participants on an ex-
pected outcome or when possible, employ measures of cognitive
bias (such as in our post-test) to evaluate the inherent cognitive bias
of the users. As noted in Section §2.1, the tendency of humans to

rely on heuristics to make judgments does often lead to efficient
and accurate decisions. However, we need to determine when such
heuristic decision-making is being applied, in order to ensure that
the resulting decisions are optimal.

Experiment sample size limitation. As can be expected with
any laboratory experiment, this research has limitations. One such
limitation is the sample size of 81 participants in our experiment.
However, the diversity of our sample with respect to gender, age,
educational background and personality factors are steps we have
taken to ensure the validity of our results. Our findings replicate the
effects of anchoring that have been long studied in literature, further
attesting to the validity of the experiment.

Experiment control limitation. Another limitation of our exper-
iment is that we do not consider a control group , that is, participants
who engage in the decision-making task without being primed by
any anchors. While our initial study reported here was focused on
determining whether the effects of anchoring are at all present and
can be elicited in such experiments, our future work will be aimed at
replicating these findings in more extensive experiments with larger
sample size and will include control groups for comparison.

STM analysis limitations. Fong and Grimmer [18] note that
topic models are susceptible to problems in estimating marginal
effects due to the zero-sum properties of topic proportions. Further,
topic models cluster only based on the count and ignore interaction
duration (time spent). To address such limitation, the quantitative
analysis in section 4 explicitly accounted for the duration of each
interaction.

7 CONCLUSION

In this paper, we presented a systematic study and resulting analyses
that investigate the effect of anchoring bias on decision-making pro-
cesses and outcome using visual analytic systems. Our experimen-
tal results provide evidence on anchoring effect being transferable
to visual analytics in that visual and numerical anchors affect the
decision-making process and outcome respectively. The present
study is a first step in an overarching research agenda of determining
the use of heuristics in decision-making processes from the user
interactions and if these decision-making processes can be reliably
inferred then to automatically suggest ways in which to improve the
process.

REFERENCES

[1] Twitter usage statistics. http://www.internetlivestats.com/
twitter-statistics/. Accessed: 2017-03-31.

[2] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source
software for exploring and manipulating networks, 2009.

[3] M. W. Bennett. Confronting cognitive anchoring effect and blind
spot biases in federal sentencing: A modest solution for reforming a
fundamental flaw. J. Crim. L. & Criminology, 104:489, 2014.

[4] D. M. Blei and J. D. Lafferty. A correlated topic model of science. The
Annals of Applied Statistics, pp. 17–35, 2007.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[6] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment, 2008(10):P10008, 2008.

[7] J. S. Blumenthal-Barby and H. Krieger. Cognitive biases and heuristics
in medical decision making: a critical review using a systematic search
strategy. Medical Decision Making, 35(4):539–557, 2015.

[8] L. Cen, G. Hilary, and K. J. Wei. The role of anchoring bias in the
equity market: Evidence from analysts earnings forecasts and stock
returns. Journal of Financial and Quantitative Analysis, 48(01):47–76,
2013.

[9] I. Cho, W. Dou, D. X. Wang, E. Sauda, and W. Ribarsky. Vairoma: A
visual analytics system for making sense of places, times, and events

http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/


in roman history. IEEE transactions on visualization and computer
graphics, 22(1):210–219, 2016.

[10] I. Cho, R. Wesslen, S. Volkova, W. Ribarsky, and W. Dou. Crystalball:
A visual analytic system for future event discovery and analysis from
social media data. Visual Analytics Science and Technology (VAST),
2017 IEEE Conference on.

[11] G. Convertino, J. Chen, B. Yost, Y. S. Ryu, and C. North. Exploring
context switching and cognition in dual-view coordinated visualiza-
tions. In Proceedings International Conference on Coordinated and
Multiple Views in Exploratory Visualization - CMV 2003 -, pp. 55–62,
July 2003. doi: 10.1109/CMV.2003.1215003

[12] M. B. Cook and H. S. Smallman. Human factors of the confirmation
bias in intelligence analysis: Decision support from graphical evidence
landscapes. Human Factors, 50(5):745–754, 2008.

[13] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personal-
ization: scalable online collaborative filtering. In Proceedings of the
16th international conference on World Wide Web, pp. 271–280. ACM,
2007.

[14] E. Dimara, A. Bezerianos, and P. Dragicevic. The attraction effect in
information visualization. IEEE Transactions on Visualization and
Computer Graphics, 23(1):471–480, 2017.

[15] J. Eisenstein, A. Ahmed, and E. P. Xing. Sparse additive generative
models of text. 2011.

[16] D. M. Eler, F. V. Paulovich, M. C. F. d. Oliveira, and R. Minghim.
Coordinated and multiple views for visualizing text collections. In
2008 12th International Conference Information Visualisation, pp. 246–
251, July 2008. doi: 10.1109/IV.2008.39

[17] M. Englich. Anchoring effect. Cognitive Illusions: Intriguing Phenom-
ena in Judgement, Thinking and Memory, p. 223, 2016.

[18] C. Fong and J. Grimmer. Discovery of treatments from text corpora.
In In Proceedings of the Annual Meeting of the Association for Compu-
tational Linguistics, 2016.

[19] A. Furnham and H. C. Boo. A literature review of the anchoring effect.
The Journal of Socio-Economics, 40(1):35–42, 2011.

[20] J. F. George, K. Duffy, and M. Ahuja. Countering the anchoring
and adjustment bias with decision support systems. Decision Support
Systems, 29(2):195–206, 2000.

[21] N. A. Giacobe and S. Xu. Geovisual analytics for cyber security:
Adopting the geoviz toolkit. In Visual analytics science and technology
(VAST), 2011 IEEE Conference on, pp. 315–316. IEEE, 2011.

[22] G. Gigerenzer and H. Brighton. Homo heuristicus: Why biased minds
make better inferences. Topics in Cognitive Science, 1(1):107–143,
2009.

[23] L. Harrison, D. Skau, S. Franconeri, A. Lu, and R. Chang. Influencing
visual judgment through affective priming. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’13, pp. 2949–2958. ACM, New York, NY, USA, 2013. doi: 10.1145/
2470654.2481410

[24] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings
of the 22nd annual international ACM SIGIR conference on Research
and development in information retrieval, pp. 50–57. ACM, 1999.

[25] T. Iwata, S. Watanabe, T. Yamada, and N. Ueda. Topic tracking model
for analyzing consumer purchase behavior. In IJCAI, vol. 9, pp. 1427–
1432, 2009.

[26] X. Jin, Y. Zhou, and B. Mobasher. A unified approach to personaliza-
tion based on probabilistic latent semantic models of web usage and
content. In Proceedings of the AAAI 2004 Workshop on Semantic Web
Personalization (SWP’04), 2004.

[27] O. P. John, E. M. Donahue, and R. L. Kentle. The big five inventoryver-
sions 4a and 54, 1991.

[28] D. Kahneman. A perspective on judgment and choice: mapping
bounded rationality. American psychologist, 58(9):697, 2003.

[29] D. Kahneman. Thinking, fast and slow. Macmillan, 2011.
[30] D. Keefe, M. Ewert, W. Ribarsky, and R. Chang. Interactive coordi-

nated multiple-view visualization of biomechanical motion data. IEEE
transactions on visualization and computer graphics, 15(6):1383–1390,
2009.

[31] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and
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