
Towards Rapid Interactive Machine Learning
Evaluating Tradeoffs of Classification without Representation

Dustin Arendt
Pacific Northwest National

Laboratory
dustin.arendt@pnnl.gov

Emily Saldanha
Pacific Northwest National

Laboratory
emily.saldanha@pnnl.gov

Ryan Wesslen
University of North Carolina at

Charlotte
rwesslen@uncc.edu

Svitlana Volkova
Pacific Northwest National

Laboratory
svitlana.volkova@pnnl.gov

Wenwen Dou
University of North Carolina at

Charlotte
wdou1@uncc.edu

ABSTRACT
Our contribution is the design and evaluation of an interactive ma-
chine learning interface that rapidly provides the user with model
feedback after every interaction. To address visual scalability, this
interface communicates with the user via a “tip of the iceberg” ap-
proach, where the user interacts with a small set of recommended
instances for each class. To address computational scalability, we
developed an O(n) classification algorithm that incorporates user
feedback incrementally, and without consulting the data’s underly-
ing representation matrix. Our computational evaluation showed
that this algorithm has similar accuracy to several off-the-shelf clas-
sification algorithms with small amounts of labeled data. Empirical
evaluation revealed that users performed better using our design
compared to an equivalent active learning setup.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
User studies; • Computing methodologies → Machine learning
algorithms;

KEYWORDS
Interactive Machine Learning; Representation-Free Classifier; Vi-
sual Interactive Labeling; Active Learning; Transduction Learning;
Hierarchical Clustering

ACM Reference format:
Dustin Arendt, Emily Saldanha, Ryan Wesslen, Svitlana Volkova, and Wen-
wen Dou. 2019. Towards Rapid Interactive Machine Learning. In Proceedings
of 24th International Conference on Intelligent User Interfaces, Marina del Rey,
CA, USA, March 17–20, 2019 (IUI ’19), 12 pages.
https://doi.org/10.1145/3301275.3302280

© 2019 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the United States Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
IUI '19, March 17–20, 2019, Marina del Ray, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6272-6/19/03…$15.00
https://doi.org/10.1145/3301275.3302280

1 INTRODUCTION
The past decade has seen better models, more powerful hardware,
and higher quality training data lead to significant advancements
in supervised machine learning, i.e., learning an arbitrary function
from examples [44]. Thesemethods are dependent on large amounts
of high-quality labeled data for training, which can be very difficult
to obtain. Effective training sets are available for some applica-
tion domains like handwriting [34] and image recognition [18, 29].
Crowdsourcing platforms can presumably be used to curate large
training sets like these when expertise is prevalent in the general
population, or when expertise is easily transferrable. However, this
“army of annotators” approach is not always feasible or cost ef-
fective. We believe this to be the rule rather than the exception,
because there are many situations where only a very small number
of domain experts, e.g., scientists or analysts, have the knowledge
to label instances. Thus, the problem we address here is label elici-
tation: building an effective training set for a supervised classifier
by acquiring labels from a domain expert.

Active Learning (AL) is a well established label elicitation frame-
work for finding more accurate classifiers with less budget spent,
i.e., queries made of the user [48]. A key feature of AL systems is
that an algorithm ranks instances by their potential benefit to the
classifier if labeled. Generally instances are presented to the user
serially, and the algorithm updates its ranking after each user input.
In practice, domain experts prefer more autonomy, dislike playing
the role of the oracle, and want to receive a benefit from the system
that exceeds the cost of the time spent [1].

Visual Interactive Labeling (VIL) also addresses the problem of
acquiring labels from a few domain experts [8]. In contrast to AL,
VIL systems are typically exploratory data analytics tools that put
the user in control of what instances to label. VIL tools sometimes
allow the user to understand the distribution of instances in a high
dimensional feature space, e.g., through dimension reduction, to
help speed up the labeling process. AL and VIL appear to be on
opposite ends of a spectrum of user control. With AL the algorithm
is in control, the user’s task is well-defined, and the interface is
fairly simple; with VIL the user is in control, the user’s task is open
ended, and the interface is fairly complex.

We propose an approach for label elicitation that lies between AL
and VIL on this spectrum, borrowing aspects from both techniques.
This allows users to explore and label the data simultaneously,
which is especially useful when classes are not known a priori. Our

591

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA D. Arendt et al.

approach is implemented in a web-based tool called CHISSL and
our contributions in this paper are the following:
• a tabular “tip of the iceberg” design that is visually scalable,
preventing users from becoming overwhelmed;
• an O(n) transduction classification algorithm that is compu-
tationally scalable, enabling rapid feedback; and
• a computational and empirical evaluation showing that our
system is fast, accurate, and helpful.

Our contributions were motivated by the speed and accuracy limita-
tions of off-the-shelf supervised and semi-supervised classification
algorithms that we experienced during preliminary research into
this problem [3].

CHISSL’s “tip of the iceberg” design selects a small subset of the
most relevant instances to show the user, and arranges them into
rows by predicted class. Instances are are not abstracted and are
allocated significant screen space, e.g., images are shown natively
and not transformed into dots on a scatter plot. The user directly
manipulates instances with drag and drop, to provide labels for
the model. The model provides immediate feedback after every
interaction by updating the few instances shown for each group.
Our proposed O(n) transduction classification algorithm is repre-
sentation free—it incrementally incorporates user feedback without
referring to the underlying representation (feature) matrix. This
is accomplished with a 1-Nearest Neighbor approach that uses a
dendrogram produced by hierarchical clustering to approximate
distance between instances.

Despite an expected tradeoff between speed and accuracy, our
computational evaluation showed that with few labels, our al-
gorithm can be as accurate, but faster than off-the-shelf semi-
supervised algorithms. We also conducted a user study revealing
that participants were more accurate using CHISSL compared to
AL. Representation-free algorithms are well suited for interactive
machine learning interfaces, and our work lays the groundwork
for future research in this area.

This paper is organized as follows. In the next section, we intro-
duce the terminology surrounding supervised and semi-supervised
classification we use throughout the paper. We also discuss existing
VIL and AL techniques and their limitations in this context. Fol-
lowing this we present our design constraints, leading directly to
our algorithmic and user interface contributions. The remainder of
the paper evaluates these designs, first from a computational stand-
point, and second from a usability standpoint. In our discussion,
we interpret the results of this evaluation, discuss limitations and
other considerations of the overall approach, and present lessons
learned that lead to immediate design improvements.

2 BACKGROUND & RELATED WORK
Supervised classification is a branch of machine learning where
the goal is to learn an arbitrary function that can predict the label
y ∈ Z+ of an arbitrary instance x ∈ Rn given a finite set of observed
(x,y) pairs [44].We refer to the observations used to train the model
as Xtrain and ytrain . A subset of the observations are withheld
from the training and used for validation only, and we refer to these
as Xtest and ytest . While supervised classification has received
much recent attention, the semi-supervised variant of this problem
is relevant to label elicitation.

In this case, there are missing labels for some, or even most
of the observed instances. We designate which of our data corre-
sponds to the labeled L or unlabeled U components, XL and XU ,
and y = yL . The supervised problem is to fit a model given XL
and yL , whereas the semi-supervised problem is to use XL , XU , and
yL . Thus, the intuition behind semi-supervised learning is that the
unlabeled representation can provide some benefit to the model
by providing additional observations that further characterize the
feature space [53].

Supervised classification, as we have described it, performs in-
duction learning because models can predict the label of arbitrary
observations. Alternatively, some models are restricted to transduc-
tion learning, where they only predict on data provided at the same
time as training. Thus, a semi-supervised classifier that trains with
XL , XU , and yL and only predicts on XU performs transduction
learning.

These problem formulations more or less appropriate depending
on the context and available data. For example, with Active Learning
(AL) we may only have labels available once they are provided
directly by the user, and it is unreasonable to assume that we will
eventually have labels for all collected instances. So, semi-supervised
learning or transduction learning may be effective depending on
whether we want to build a predictive model, or whether we simply
wish categorize an existing data set.

We characterize some existing semi-supervised classifiers as representation-
free, which we define as algorithms that transform the representa-
tion matrix into a more compact data structure, enabling training
and prediction without the original feature matrix. Some graph-
based semi-supervised methods [53] perform classification directly
on a graph structure generated from the representation matrix,
making them representation-free. For example, Blum and Chawla
proposed a technique where labeled nodes are treated as sources
and sinks, and the graph min-cut is used to classify unlabeled in-
stances [11]. The remainder of this section builds on this problem
setup and focuses on visual analytics approaches related to the
problem of organizing or labeling large datasets.

2.1 Interactive Clustering
Some interactive clustering techniques allow the user to adjust the
parameters of the clustering algorithm [47], However, we review
approaches that leverage constrained clustering [6, 10] as a means
for the user to interact with the clustering algorithm, which helps
ensure that the clustering matches the user’s domain knowledge
and expectation of quality. There are primarily two types of con-
straints elicited from the user: split/merge and rank/accept/reject.
Split/merge constraints [4, 5, 16, 35] allow the user to dictatewhether
two clusters belong together, or whether one cluster should actually
be two. This result can also be achieved using pairwise constraints
on data points [19].

Using rank/accept/reject constraints, the user can provide feed-
back about how well a given cluster matches what she is looking
for. For example, Kwon et al. generate many clusters using different
algorithms and parameter settings and let the user filter out those
that are not acceptable [33]. Alternatively, because it may be too
expensive to generate many clusters, Srivasta et al. developed a
system where the clustering algorithm takes into account clusters

592

Towards Rapid Interactive Machine Learning IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

previously rejected by the user [49]. Spatialization is a related tech-
niquewhere the system learns the user’s mental model by observing
the user manipulation of a few instances and uses this informa-
tion to learn a user-tailored projection of all instances [13, 22, 27].
We mention these techniques, because they can implicitly cluster
the data by separating semantically related sets of instances into
visually distinct clusters.

2.2 Visual Interactive Labeling
A user-driven alternative to AL, Visual Interactive Labeling (VIL) [8,
9] allows the user to select which instances to label and uses a clas-
sifier to predict unlabeled instances’ classes. VIL has been used to
support classification of images [8, 23, 39, 41, 42, 46], video [26],
documents [25], web-pages [31], and social media user profiles [2].
Several interactive clustering techniques could reasonably be char-
acterized as VIL approaches, because they allow the user to directly
label instances, to assign instances to clusters, or to specify in-
stances as cluster seeds [12, 14–16].

Most of the above techniques visualize instances as points pro-
jected into a 2-D space using traditional dimension reduction tech-
niques like principal components analysis [28], multidimensional
scaling [30], or neighbor embeddings like t-SNE [38]. These tech-
niques help the user to visually evaluate cluster quality or pick
important instances by helping her understand the density distri-
bution of instances and their classes. However, this approach has
clear usability and scalability limitations. Projected data can be
misleading [17] or difficult to interpret, limiting the application of
many of these tools to experts such as data scientists. Addition-
ally, outliers in the projected space that draw the user’s attention
may not be statistical outliers [52]. Typically, projected instances
are abstracted as colored circles because of the sheer quantity of
points needed to convey the relevant information. However, this
can be counter-productive for VIL where the purpose is to allow the
user to quickly identify mis-labeled instances, because the relevant
information has been abstracted away.

3 DESIGN
Amershi et al. proposed that effective interactive machine learning
systems should be “rapid, focused, and incremental” [1]. To the best
of our knowledge, none of the aforementioned techniques simulta-
neously address all of these guidelines. Thus, our first goal was to
develop a rapid, focused, and incremental label elicitation tool that
performs on datasets typical for the data scientists and researchers
we collaborate with at our institution. These datasets are typically
10-100K instances across diverse data types such as text, images,
time series, event sequences, and graphs. Our target was to incor-
porate user feedback within the 100ms rule of thumb [37], so that
updated predictions could be rapidly provided to the user after each
interaction.

Our second goal was to design an interface that benefitted from
both AL and VIL techniques and provided the user a level of con-
trol between these two approaches. With these goals in mind, we
designed CHISSL within a set of constraints, identified a priori,
intended to mitigate threats to scalability and generalizability. The
latter part of this section presents our design of the user interface
and algorithms and discusses how they address our constraints.

3.1 Constraints for Scalability
Below are the four constraints that guided our design of a rapid
interactive machine learning system.We designedwith a web-based
application in mind, but note that many of the threats we identified
are not exclusive to this architecture. Two of the guidelines are
computational (CC1 and CC2) and two are visual (VC1 and VC2).

3.1.1 (CC1) Don’t fit or predict on the server.

Threat: Latency. High client-server latency could degrade the
responsiveness of the system if the user must wait for a server
response after every interaction. This often occurs when the client
and server are not within the same network.

Threat: Surging Demand. Multiple concurrent users can cause
challenges when the server is expected to provide realtime analytics.
If the server does not have the capacity handle demand spikes,
then the responsiveness of the system degrades. It is expensive
to maintain an architecture capable of this, and it is desirable to
perform client-side computation when reasonable.

3.1.2 (CC2) But, don’t send the representations to client, either.

Threat: Load time. Representation matrices can be quite large in
practice, e.g., for images there can be thousands of floating point
values per instance. Transmitting the entire representation matrix
up front is annoying to the user, requiring her to wait for it to
download before she can begin.

Threat: Browser limitations. Web browsers have limited resources—
running compute intensive methods can cause the browser to be
unresponsive. The representation matrix could exceed the memory
capacity of the browser.

3.1.3 (VC1) Don’t aggregate instances.

Threat: Over-abstraction. VIL assumes the user can effectively
select helpful instances to label for the model, but this is impeded if
instances are abstracted, e.g., as points in a dimension reduction plot.
If the user cannot see instance data without additional interaction,
then the benefits from pre-attentive visual search are lost.

Threat: Over-specialization. Different data should aggregate in
different ways, showing individual instances avoids ad hoc aggre-
gation and interaction approaches.

3.1.4 (VC2) But, don’t render every instance either.

Threat: Clutter and over-plotting. There is simply not enough
screen space to render every instance except when datasets are
trivially small. Even scatter plots suffer from over-plotting and
clutter with large datasets.

3.2 Algorithm Design
Our analysis pipeline is divided into two phases: 1) a slow batch
phase, and 2) a fast interactive phase. Our server-side batch phase is
typical of most machine learning applications, where instances are
processed into an n instances bym features representation matrix,
X. Once a feature matrix is created, our classification algorithm
is domain agnostic. The final step of the batch phase is to apply
Ward agglomerative clustering [40, 50], which returns a sequence

593

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA D. Arendt et al.

of pairwise merges. However, any hierarchical clustering algorithm
can, in principle, be used to produce a dendrogram.

To addressCC2, only the hierarchy is passed to the client, which
performs classification exclusively using this structure, i.e., with-
out X. We add weights to the edges in the hierarchy as free pa-
rameters which can further improve the classification accuracy.
CHISSL predicts labels for all instances using 1-nearest neighbor
(1-NN) classification, where the weighted path distance in this
hierarchy approximates the distance between instances. Figure 1
illustrates this concept. The hierarchy requires O(n) bytes of mem-
ory, which we note can be smaller than X, which requires O(n ·m)
bytes. An O(n) implementation of our 1-NN classifier, details on
selecting borderlines and suggestions, and anO(n ·m) heuristic for
tuning hierarchy weights are detailed in the Appendix.

Figure 1: Classification without representation—This dia-
gram shows how the output of hierarchical clustering is
used for transduction learning. Instances are leaf nodes in
the bottom level of the drawing, and two instances have
been labeled: onewith class “A”, the otherwith class “B”. The
unlabeled instance “?” is predicted as class “A” because it is
closer than “B”.

3.3 Interface Design
We designed our interface to be generalizable, avoiding solutions
that reveal details or inner-workings of the clustering or classifica-
tion algorithm. For example, many techniques exist for visualizing
hierarchical data [21], but we consider such approaches off lim-
its given our design assumptions. Instead, the user interacts with
the algorithm as a black box that incorporates her feedback and
provides new suggestions.

3.3.1 Layout. Our user interface (see Figure 2) follows a three-
column table organized as follows:
• Each row corresponds to a user-created group;
• The left column in each group shows one “example,” an item
the user has already labeled;
• The middle column shows one “borderline,” an instance that
belongs to the group, but is very different from the examples;
and
• The right column shows multiple “suggestions,” instances
that are representative of the user’s group.

Our design builds directly on the findings of Forgarty et al. [23],
which stated that, among several alternatives, interactive machine

learning interfaces showing the best and worst instances were the
most effective for participants. In our interface, “best” and “worst”
correspond to suggestions and borderlines, and examples provide
the user with a history of what she has labeled.

Every instance are allocated up to a 3cm square of screen space,
allowing enough space to show images, text snippets, and data
visualizations. The number of instances shown in the suggestions
column is limited to five to ensure groups fit within the screen.
Limiting what the user sees in the interface to this “tip of the
iceberg” supports VC2.

However, before the user labels anything, we must address the
“cold start problem,” where model inferences cannot be made until
the user provides sufficient initial information [45]. So, we overview
the entire dataset with a small, diverse set of representative exam-
ples in an “unlabeled data” component. The representative examples
in the unlabeled set are chosen using the same recommendation al-
gorithm mentioned above, simply treating all remaining unlabeled
data as a single group. This allows the user to choose a relevant
starting point for her analysis, possibly ignoring irrelevant data. To
supportVC1, the unlabeled data list shows representative examples
chosen from different clusters in the data.

3.3.2 Interactions. Instance are double-clicked to create a new
group, causing that instance to be added as the first example for
that group. When an instance is dragged into a group, that in-
stance is labeled with the target group, and the instance is added
to that group’s list of examples. An arbitrary number of instances
can be added as examples for each group. After these interactions,
CHISSL predicts labels for all instances, and determines new bor-
derlines and suggestions, possibly changing what instances are
visible in the table. Below every instance is a “details button” that
reveals more instances like the example above, supporting “details
on demand.” When clicked, a sidebar opens that the user can page
through to see the additional instances, supporting VC2.

4 COMPUTATIONAL EVALUATION
We evaluate the classification accuracy of the CHISSL algorithm
against a number of supervised and semi-supervised baselines
across several diverse datasets. We seek to evaluate model perfor-
mance as a function of the number of labels to explore the benefit
of applying the CHISSL framework to reduce the labeling burden
required of experts.

We evaluate the classification performance of CHISSL in two sce-
narios. First, where a user is trying to generate predicted class labels
for a currently-existing, unlabeled data set, we employ transduction
prediction. Second, where the user wants to generate a predictive
classifier which can be applied in the future to previously unseen
data instances, we leverage CHISSL for inductive prediction by
generating semi-supervised predictions on the currently observed
data set and then training an inductive, supervised classifier on this
enhanced training set.

4.1 Data
CHISSL is evaluated on six data sets selected to explore a range of
characteristics including the number of instances, the number of
features, the number of classes, and the level of class imbalance.

594

Towards Rapid Interactive Machine Learning IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

New group (double click)

New group (double click)

New label (drag)

The user starts with
a representative set
of instances.

New groups are
created double
clicking any
instance, creating a
new row in the table

In the table,
representative
examples of each
group are shown.

Dragging misplaced
instances to a new
location will also
update the model.

Any labeled instance
can be reviewed or
changed.

1

2

3

4

Figure 2: CHISSLWorkflow—An illustration of several steps
using CHISSL where the user starts without labeled in-
stances (1) creates a new groups (2-3) and finishes after pro-
viding feedback the model (4). Red annotations indicate
what the user selected and where that instance moved to.

Four data sets were obtained from the UCI Machine Learning Repos-
itory [20]. For the anuran dataset, the species, rather than the family
or the genus, was used as the label. For the newsgroups a subset
of categories were selected and grouped to use as labels. The key
properties of each data set are summarized in Table 1. We perform
feature reduction on each data set using non-negative matrix factor-
ization (NMF) to reduce sparsity and correlations between features,
and perform feature normalization by subtracting the mean and
dividing by the standard deviation per feature.

4.2 Baseline Models
We compare the performance of CHISSL to a standard semi-supervised
learning algorithm, Label Propagation (LP) [54], as well as a number
of standard supervised algorithms including random forest (RF),

Table 1: Evaluation Data Sets and Benchmarking—We re-
port the results of the benchmarking comparison between
CHISSL and LP, indicating the time elapsed (seconds) for the
CHISSL clustering step and the fit time for both CHISSL and
LP different number of label assignments. We measure the
speed advantage of CHISSL by taking the ratio of the LP fit
time to the CHISSL fit time. The number of instances is n.

Data Clustering (s) nclass Labels - Fit (s) 100 Labels - Fit (s)

Name n CHISSL CHISSL LP Ratio CHISSL LP Ratio

wine 178 0.0120 0.0009 0.0670 78.9 0.0009 0.0082 9.1
digits 5620 0.2259 0.0065 5.0603 783.1 0.0070 4.9980 716.2
anuran_species 7195 1.1879 0.0261 91.9489 3526.3 0.0280 91.6211 3271.0
human_activity 5620 7.4063 0.0253 74.5111 2942.2 0.0280 75.4146 2689.9
isolet 7797 8.5090 0.0352 123.4988 3504.0 0.0369 124.3182 3371.1
newsgroups 6513 1.4070 0.0239 0.8690 36.4 0.0236 0.5945 25.2

AdaBoost (AB), logistic regression (LR), multi-layer perceptron
(MLP), and naïve Bayes (NB) classifiers. Each baseline model is im-
plemented using scikit-learn1 and optimized using a random search
strategy [7] to tune the hyper-parameters. Because we employ each
baseline model for both the transduction task, where training is
performed on a limited set of labeled data, and the induction task,
where a large portion of the data is used for training, we separately
optimize two versions of each classifier for performance on small
or large numbers of available labels.

The full optimization proceeds in three steps. Firstly, the di-
mensionality of the NMF feature reduction step is optimized for
classification performance. This parameter is allowed to vary si-
multaneously with the hyper-parameters for each classifier in a
three-fold cross validation random search with over 100 hyper-
parameter trials (the exact value depending on the dataset based
on running time). The dimensionality reduction parameter is ob-
served for each of the best performing models from each of the
six classifiers, and the final value is selected by averaging these
six values. Next, given this fixed NMF dimensionality, a second
three-fold cross validation random search is employed on each full
data set to select the final hyper-parameters of each classifier. These
selected hyper-parameters are used for the inductive evaluation as
they are optimized for large numbers of available training labels.
Finally, we perform optimization of each model with a very limited
number of labels, one per each class, with seven iterations of ran-
domly selected labels. The parameters from this optimization were
employed for the transductive evaluation where limited numbers
of labels (nclasses < nlabels < 100) were available for training.

4.3 Evaluation Methodology
The evaluation process begins by partitioning the data into two
disjoint sets—the training set Xtrain with 80% of the full data set,
which is observed by the CHISSL and LP algorithms, and a held-
out test set Xtest with 20%, which is never observed by the semi-
supervised learning algorithms. During the evaluation procedure,
the training set is further divided into two components—a set of
labeled training instances XL with labels yL and a set of unlabeled
training instances XU . Initially, all data instances are considered to
be unlabeled and new data instances are selected sequentially to be

1http://scikit-learn.org/stable/

595

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA D. Arendt et al.

(a) Induction (unlabeled) (b) Transduction (c) Induction (d) Bootstrapped induction

Figure 3: Evaluation Methodology—an illustration of the different approaches to enable comparison between SL and SSL
approaches. (a) and (b) show how we evaluated off-the-shelf induction models against transduction learning models like
CHISSL and Label Propagation (transduction evaluation task). (c) and (d) show how we evaluated off-the-shelf induction mod-
els against transduction models by bootstrapping the training set using transduction and then training on a larger dataset
with an induction learning model (induction evaluation task).

labeled with the true class assignment c to mimic the process of an
expert user assigning labels.

To initialize the process, one instance per class is selected ran-
domly to be labeled, yL ← cL , and each successive instance there-
after is selected either randomly or using an AL procedure. For
each data set, we select instances to label until there are 100 labeled
instances. We stop the evaluation after 100 instances for practical
reasons—the evaluation is computationally expensive to perform,
and classification on large training sets is outside the intended use
of our system. Furthermore, 100 instances represents a small la-
beling budget, equivalent to roughly five minutes of work with a
similar task using a prototype version of the tool [3].

Each time an instance is labeled, we evaluate CHISSL and the
baseline models in both the transductive and inductive context. In
the transductive setting, we update or train each model using only
the currently labeled data instances with X = XL and y = yL , and
perform prediction on the unlabeled training instances XU . The
predicted classes for the unlabeled set are generated by each model
using the transductive label assignment algorithm for CHISSL and
LP and the predictive classification function, f : Rm̂ → {ci }, for
each of the supervised learning algorithms. We compare the model
predictions ŷmU with the true class assignments, cU .

In the inductive setting, we leverage the predicted labels from
each semi-supervised model, i.e., CHISSL (CH) and Label Propa-
gation (LP), generated during the transduction step to train the
supervised baseline models with X = Xtrain and y = ŷ{CH,LP}train and
use these trained classifiers to predict the labels on the held-out
test data Xtest. We evaluate the performance of each combination
of models (e.g. CH and AB, LP and RF, etc.) by comparing ŷmtest and
ctest. We compare the performance of each model when using the
bootstrapped CHISSL labels with the performance when using the
bootstrapped LP labels, as well as when using straightforward in-
ductive learning on the labeled instances with X = XL , and y = yL .
Fig. 3 summarizes these different evaluations.

In addition to exploring multiple evaluation data sets, we com-
pare model performance across several other conditions. To select
the next data instance to label, we compare the random selection of
an instance with an Active Learning (AL) approach leveraging max-
imum entropy uncertainty sampling [36], where we use the relative
tree distance between nearest labels of each class as a proxy for the

class probability distribution. For each configuration of the data set,
merge-tree weighting scheme, and next instance sampling method,
we perform ten iterations of the evaluation procedure to measure
the performance variability under different random selections of
the initial instance to label for each class. We compare two different
methods of selecting the edge-weights for the merge-tree, uniform
weighting across all edges and the weighting heuristic described in
the Appendix.

4.4 Results
We measure the classification performance using the macro aver-
age of the F1-score as a function of the number of labeled data
instances. Fig. 4 illustrates the measured performance for the digits
dataset for the transduction and induction learning tasks, respec-
tively. For transduction, we compare CHISSL to each individual
baseline model, while in the inductive case we perform a separate
set of comparisons for each supervised baseline classifier. For ex-
ample, in the left panel of Fig. 4, we compare the performance of
the RF model when trained on Xtrain using ŷCHtrain as labels (blue)
and ŷLPtrain as labels (green) as well as when trained on XL using cL
as labels (red). We perform a similar evaluation for each additional
supervised baseline classifier type.

We compare overall performance of CHISSL with the baseline
models using two metrics—the initial advantage of CHISSL and the
total area between the F1-score versus number of labels curves (as
shown in Fig. 4). The initial advantage captures the performance of
CHISSL relative to the baseline model under a scenario with very
limited available labels (one per class) while the area between the
curves captures the longer-term relative performance between the
two models in the range from nclass to 100 assigned labels.

We find that CHISSL typically outperforms most supervised
baseline models while performing competitively with the semi-
supervised LP baseline formost data sets. In particular, CHISSL achieved
better performance than LP for the human activity and isolet data
sets, both initially and across the full evaluation, and achieved better
initial performance on the digits data set, while LP outperformed
CHISSL consistently for the newsgroups data set. The results for the
other data sets varied depending on the experimental conditions of
the hierarchy weights and next label sampling method. We perform

596

Towards Rapid Interactive Machine Learning IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

Table 2: Initial Advantage—Wilcoxon signed rank test re-
sults comparing the initial F1-score (nclass labels) for
CHISSL and LP for the transduction (T) and induction (I)
modes (m) as well as the uniform (U) and centroid dis-
tance (CD)weighting (w) schemes.We report the z-value and
the corresponding p-value in parentheses. Positive z-values
(green) indicate that CHISSL outperforms LP while negative
values (red) represent the opposite. *** = 99.9% CI, ** = 99%
CI, * = 95% CI.

m w anuran digits human_activity isolet newsgroups wine

T
U -1.580 * 0.561 1.172 2.090 ** -1.886 * -1.478 *

(0.03666) (0.28450) (0.09260) (0.00934) (0.01660) (0.04685)

CD 0.764 1.376 2.090 ** 2.293 ** -1.376 -0.663
(0.20262) (0.05934) (0.00934) (0.00506) (0.05934) (0.24112)

I
U -4.866 *** 0.272 3.062 ** 5.094 *** -5.558 *** -3.696 ***

(<0.00001) (0.62185) (0.00103) (<0.00001) (<0.00001) (0.00009)

CD 0.545 4.064 *** 4.756 *** 6.316 *** -3.990 *** 0.180
(0.44391) (0.00002) (<0.00001) (<0.00001) (0.00003) (0.68826)

a set of Wilcoxon signed rank tests to compare the performance
of CHISSL with LP across both the transduction and the induction
task and the different experimental conditions. These results are
shown in Table 2 and Table 3.

We also perform two Wilcoxon signed rank tests to compare
the use of uniform versus centroid distance weighting and random
sampling versus uncertainty sampling across the full set of results.
We find that the centroid weighting scheme improves the initial
advantage of CHISSL compared with LP relative to uniform sam-
pling with p < 0.001 and a median improvement of 0.033, while
there is no statistically significant difference for the total area be-
tween the curves for the two different weighting schemes. We find
that uncertainty sampling improves the area between the curves of
CHISSL relative to LP with p = 0.038 and a median improvement
of 0.343, with no significant difference in the initial advantage. This
is expected because sampling is applied to subsequent instance
selections after the initial instance selection.

4.5 Benchmarking
In addition to comparing the classification accuracy of CHISSL, we
perform a benchmarking comparison between CHISSL and LP on
the full set of evaluation data sets. The results of this benchmarking
analysis can be found in Table 1. We compare the fit time for the
two algorithms, which is the time taken to update the model when
given a set of new labeled instances L, for both nclass labels and for
100 labels. While LP is prohibitively slow for an interactive interface
for data sets on the order of several thousand instances, CHISSL is
tens to thousands of times faster, with transduction performed in
under 100ms for all benchmark data. In a practical application,
CHISSL and LP would not be tasked with assigning n labels at once,
but rather with assigning one label at a time as it is received from
an expert annotator. Because CHISSL is an incremental algorithm,
the fit time for labeling n instances one-by-one is identical to that
listed in Table 1. However, because LP is not incremental, it would
be necessary to run the full update each time a new label is added In
practice, the total required fit time would be on the order of n times
that listed in Table 1, further increasing the advantage of CHISSL.

Table 3: Area Between Curves—Wilcoxon signed rank test
results comparing the sum of F1-scores across all 100 labels
for CHISSL and LP for the transduction (T) and induction (I)
modes (m) as well as for the uniform (U) and centroid dis-
tance (CD) weighting (w) schemes and the random (R) and
uncertainty sampling (UC) sampling (s) schemes. We report
the z-value with corresponding p-value in parentheses. Pos-
itive z-values (green) indicate that CHISSL performs better
than LP while negative values (red) represent the opposite.
*** = 99.9% CI, ** = 99% CI, * = 95% CI.

m w s anuran digits human_activity isolet newsgroups wine

T

U R -1.376 -1.478 * 1.580 * 1.070 -2.293 ** -2.191 **
(0.05934) (0.04685) (0.03666) (0.11413) (0.00506) (0.00691)

U UC -1.478 * 1.784 * 2.191 ** 2.293 ** -2.293 ** -0.459
(0.04685) (0.02182) (0.00691) (0.00506) (0.00506) (0.33288)

CD R 0.663 -0.357 2.191 ** 2.293 ** -2.090 ** -1.988 *
(0.24112) (0.38627) (0.00691) (0.00506) (0.00934) (0.01252)

CD UC -0.866 -2.191 ** 2.293 ** 2.293 ** -2.293 ** -0.255
(0.16881) (0.00691) (0.00506) (0.00506) (0.00506) (0.44459)

I

U R -4.763 *** -5.116 *** 3.283 *** 1.399 -6.235 *** 0.169
(<0.00001) (<0.00001) (0.00046) (0.10533) (<0.00001) (0.95890)

U UC -4.623 *** 5.028 *** 6.360 *** 5.742 *** -6.493 *** 3.578 ***
(<0.00001) (<0.00001) (<0.00001) (<0.00001) (<0.00001) (0.00015)

CD R 0.029 -1.413 5.808 *** 5.367 *** -4.837 *** -2.459 **
(0.84821) (0.10220) (<0.00001) (<0.00001) (<0.00001) (0.00737)

CD UC -2.429 ** -5.742 *** 6.405 *** 5.403 *** -6.110 *** 5.735 ***
(0.00804) (<0.00001) (<0.00001) (<0.00001) (<0.00001) (<0.00001)

Our browser implementation of CHISSL performed transduction in
under 2ms for our largest dataset with 45k instances.

5 USER STUDY
We conducted a user study to evaluate CHISSL’s “tip of the iceberg”
design against Active Learning (AL). For experimental control, the
AL interface was integrated into CHISSL and used the same clas-
sification algorithm discussed above. However, in the AL version,
the single most distant instance was presented to the user to label,
and recommendations or borderlines were not visible.

5.1 Method
We conducted a within-subjects, in-laboratory user study (n = 25) to
evaluate participants’ annotation and transduction accuracy using
three datasets with two treatments: CHISSL and Sequential, i.e., AL.
Participants were a mix of undergraduates (n = 12) and graduate
students (n = 13) at a large, public university. Gender was a mix of
female (n = 14) and males (n = 11) as was major, which was split
between computer/data science (n = 15) and social sciences (n =
10). Participants were provided either extra credit or a $5 gift card
for their participation. Each session lasted approximately one hour.
The study was approved by the university’s IRB.

After completing a pre-questionnaire and a five minute training
video, each participant completed two rounds of labeling three
datasets and a post-questionnaire with each round differing by the
interface (CHISSL or Sequential). Each labeling task was timed for
five minutes. The three datasets were publicly available, pre-labeled
datasets of images (ImageNet [18]), tabular numerical data (Boston
Housing [24]), and text (20 Newsgroups2). Screenshots of the user
interface for the CHISSL condition are shown in Fig. 5.

2http://scikit-learn.org/stable/datasets/twenty_newsgroups.html

597

http://scikit-learn.org/stable/datasets/twenty_newsgroups.html

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA D. Arendt et al.

Figure 4: Classification Evaluation—(Left) Transduction Evaluation: Classification performance of CHISSL (CH, red) and the
baseline comparison models for the digits data. The solid line for each classifier indicates the median performance across
ten iterations of the evaluation procedure while the shaded band indicates the range of performance across these iterations.
(Right) Induction Evaluation: Classification performance of RF models on the digits data using bootstrapped CHISSL (red) or
LP (blue) labels. We compare this inductive application of the semi-supervised models with the use of the limited labeled set
only as training data (orange) and the full set of true class labels on the training set (dashed black).

ImageNet

20 Newsgroups

Boston

Figure 5: User study interface—screenshots of the first two
rows of CHISSL for each of the datasets used in the study.

Datasets weremanually down-selected to a few confusable classes
(e.g., ice cream vs mashed potatoes images, software vs hardware
discussion). For the Boston dataset we binned the housing price
into one of six price levels {v .low = [0, 10), low = [10, 16), med =

[16, 25), hiдh = [25, 40), v .hiдh = [40, 50), vv .hiдh = 50}. While
the ImageNet and Newsgroups datasets were fairly balanced be-
tween groups, the Boston dataset was imbalanced (e.g., mostly
mid-level price). Because of the imbalance, we selected F1 (micro
and macro) as the primary performance metric, and the number
of instances labeled by the user serving as a secondary metric. We
measured the accuracy of the users annotations as well as their
transduction using both F1 measures.

To facilitate measurement of user accuracy and reduce variability,
the interface was initialized with one pre-labeled instance from each
class. These instances were manually chosen by the authors before
the experiment, and were representative of their respective classes.
The same pre-labeled instances were used for every participant
across both conditions for each dataset. We also reduced variability
by removing features from CHISSL that were unnecessary for the
study including the unlabeled data component and the ability to
create, delete, or rename groups.

To control for learning effects, participants were randomly as-
signed to one of six treatments which counterbalanced two factors:
the order of the interface (i.e., each round) and the datasets pre-
sented each round. After completing the first round of tasks for a
given interface, the participant would then move on to the other in-
terface for the same datasets and a second post-questionnaire. The
order that the datasets were provided was randomly permuted into
one of three orders, and this order was repeated for both interface
rounds.

598

Towards Rapid Interactive Machine Learning IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

5.2 Results
In general, we found that user labeling performance (F1micro/macro
scores) was better for CHISSL than Sequential for the ImageNet and
Boston datasets while the opposite occurred for the Newsgroups
dataset. Figure 4 provides the Wilcoxon Signed-Rank tests includ-
ing the z score and p-value. Figure 6 shows kernel density plots of
F1 micro and macro measures per dataset.

Table 4: User performance—Wilcoxon Signed-Rank tests for
each dataset. Z-score are provided with the corresponding p-
value. Positive Z-scores (green) indicate CHISSL performed
better than Sequential; negative values (red) represent the
opposite. *** = 99.9% CI, ** = 99% CI, * = 95% CI.

F1 Measure Boston Newsgroups ImageNet

Annotation
Macro 0.0968 *** 0.0246 -0.0066

(0.00004) (0.3525) (0.4261)

Micro 0.0957 *** 0.0468 -0.0008
(0.00007) (0.1065) (0.8949)

Transduction
Macro -0.0930 *** -0.0772 *** 0.01581 **

(0.00002) (0.000002) (0.0342)

Micro 0.6641** -0.0753 *** 0.0168 ***
(0.0173) (0.000003) (0.0088)

Number of labels -6.0000 5.5 -0.4249
(0.3001) (0.1872) (0.9886)

From these figures, we can make three observations. First, from
Tab. 4, we find that CHISSL lead to more accurate labels with over
99% confidence in general on the Boston dataset as well as the
Transduction-based labels for ImageNet. Alternatively, we find that
Sequential performed better for the Transduction labels in News-
groups as well as the F1-Macro for Transduction Boston dataset.
Both of these differences are illustrated in Fig. 6 where each plot
shows probability density functions for the user-level F1 measures
for each dataset and interface. Vertical lines indicate the average
score for that respective dataset-interface pair. Situations where the
statistical test indicate significant differences between the interfaces
have vertical lines that are clearly separable.

A second observation is that users performed markedly different
in their labeling task for each dataset. We found that that partici-
pants performed best on ImageNet (e.g., F1-Macro for User Labels
was M = 0.932, SD = 0.034 for CHISSL and M = 0.934, SD = 0.059
for Sequential) while participants performed worst on the Boston
dataset (e.g., F1-Macro for User Labels was M = 0.407, SD = 0.091 for
CHISSL and M = 0.315, SD = 0.044 for Sequential). This result was
expected as the items in the ImageNet dataset were much easier
to understand than the multiple dimensions demonstrated in the
radar plots for the Boston dataset. In addition, this result is consis-
tent with participants’ post-questionnaire in which 23 out of the
25 participants reported that the ImageNet was the easiest dataset
for either CHISSL or Sequential.

Last, we find that each interface did not have a significant ef-
fect on the number of labels for either dataset. This result was a
secondary check to understand if there were a trade-off between
each of the interface in the scalability of the labels. However, we
did find that the number of labels differed per dataset. For exam-
ple, in the Newsgroups dataset, users labeled many fewer records
(CHISSL was M = 51.48, SD = 29.586 while Sequential was M =
44.24, SD = 15.344) than the ImageNet dataset (CHISSL was M =
102.16, SD = 52.196 and Sequential was M = 100.20, SD = 30.396).

Figure 6: Density Plots—Performance measures (F1
Macro/Micro) scores kernel density plots for CHISSL and
Sequential by Dataset (column) and Measure (row). Vertical
lines are mean values for each distribution. Kernel density
use Gaussian smoothing kernel with adjustment factor
equal to one.

To assess possible effects of learning or user-level attributes, we
considered multivariate linear regression to explain each perfor-
mance metric using a variety of independent variables (see supple-
mental materials). We considered eleven additional independent
variables including major (Computing or Social Science), student
level (Graduate or Undergraduate), gender, ordering (dataset or
interface), as well as pre-questionnaire self-assessment questions
(e.g., familiarity with machine learning, text analysis, radar plots).
We found little evidence that any of these additional variables had
a significant effect on performance. One interpretation points to
the general use of the interfaces in which major, student level, or
familiarity with machine learning did not provide an advantage (or
disadvantage) to users. This suggests that CHISSL can be used by a
general population rather than specific sub-groups. We found some
evidence of a negative effect of the number of labels and perfor-
mance for the Boston dataset. We suspect that given the difficulty of
that dataset, users who rushed were made more misclassifications.

We also considered user feedback in the post-questionnaire to
assess any possible issues with either interface. For interface and
study feedback, users rated nine questions on a 7-level Likert Scale
(7 = Strongly Agree, 1 = Strongly Disagree). Overall, users found
the task interesting (M = 5.12, SD = 1.624), the training as sufficient
(M = 5.76, SD = 1.153), as well as that the interfaces were easy-to-
use (M = 5.64, SD = 1.290), fast and quick (M = 6.10, SD = 1.233),
and well-integrated (M = 5.44, SD = 1.163). T-tests did not show a
significant effect of the interface on the user responses.

Last, 15 of the 50 questionnaires included a user response in
the open-ended feedback. Users’ comments varied across several
topics. For example, some users noted that the tasks were very

599

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA D. Arendt et al.

different for each dataset: “Time to review the emails/text was
longer. It was not necessarily harder just took longer. The Boston
dataset was relatively easy”. Others suggested additional features
like an “undo” button: “Undo option would be great, because I did
mistakes which I wanted to reverse”. However, several commented
on their general enjoyment of the study: “Loved this study!! I would
definitely participate in a similar study like this one!”

6 DISCUSSION
6.1 Interpretation of Results

6.1.1 Computational Evaluation. CHISSL usually performed bet-
ter than supervised learning algorithms across the evaluation datasets
with few labels. This is consistent with the main assumption of
semi-supervised learning, that unlabeled instances are beneficial.
In some cases, CHISSL matched or outperformed the baseline semi-
supervised learning algorithm, Label Propagation [54]. However,
CHISSL’s O(n) time complexity facilitates classification at signif-
icantly faster rates than the baseline. Due to the efficiency of the
classification algorithm, users may be able to provide more labels to
achieve accuracy comparable to more accurate but slower models
in the same amount of time.

The benefit of our centroid distance weighting scheme over uni-
form weighting was clear, but sometimes CHISSL performed better
under random sampling compared to uncertainty sampling. Either
CHISSL was more robust to a sub-optimal sampling technique, or
Active Learning (AL) benefitting more from uncertainty sampling.
Alternatively, uncertainty sampling could be biased to select out-
liers, which are less helpful to improving the overall classification.
While our user interface shows “borderlines” selected with uncer-
tainty sampling, it also shows more representative instances in
the “suggestions” column, allowing the user to better handle these
cases.

6.1.2 User Study. Compared to a traditional sequential AL inter-
face, our design helped study participants produce more accurate
transductions for the ImageNet and Boston Housing tasks. Addi-
tionally, users’ annotations of the data were more accurate for the
Boston Housing conditions. It appears that giving participants a
choice over what to label allowed them to select more beneficial
instances for the model and to avoid misclassifications. Sequential
AL interfaces may bias users towards more annotation errors by
forcing the user to label instances they are uncertain about. How-
ever, CHISSL was clearly less helpful for participants for the 20
Newsgroups conditions. In this case, less pre-attentive cues [51]
were available to facilitate a rapid visual search compared to the
other two conditions. Improving the upstream analytics pipeline
and including document summarization with keyword highlighting
in the visualization would likely improve CHISSL for this use case.

6.2 Other Considerations for Clustering
The effectiveness of CHISSL is strongly dependent on hierarchical
clustering. For our study, we used Ward clustering [50], though
any hierarchical clustering algorithm could be used. In practice,
we observed that Ward clustering produced better results than
other techniques like minimum or maximum linkage. “Bad clusters,”
either due to poor feature engineering or cluster parameters, tended

to manifest in the interface as a single giant group with a few
smaller groups. Dragging instances out of the giant group tended to
have little overall effect on the transduction. In general, clustering
algorithms are sensitive to their parameters and random seeds, so
two different clusterings of the same data could produce different
transductions in CHISSL. Ensemble approaches [43] could use this
effect by blending the separate transductions into a single, possibly
more accurate one.

The hierarchical clustering algorithm also affects what instances
are shown to the user. We used a heuristic to determine which
instances to display in the “Suggestions” column by selecting the
deepest instance within each sub-cluster. The intuition was that the
deepest instance would be fairly representative of that sub-cluster,
and different from other representatives in other sub-clusters. In an
earlier version of CHISSL we displayed the least distant instance
from its group in each sub-cluster. However, this was problematic,
as it often hid interesting variability within the cluster.

Edge weights in the cluster hierarchy are free parameters that
can be tuned to improve classification performance. We used a
weighting based on the Euclidean distance between cluster cen-
troids, but other functions such as a distribution distance, e.g., K-L
divergence [32], could be used instead. It was not immediately clear
what benefit more complicated weighting schemes add to the over-
all classification accuracy of the system, so we opted for a fast and
simple approach and leave this question for future work.

6.3 Limitations
Some application domains like object recognition in images have
orders of magnitudes more classes and instances. Our classifica-
tion algorithm scales independently from the number of classes,
and supports an arbitrary number of labels per class. Labeling one
new instance is O(n) regardless of the number of classes or labeled
instances. However, our evaluation of CHISSL did not consider a
scenario where a large number of instances are labeled, as this is
outside the intended use case of the tool. We assume that CHISSL is
less accurate than state-of the-art supervised classification algo-
rithms in these cases.

Our experience is that CHISSL becomes frustrating to use when
some groups are not visible on the screen, requiring the user to
scroll and drag simultaneously. We also noticed that the tool some-
times hides interesting sub-clusters or outliers, which could be
detrimental to users’ trust in the system. In practice, CHISSL’s cur-
rent design is most effective with ten or fewer classes—making
the interface more compact would increase the number of classes
visible at the expense of showing fewer representative examples.
However, the “tip of the iceberg” design alone likely will not scale
to thousands of classes, revealing an opportunity for future work,
perhaps by extending CHISSL to support hierarchical classification.

A critical limitation of our approach stems from the assumption
that the classification and clustering are consistent with each other.
In other words, we expect the decision boundary to lie in a less
dense region of the feature space, and therefore be detectable by the
clustering algorithm. When this assumption does not hold, we ex-
pect CHISSL to perform poorly compared to traditional supervised
techniques, e.g., support vector machines. Also, if the representa-
tion matrix has redundant or useless columns (features) for the

600

Towards Rapid Interactive Machine Learning IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

classification task, our approach would not perform as well as tech-
niques that incorporate feature selection. A solution would be to
employ CHISSL iteratively, using the user’s labels or transduction
to reduce the dimensinoality of the representation matrix, which
would improve the subsequent clustering. If this produces a better
transduction, the process can be repeated.

6.4 Lessons Learned and Design Improvements
Change blindness was an issue that we discovered from the user
study that we had not anticipated. Some users noted that the in-
terface was changing “too fast,” which we interpret to mean they
were sometimes unable to track all effects caused by labeling an in-
stance. Following the study, we addressed this by indicating which
instances have joined or left each group after the user provides
feedback. This clarifies what effect each action has on the transduc-
tion. These signals could help the user decide when the model has
converged.

We have also integrated a dimension reduction plot into the
current version of CHISSL. These plots are frequently used by
Visual Interactive Labeling tools, and help to summarize the feature
space with a spatial overview. This helps to identify outliers or
groups that might need to be split.

7 CONCLUSION
For label elicitation, we found that CHISSL is
• Rapid—classification without representation allows the inter-
face to quickly provide user feedback after each interaction
within a few miliseconds;
• Accurate—our algorithm is competitive with off the shelf su-
pervised and semi-supervised classifiers with small amounts
of labeled data; and
• Helpful—when visual search is supported, users’ transduc-
tions were more accurate for structured and image data
compared to active learning.

Besides addressing limitations already discussed, our future work
will focus on the bigger picture and additional applications. Our
next goals are to enable an analyst to quickly query data from a
stream, organize and annotate that data with CHISSL, build an
inductive model, enrich/classify streaming data, and then monitor
the stream for trends and anomalies using the analysts own model.

We plan to apply CHISSL to real world data and application do-
mains including disaster monitoring, insider threat detection, and
geospatial analysis. We hypothesize that because CHISSL greatly
reduces the effort to build machine learning models, these mod-
els can be created and refined at pace with such highly variable
streaming data.

ACKNOWLEDGMENTS
The research described in this paper was conducted under the Lab-
oratory Directed Research and Development Program at Pacific
Northwest National Laboratory, a multi-program national labora-
tory operated by Battelle for the U.S. Department of Energy.

REFERENCES
[1] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014.

Power to the people: The role of humans in interactive machine learning. AI

Magazine 35, 4 (2014), 105–120.
[2] Saleema Amershi, James Fogarty, and Daniel Weld. 2012. Regroup: Interactive

machine learning for on-demand group creation in social networks. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 21–30.

[3] Dustin Arendt, Caner Komurlu, and Leslie M Blaha. 2017. CHISSL: A Human-
Machine Collaboration Space for Unsupervised Learning. In International Con-
ference on Augmented Cognition. Springer, 429–448.

[4] Pranjal Awasthi, Maria Florina Balcan, and Konstantin Voevodski. 2014. Local
algorithms for interactive clustering. (2014).

[5] Maria-Florina Balcan and Avrim Blum. 2008. Clustering with interactive feedback.
In ALT. Springer, 316–328.

[6] Sugato Basu, Ian Davidson, and Kiri Wagstaff. 2008. Constrained clustering:
Advances in algorithms, theory, and applications. CRC Press.

[7] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-parameter
Optimization. J. Mach. Learn. Res. 13 (Feb. 2012), 281–305. http://dl.acm.org/
citation.cfm?id=2188385.2188395

[8] Jürgen Bernard, Marco Hutter, Matthias Zeppelzauer, Dieter Fellner, and Michael
Sedlmair. 2018. Comparing Visual-Interactive Labeling with Active Learning: An
Experimental Study. IEEE transactions on visualization and computer graphics 24,
1 (2018), 298–308.

[9] Jürgen Bernard, Matthias Zeppelzauer, Michael Sedlmair, and Wolfgang Aigner.
2017. A Unified Process for Visual-Interactive Labeling. (2017).

[10] Mikhail Bilenko, Sugato Basu, and Raymond J Mooney. 2004. Integrating con-
straints and metric learning in semi-supervised clustering. In Proceedings of the
twenty-first international conference on Machine learning. ACM, 11.

[11] Avrim Blum and Shuchi Chawla. 2001. Learning from labeled and unlabeled data
using graph mincuts. (2001).

[12] Lydia Boudjeloud-Assala, Philippe Pinheiro, Alexandre Blansché, Thomas
Tamisier, and Benoît Otjacques. 2016. Interactive and iterative visual clustering.
Information Visualization 15, 3 (2016), 181–197.

[13] Eli T Brown, Jingjing Liu, Carla E Brodley, and Remco Chang. 2012. Dis-function:
Learning distance functions interactively. In Visual Analytics Science and Tech-
nology (VAST), 2012 IEEE Conference on. IEEE, 83–92.

[14] Pierrick Bruneau, Philippe Pinheiro, Bertjan Broeksema, and Benoît Otjacques.
2015. Cluster sculptor, an interactive visual clustering system. Neurocomputing
150 (2015), 627–644.

[15] Keke Chen and Ling Liu. 2004. Clustermap: Labeling clusters in large datasets
via visualization. In Proceedings of the thirteenth ACM international conference on
Information and knowledge management. ACM, 285–293.

[16] Keke Chen and Ling Liu. 2004. VISTA: Validating and refining clusters via
visualization. Information Visualization 3, 4 (2004), 257–270.

[17] Jason Chuang, Daniel Ramage, Christopher Manning, and Jeffrey Heer. 2012.
Interpretation and trust: Designing model-driven visualizations for text analysis.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 443–452.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 248–255.

[19] Marie Desjardins, James MacGlashan, and Julia Ferraioli. 2007. Interactive visual
clustering. In Proceedings of the 12th international conference on Intelligent user
interfaces. ACM, 361–364.

[20] Dua Dheeru and Efi Karra Taniskidou. 2017. UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml

[21] Niklas Elmqvist and Jean-Daniel Fekete. 2010. Hierarchical aggregation for
information visualization: Overview, techniques, and design guidelines. IEEE
Transactions on Visualization and Computer Graphics 16, 3 (2010), 439–454.

[22] Alex Endert, Patrick Fiaux, and Chris North. 2012. Semantic interaction for
visual text analytics. In Proceedings of the SIGCHI conference on Human factors in
computing systems. ACM, 473–482.

[23] James Fogarty, Desney Tan, Ashish Kapoor, and Simon Winder. 2008. CueFlik:
interactive concept learning in image search. In Proceedings of the sigchi conference
on human factors in computing systems. ACM, 29–38.

[24] David Harrison Jr and Daniel L Rubinfeld. 1978. Hedonic housing prices and the
demand for clean air. Journal of environmental economics and management 5, 1
(1978), 81–102.

[25] Florian Heimerl, Steffen Koch, Harald Bosch, and Thomas Ertl. 2012. Visual
classifier training for text document retrieval. IEEE Transactions on Visualization
and Computer Graphics 18, 12 (2012), 2839–2848.

[26] Benjamin Höferlin, Rudolf Netzel, Markus Höferlin, Daniel Weiskopf, and Gun-
ther Heidemann. 2012. Inter-active learning of ad-hoc classifiers for video visual
analytics. In Visual Analytics Science and Technology (VAST), 2012 IEEE Conference
on. IEEE, 23–32.

[27] Dong Hyun Jeong, Caroline Ziemkiewicz, Brian Fisher, William Ribarsky, and
Remco Chang. 2009. iPCA: An Interactive System for PCA-based Visual Analytics.
In Computer Graphics Forum, Vol. 28. Wiley Online Library, 767–774.

[28] Ian T Jolliffe. 1986. Principal component analysis and factor analysis. In Principal
component analysis. Springer, 115–128.

601

http://dl.acm.org/citation.cfm?id=2188385.2188395
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://archive.ics.uci.edu/ml

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA D. Arendt et al.

[29] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. (2009).

[30] Joseph B Kruskal. 1964. Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika 29, 1 (1964), 1–27.

[31] Todd Kulesza, Saleema Amershi, Rich Caruana, Danyel Fisher, and Denis Charles.
2014. Structured labeling for facilitating concept evolution in machine learning.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 3075–3084.

[32] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The annals of mathematical statistics 22, 1 (1951), 79–86.

[33] Bum Chul Kwon, Ben Eysenbach, Janu Verma, Kenney Ng, Christopher De Filippi,
Walter F Stewart, and Adam Perer. 2018. Clustervision: Visual Supervision of
Unsupervised Clustering. IEEE transactions on visualization and computer graphics
24, 1 (2018), 142–151.

[34] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[35] Hanseung Lee, Jaeyeon Kihm, Jaegul Choo, John Stasko, and Haesun Park. 2012.
iVisClustering: An interactive visual document clustering via topic modeling. In
Computer Graphics Forum, Vol. 31. Wiley Online Library, 1155–1164.

[36] David D. Lewis and Jason Catlett. 1994. Heterogeneous Uncertainty Sampling for
Supervised Learning. In In Proceedings of the Eleventh International Conference
on Machine Learning. Morgan Kaufmann, 148–156.

[37] Zhicheng Liu and Jeffrey Heer. 2014. The effects of interactive latency on ex-
ploratory visual analysis. IEEE Transactions on Visualization & Computer Graphics
1 (2014), 1–1.

[38] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[39] J Möhrmann, S Bernstein, T Schlegel, G Werner, and G Heidemann. 2011. Im-
proving the usability of interfaces for the interactive semiautomatic labeling of
large image data sets. Human Computer Interaction. Design and Development
Approaches (2011), 618–627.

[40] Daniel Müllner et al. 2013. fastcluster: Fast hierarchical, agglomerative clustering
routines for R and Python. Journal of Statistical Software 53, 9 (2013), 1–18.

[41] Jose Gustavo S Paiva, William Robson Schwartz, Helio Pedrini, and Rosane
Minghim. 2015. An approach to supporting incremental visual data classification.
IEEE transactions on visualization and computer graphics 21, 1 (2015), 4–17.

[42] Meg Pirrung, Nathan Hilliard, Nancy O’Brien, Artem Yankov, Nathan O Hodas,
et al. 2018. SHARKZOR: Human in the Loop ML for User-Defined Image Clas-
sification. In Proceedings of the 23rd International Conference on Intelligent User
Interfaces Companion. ACM, 29.

[43] Lior Rokach. 2010. Ensemble-based classifiers. Artificial Intelligence Review 33,
1-2 (2010), 1–39.

[44] Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern approach.
[45] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock.

2002. Methods and metrics for cold-start recommendations. In Proceedings of the
25th annual international ACM SIGIR conference on Research and development in
information retrieval. ACM, 253–260.

[46] Christin Seifert and Michael Granitzer. 2010. User-based active learning. In
Data Mining Workshops (ICDMW), 2010 IEEE International Conference on. IEEE,
418–425.

[47] Jinwook Seo and Ben Shneiderman. 2002. Interactively exploring hierarchical
clustering results. Computer 35, 7 (2002), 80–86.

[48] Burr Settles. 2012. Active learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning 6, 1 (2012), 1–114.

[49] Akash Srivastava, James Zou, and Charles Sutton. 2016. Clustering with a reject
option: Interactive clustering as bayesian prior elicitation. In KDD 2016 Workshop
on Interactive Data Exploration and Analytics.

[50] Joe H Ward Jr. 1963. Hierarchical grouping to optimize an objective function.
Journal of the American statistical association 58, 301 (1963), 236–244.

[51] Colin Ware. 2012. Information visualization: perception for design. Elsevier.
[52] Leland Wilkinson. 2018. Visualizing Big Data Outliers through Distributed

Aggregation. IEEE transactions on visualization and computer graphics 24, 1
(2018), 256–266.

[53] Xiaojin Zhu. 2005. Semi-Supervised Learning Literature Survey. Technical Report
1530. Computer Sciences, University of Wisconsin-Madison.

[54] Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning from labeled and unlabeled
data with label propagation. (2002).

602

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Interactive Clustering
	2.2 Visual Interactive Labeling

	3 Design
	3.1 Constraints for Scalability
	3.2 Algorithm Design
	3.3 Interface Design

	4 Computational Evaluation
	4.1 Data
	4.2 Baseline Models
	4.3 Evaluation Methodology
	4.4 Results
	4.5 Benchmarking

	5 User Study
	5.1 Method
	5.2 Results

	6 Discussion
	6.1 Interpretation of Results
	6.2 Other Considerations for Clustering
	6.3 Limitations
	6.4 Lessons Learned and Design Improvements

	7 Conclusion
	Acknowledgments
	References

