
Parallel Embeddings: a Visualization Technique for
Contrasting Learned Representations

Dustin L. Arendt
dustin.arendt@pnnl.gov

Pacific Northwest National
Laboratory

Richland, WA

Nasheen Nur
nnur@uncc.edu

The University of North Carolina at
Charlotte

Charlotte, NC

Zhuanyi Huang
zhuanyi.huang@pnnl.gov
Pacific Northwest National

Laboratory
Richland, WA

Gabriel Fair
gfair@uncc.edu

The University of North Carolina at
Charlotte

Charlotte, NC

Wenwen Dou
wdou1@uncc.edu

The University of North Carolina at
Charlotte

Charlotte, NC

Figure 1: Parallel Embeddings has 4 primary views: (a) the “cluster comparison” highlights differences in embeddings of
learned representations, (b) the “cluster storylines” overviews the current selection, (c) the “selection details” shows the raw
data for the selection, e.g. images, and (d) the “selection summary” shows the distribution ofmetadata pertaining to the current
selection. The user can also (e) save and load filters and (f) change the number of clusters in the cluster comparison view.

ABSTRACT
We introduce “Parallel Embeddings”, a new technique that gener-
alizes the classical Parallel Coordinates visualization technique to
sequences of learned representations. This visualization technique
is designed for concept-oriented “model comparison” tasks, allow-
ing data scientists to understand qualitative differences in how
models interpret input data. We compare user performance with
our tool against TensorBoard Embedding Projector for understanding
model accuracy and qualitative model differences. With our tool,
users were more accurate and learned strategies for the tasks more

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IUI ’20, March 17–20, 2020, Cagliari, Italy
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7118-6/20/03.
https://doi.org/10.1145/3377325.3377514

quickly. Furthermore, users’ analytical process in the comparison
condition was positively influenced by using our tool beforehand.

CCS CONCEPTS
•Human-centered computing→Visualization techniques;

Interactive systems and tools; • Computing methodologies →
Machine learning.
KEYWORDS

Dimension reduction visualization, machine learning explana-
tions, model comparison, image classification, user studies

ACM Reference Format:
Dustin L. Arendt, Nasheen Nur, Zhuanyi Huang, Gabriel Fair, and Wenwen
Dou. 2020. Parallel Embeddings: a Visualization Technique for Contrasting
Learned Representations. In 25th International Conference on Intelligent User
Interfaces (IUI ’20), March 17–20, 2020, Cagliari, Italy. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3377325.3377514

1

259

https://doi.org/10.1145/3377325.3377514
https://doi.org/10.1145/3377325.3377514

IUI ’20, March 17–20, 2020, Cagliari, Italy Arendt, et al.

1 INTRODUCTION
Training a good machine learning model often involves a difficult
final step of choosing one model from many candidates, some-
times referred to as “model selection.” Model selection can be per-
formed naively by choosing the model that minimizes an arbitrary
performance metric, e.g. F -score [38], and is partially automated
via “hyper-parameter search” [5]. “AutoML” techniques, e.g. Auto-
sklearn [9], fully automate the model and hyper-parameter search.

However, there may be other considerations besides perfor-
mance for selecting a good model [2], e.g. robustness, explain-
ability/interpret-ability, bias/fairness, data quality/annotator relia-
bility, and higher consequences of certain errors. To support these
other objectives, several other model selection & comparison tools
have been developed [1, 4, 18, 44]. Even more tools have been re-
cently developed for understanding models in general [14], which
can also be used to compare and select models.

In this paper we present Parallel Embeddings, which is a visu-
alization technique that is designed to be used by data scientists
for concept-oriented model comparison, i.e. going beyond F -score.
Inspired by the parallel coordinates visualization technique [13],
which shows how a collection of samples vary across a sequence of
features, our technique, Parallel Embeddings, shows how a collec-
tion of samples vary across a sequence feature matrices. Applied to
machine learning models, our visualization allows data scientists
to understand differences in models’ learned representations.

2 RELATEDWORK
2.1 Model Comparison
Many visualization tools perform model comparison and seek to
answer: (1) what is the best model? (2) how are two models sim-
ilar or different? We identify two overall patterns in the litera-
ture for model comparison visualizations. Some visualizations are
“performance-oriented” and focus on explaining how well differ-
ent models performed their task. Other tools are concept oriented
and focus on explaining what different models learned to perform
their task. Finally, a variant of the model comparison problem is
to understand how models change over time throughout the train-
ing process. One model at different times is arguably two different
models. Below we discuss several model comparison tools in detail
within this conceptual framework.

2.1.1 Performance-oriented Visualizations. Performance-oriented
visualizations support model comparison by allowing the user to un-
derstand the differences in model performance, e.g. F-score. While
not the main contribution of the work, McMahan et al. [28] cre-
ated a visualization tool to compare three model variants against
a control model. Their tool shows a heatmap of model variant by
evaluation criteria relative to the control model.

MLCube [18] and ActiVis [17] are exploratory visualization tools
which allow data scientists to understand how model performance
correlates with subsets of instances, where subsets are user-created
by grouping instances based on their features and attributes, i.e.
instance metadata not available to the model. MLCube directly
supports A/B model comparison by using color to encode whether
model A or B is performing better for a particular subset.

Manifold [47] is a visualization tool oriented around a grid of
performance scatter plots. The tool compares models in a pairwise
fashion and visually separates true/false positives/negatives into
separate scatter quadrants.

2.1.2 Concept-oriented Visualizations. Concept-oriented visualiz-
tions convey semantic differences between models, i.e. how they
interpret data similarly or differently. Alexander et al. [1] presented
a tool for comparing topic models that used spatial encoding and
color to accentuate topic model disagreement on particular docu-
ments. Notably this comparison is done at the document level, i.e.
is instance-based. The tool is designed to help a user understand
topics, topic similarity, and topic change over time.

Yu et al [44] presented a technique for visualizing and comparing
convolutional neural networks (CNNs) for image classification. The
tool visualizes learned representations of a CNN at different layers
(using t-SNE [25] for dimension reduction). Rather than encoding
instances as points, they are represented as their corresponding
images, and all empty space is interpolated with its nearest neigh-
bor. The end result is a 2-D collage of images that conveys some
semantic information about how the model interprets different in-
put images. Comparison between two layers is accomplished by
simply juxtaposing the visualization of the two layers.

Although not specifically for model comparison, a variant of
this technique is used in a tool by Liu et al [23] which performs
hierarchical clustering on the model’s learned representations. Liu
et al used a rectangle packing algorithm to allocate space for images.
The end result is also a 2-D image collage that conveys the models
semantic organization of input images.

2.1.3 Time-oriented Visualizations. Time oriented visualizations
focus on how one or more models are changing over time, either
in terms of model performance or the learned representations. For
example, the NetworkDissection tool [4] allows users to understand
how the number of training epochs affects what is learned by the
model. The tool summarizes layers and units based on what objects
they detect. The tool is also used to understand how initialization,
dropout, batch normalization, and size affect layer function.

CNN Comparator [46] compares a convolutional neural network
(CNN) after different number of epochs, e.g. 10 and 100. It shows the
distribution of parameter differences at a given layer and allows the
user to compare the classification probabilities of a single instance
across two different models. The tool also shows relevant cropped
image patterns based on activation patterns and compares different
layers at different numbers of epochs.

DeepTracker is designed to let a data scientist explore the full
training output of a deep network [22]. The tool relates the layers
in an abstract architecture diagram to their activations across a
set of instances. Notably, the tool also groups models with similar
evolving trends during training into clusters, allowing data scien-
tists to identify similar types of models; these models are visualized
as sequences examplar input images.

For reinforcement learning, understanding how a model’s policy
evolves over time is crucial.Wang et al [40] developed a performance-
oriented tool, DQNViz, which related the successfulness of the
model over time to its action sequences. ReLVis [34] lets a user un-
derstand the relationships between state sequences (observations)

2

260

Parallel Embeddings: a Visualization Technique for
Contrasting Learned Representations IUI ’20, March 17–20, 2020, Cagliari, Italy

and model performance (reward) as a single model changes over
time, or across multiple models.

2.2 Explanation via Dimension Reduction
Dimension reduction visualization is a recurring theme in the litera-
ture we surveyed related to model comparison and explanation [14].
Typically dimension reduction visualization represents instances as
points, and encodes model prediction or ground truth using color.
Doing so allows data scientists to begin discerning what concepts
the model has learned by a particular layer. For example, dimen-
sion reduction visualization of learned representations is central to
ActiVis [17] in addition to visualizing individual neuron activation.
Dimension reduction visualization made it clear that subsequent
layers in the model were separating classes more effectively.

EmbeddingProjector [36] is a general purpose exploratory dimen-
sion reduction tool that incorporates multiple popular embedding
techniques and allows users to explore embeddings (one at a time)
across different network architectures, layers, datasets. The tool
represents instances as points or as glyphs, e.g. raw images or text,
which can have arbitrary metadata encoded with color and size. Di-
mension reduction visualization of neuron activation is also central
to the model comparison tool by Rauber et al [30]. This tool uses
t-SNE in a novel way to show how activation patterns have changed
across training epochs and relies on edge bundling to reduce clutter.

For reinforcement learningmodel comparison, Saldanha et al. [34]
and Jaderberg et al [15] used dimension reduction to help reveal
patterns in agent-state sequences. Zhavy et al [45] used t-SNE to
understand the model’s representation of its current state.

3 DESIGN
Several of the authors work with domain experts, data scientists,
and machine learning experts on a daily basis across a variety of
science and national security projects involving applied machine
learning and artificial intelligence. From this past working experi-
ence we identified who could benefit, what was needed, and how
this could be accomplished. We consolidated our design insight
into three use cases that can each be addressed by our visualization
approach for model comparison. We outline this approach and its
implementation as a visualization tool and conclude this section
with a discussion of alternative designs considered.

3.1 Target Users
We designed Parallel Embeddings with two types of users in mind.
Parallel Embeddings is primarily designed for machine learning
practitioners and experts, which we refer to for brevity as “data sci-
entists”. However, less research effort has been spent on developing
tools to help “decision makers”, who we characterize as non-data
scientists who make decisions about the automation of workflows
with machine learning models. While most current explanation
tools are targeted towards data scientists who understand machine
learning and deep learning [14], tools that target non-expert users,
e.g. decision makers, have the potential for broader impact. Further-
more, a hypothetical tool that is intuitive and effective for decision
makers, should also be helpful for data scientists. We employ an
example-based explanation design approach that should be suitable
for communication with both data scientists and decision makers.

3.2 Needs, Goals, and Use Cases
Our interactions with data scientists over the past several years
revealed two major needs relating to model comparison.

N1 Data scientists need ways to reduce the time and compu-
tational cost of training machine learning models. Model
training is both time and resource intensive, i.e. data scien-
tists and GPU’s are shared across many projects.

N2 Decision makers need to be convinced that, when a new
model replaces an old one, the new model is both qualita-
tively and quantitatively better. In other words, a model with
a higher F-score may actually contain hidden biases or new
types of errors, e.g. due to over-fitting.

We identified the following ways each of the above needs could
be met using a visualization tool, which we define as the various
“goals” of our tool.

G1 Determine what concepts a model has learned or forgotten
between arbitrary training epochs. G1 supports N1.

G2 Understand the function of layers in the network to deter-
mine if they are needed for the particular machine learning
task and data at hand. G2 supports N1.

G3 Determine how two models’ conceptual representation of
example data differ, and how this relates to their correctness,
i.e. did the “better” model learn a helpful new concept or just
over-fit the training data? G3 supports N2.

We identified three use cases, i.e ways the high-level goals might
be accomplished with a visualization tool.

UC1 A data scientist uses visualization to understand the purpose
of a specific layer in a deep network.

(1) The user wants to know if the layer has learned a useful
concept

(2) Layers that do not perform a useful task might be reduced
or deleted.

UC2 A data scientist uses visualization to understand how the
model has improved over time, e.g. as a result of training.

(1) The user wants to know if important concepts are learned
early in training or later.

(2) If important concepts are learned earlier, the training time
can be reduced to save costs.

UC3 A data scientist or decision maker uses visualization to un-
derstand the differences between a proposed model and one
already in production, e.g.

(1) The user wants to compare a more accurate model with a
simpler or more explainable one.

(2) The user wants to knowwhat effect a de-biasing algorithm
has on model behavior.

Many techniques from the literature we surveyed relied on 2-D
embeddings of model activations given input data to understand
the purpose of particular layers in the network. This technique
can be leveraged for model comparison if a user can understand
the similarities and differences between 2-D embeddings of the
same input data for different models. Embeddings of data tend to
create clusters that correspond to semantically meaningful concepts
upon inspecting their membership. Thus, model comparison can be
accomplished by (1) identifying interesting clusters based on their

3

261

IUI ’20, March 17–20, 2020, Cagliari, Italy Arendt, et al.

contents and (2) understanding how and why these clusters split
and merge between models being compared.

3.3 Parallel Embeddings Design & Overview
With these needs, goals, and use cases in mind, we designed a
new visualization technique, Parallel Embeddings. We followed
the parallel coordinates metaphor, relying on juxtaposition and
integration (linking the same entity across views) to dictate the
overall design. Embeddings of learned representations are arranged
horizontally as square frames and each embedding is allocated the
same screen space. For scalability purposes and to simplify the
visualization, we apply clustering to each embedding. Clustering
has been used for parallel coordinates to reduce clutter and make
broader trends more easily discernible [16, 26].

Parallel Embeddings supports comparisons across multiple em-
beddings of the same example data by visually encoding what
sets of samples remain nearby to each other throughout the entire
sequence. We refer to these groups as cohorts. Embeddings are ar-
ranged horizontally, and sets of samples are connected with lines in
a manner inspired by the classical Parallel Coordinates visualisation
technique, hence the name Parallel Embeddings. Thus, a cohort is
the set of examples that belong to the same sequence of clusters
across frames. To indicate multiple cohorts belong to the same
cluster within a frame, we enclose those cohorts with a polygon
defined by the convex hull of the cohorts’ centroids. Convex hulls
have been used in the past to indicate cluster membership [8] and
group membership in graph visualization [39].

Below we describe the four primary components (a-d) and two
supporting components (e, f) in Parallel Embeddings (see also Fig. 1).
(a) Cluster Comparison: Primarily, users understand differences
between models with Parallel Embeddings by understanding differ-
ences between clusterings of their respective embeddings. Users
reveal these cluster differences by first hovering over a cluster or
cohort to get an idea of where the target cohorts appear in other
frames. Then she can select the cohorts she is interested in by
clicking individual cohorts or a cluster (which selects all cohorts it
contains). Once selected, the link between cohorts across frames
is visualized with a curved path that is routed efficiently around
unrelated clusters it does not belong to. (b) Cluster Storylines:
The storyline view is visible when at least one cohort is selected
in (a). This more clearly conveys the cohort’s cluster membership
by encoding cluster membership on the y-axis using the technique
described by Arendt and Pirrung [3]. Clusters are aligned across
frames based on the degree of overlap, i.e. if two clusters overlap by
more than 50%, they are considered the same cluster. (c) Selection
Details:When one or more cohorts are selected, their details, i.e.
raw data, are rendered in a grid. This view gives the user more
context about the underlying data to assign semantic meaning
to clusters and cohorts. (d) Selection Summary: The selection
summary shows a histogram of instance features for a separate
metadata table provided to the tool. This is intended to convey
information like model predictions, ground truth, etc. Hovering on
a cluster/cohort in the cluster comparison view, shows a second,
inner bar corresponding to the distribution of that metadata for just
the highlighted cluster/cohort. Selecting bars from this histogram
configures a simple filter that reveals what clusters in the cluster

comparison view best match the selection. This feature allows users
to focus on the subset of data that is interesting to them if they
know this ahead of time. Instances visible in the selection details
view that match the current filter are indicated with a check mark.

Other supporting functionality includes: (e) Saved filters: Par-
allel Embeddings also allows users to save the current filter configu-
ration and assign it a color. Clusters in the cluster comparison view
are colored according to this. (f) Number of clusters: The user
can also interactively change the number of clusters independently
for any frame in the Cluster Comparison view.

3.4 Design Alternatives
We considered several design alternatives, discussed below. Initial
designs and prototypes assumed each sample would be represented
as a point, similar to many existing dimension reduction visual-
izations used in a machine learning context [14, 15, 17, 30, 34, 36,
37, 45]. Similar to parallel coordinates, points representing the
same sample in adjacent frames were connected with a line seg-
ment. However, this created a large amount of clutter due to edge
crossings and made the visualization unreadable (see Fig. 2a). Edge
bundling [20] could be used to reduce this clutter (see Fig. 2b), and
has been demonstrated for model comparison within superimposed
dimension reduction plots [30].

Clustering can be used to increase the abstraction of the visualiza-
tion by aggregating points into closely related groups. Liu et al [23]
performed hierarchical clustering on the representation matrix to
help explain an image classifier. For comparison of a classifier as it
trains, different layers within a classifier, or multiple different clas-
sifiers, hierarchical clustering can be applied to each representation
matrix to produce a “nested tracking graph”. There have several
different techniques developed recently to visualization such data
structures [19, 24, 42, 43].

Storyline visualization can be used to visualize instances chang-
ing cluster membership over time [3, 31]. Storyline visualizations
become cluttered for relatively few lines, which can be mitigated
by further abstraction to show just the most prevalent trends (of
changing cluster membership) using Alluvial diagrams [33].

4 SYSTEM IMPLEMENTATION
Parallel Embeddings takes as input a length k sequence of sample by
feature matrices S = (X1,X2, ...,Xk) and produces a visualization
that emphasizes which samples remain nearby each other through-
out the sequence S . Each matrix is an n × m(t) matrix where n
is the number of samples andm(t) is the number of features for
frame t , which may be different for each frame. Row i for each Xt
corresponds to the same sample.

Recall from Section 3.3 that the visualization corresponding to
each embedded matrix is a frame and sets of instances with similar
trajectories across frames are cohorts. Given the above definitions,
Parallel Embeddings are computed by the following steps:

(1) Project each Xt into 2-D X ′
t .

(2) Cluster (hierarchically) each X ′
t to produce a parent pointer

array Pt .
(3) Realize each Pi as a partition of n(t) clusters based user input.
(4) Group instances into cohorts based on unique cluster mem-

bership across frames.
4

262

Parallel Embeddings: a Visualization Technique for
Contrasting Learned Representations IUI ’20, March 17–20, 2020, Cagliari, Italy

(a) linear

(b) bundled

(c) aggregated

Figure 2: Parallel Embeddings Design alternatives. (a)
naively connects points in adjacent frames with straight
lines. (b) bundles lines based on cohorts. (c) aggregates co-
horts into single lines and encodes the size of the cohort
with the radius of the endpoint.

(5) Compute the convex hull around the centroid of each cohort
within each cluster in each frame.

(6) Render cohorts as paths connecting their centroids in each
frame, with paths routed efficiently around clusters’ convex
hulls.

Steps 1 and 2 are completed prior to any user interaction. Steps
3 and after are repeated each time the user changes the number
of clusters for any frame. Below we discuss the relevant technical
details and justification for the above steps. In Section 4.3 we also
discuss relevant software engineering choices.

4.1 Projection and Clustering
Wenskovitch et al [41] discuss the implications of combining clus-
tering and dimension reduction techniques, stating that the choice
of dimension reduction algorithm is important when using “dimen-
sion reduction preprocessing for clustering”. Therefore, we selected
a neighbor embedding technique, i.e. UMAP [27], as our dimen-
sion reduction algorithm. Neighbor embeddings [25, 27] optimize
an objective that encourages neighbors in the higher dimensional
space to be neighbors in the lower dimensional embedding, address-
ing some of the issues when clustering after dimension reduction
discussed by Wenskovitch et al [41].

We used the scikit-learn implementation of hierarchical clus-
tering1 to cluster each X ′

t . Parallel Embeddings converts the se-
quence of cluster merges found by hierarchical clustering into a
parent pointer array. This data structure allows a partitional cluster
to be created on the with linear time complexity in response to the
user specifying a particular number of clusters.

4.2 Path Routing
While patterns like correlation have meaningful analogs between
Cartesian and parallel coordinates, we expect no such analogs in
parallel embeddings due to the arbitrariness of spatial positioning of
samples produced by dimension reduction — only spatial proximity
matters. Therefore, we modify the path routing of cohorts between
frames to reduce visual clutter and make the lines easier to trace
between frames. We defined the following path routing aesthetic
criteria listed in order of importance:

A1 Paths should never reverse direction,
A2 Paths should avoid crossing clusters,
A3 Paths should wiggle as little as possible, and
A4 If a path wiggles, it should do so as far to the left as possible.
Paths representing cohorts are expected to be read from left to

right, thus A1 explicitly forbids pathways from ever traveling from
right to left. The purpose of edge routing is to avoid cluster-path
crossings, hence A2. However, we cannot explicitly forbid this,
because the pathway must enter/cross each cluster it belongs to.
Also, in some rare cases, e.g. due to grid discretization, there may be
no route available without crossing a cluster, so A2 can be violated
but is strongly discouraged. Straighter lines are easier to trace, so
A3 implies paths with fewer wiggles (changes in the y-coordinate)
are preferred over more efficient paths with more wiggles. However,
usually a pathway with fewer wiggles is more efficient. Finally, A4
states if a wiggle is required for routing, it is preferred this happens
as earlier in the path, i.e. as far left as possible.

While the state of the art edge routing algorithms can optimally
route paths around convex hulls [7], it was too difficult to extend
this framework to satisfy the above aesthetic criteria. Instead we
adapted an older technique based on shortest path routing within a

1https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html

5

263

IUI ’20, March 17–20, 2020, Cagliari, Italy Arendt, et al.

grid discretization of the rendering area [10]. Our aesthetic criteria
are enforced through placement of the nodes, direction of edges,
and weighting of edges.

To do so, we used the following procedure:
(1) Discretize the rendering area into a set of points forming a

hexagonal lattice, with adjacent points x-coordinates being
spaced ∆x = 25 pixels apart.

(2) Remove lattice points that intersect clusters’ convex hulls.
(3) Add lattice points corresponding to each cohort’s centroid

in each frame.
(4) Add edges from the Delaunay triangulation of the modified

lattice points.
(5) Remove lattice edges which do not connect cohort centroids

and are longer than ∆x pixels
(6) Orient the direction of lattice edges such that the source of

each edge has a smaller x-coordinate (is farther left) than
the destination.

(7) Weight edges according to Equation 1
(8) The control points between two adjacent cohort centroids

follow the shortest path in the graph defined above.
Aesthetic criterion A1 is enforced by the orientation of lattice

edges found in step 6. Aesthetic criteria A2-4 are reflected in the
definition of the following cost function over lattice edges:

cost(i, j) = |y(i) − y(j)| +w1 · x(i) +w2 · (c(i) + c(j)), (1)

where w1 = 10−4 and w2 = 104 act as arbitrarily low and high
weights relative to ∆x . The function c(i) indicates whether a lattice
node i corresponds to a cohort’s centroid or not, i.e. was added in
step 3 above. Thus, c(i) returns 1 if so, and 0 otherwise. Figure 3
illustrates the modified triangular lattice and weighting.

Figure 3: Parallel Embeddings path routing. Routing follows
a triangular lattice except where modified by the presence
of clusters. Arbitrarily high weights are denoted with a *.

4.3 Workflow Integration
As discussed above, Parallel Embeddings is designed and intended
to be used by data scientists. Many data scientists choose as their
development environment an interactive Python shell with a graph-
ical web-based front end for visualization, e.g. Jupyter Notebooks2.
2https://jupyter.org

While standalone desktop and web-based visualization prototypes
tools are commonplace in this research community, we decided
tight integration with Jupyter Notebooks would simultaneously
simplify the implementation of the Parallel Embeddings tool as well
as make it easier for users to install and use. Thus, data scientists
can simply “pip install” the Parallel Embeddings python package,
enable the widget for Jupyter, and use it immediately.

The Parallel Embeddings tool is split into two modules, (1) a
python module which performs the preprocessing, i.e. dimension
reduction, hierarchical clustering, JSON data formatting, and (2)
a front-end React component that renders the visualization and
handles all interaction. The front-end React component is packaged
as a standalone JavaScript library that can be “npm installed” and
included within a larger web-based application if desired. This
organization allows Parallel Embeddings to be immediately used by
our target end users while still providing flexibility to be included
in other environments in the future.

The Parallel Embeddings tool is imported and instantiated like
a typical python package/class. It accepts a sequence of NumPy3
matrices as the input and an optional pandas4 DataFrame defining
metadata for each instance to be filtered on, e.g. ground truth label,
predicted class, correct classification, etc.

5 EVALUATION
Parallel Embeddings is designed to help data scientists draw com-
parisons between different machine learning models allowing data
scientists to make informed decisions in real-world scenarios. To
assess Parallel Embeddings on these grounds, we conducted an in-
laboratory within-subjects user study with data scientists from
different disciplines. Our study is limited to machine learning ex-
perts and practitioners to ensure participants could complete the
experiment tasks.

The experiment is designed to evaluate the following hypotheses:

• H1: Parallel Embeddings enables better performance for com-
pleting the experiment tasks measured by accuracy and time

• H2: The design of Parallel Embeddings led participants to
form more efficient strategies during the analysis process.

To evaluate these hypotheses we used a mixed study design,
with both between and within subjects variables. Our between
subjects variable was use case, either understanding layers or un-
derstanding training over time. Our within subject variable was tool,
either Parallel Embeddings or TensorBoard Embedding Projector (as
a comparison condition). Section 5.2 further motivates this choice.

Each participant used both TensorBoard Embedding Projector and
Parallel Embeddings, but only answered questions for one use case.
Participants either used Parallel Embeddings first before TensorBoard
Embedding Projector or vice versa. The combination of the 2 use
cases and 2 possible tool orders created 4 unique treatment groups
of participants. We balanced the number of participants and gender
within each treatment. On average each session took one hour and
thirteen minutes to complete.

3https://numpy.org
4https://pandas.pydata.org

6

264

Parallel Embeddings: a Visualization Technique for
Contrasting Learned Representations IUI ’20, March 17–20, 2020, Cagliari, Italy

5.1 Participants
We recruited 24 participants for the study; all participants were
from the computer science and data science programs at the Uni-
versity of North Carolina at Charlotte. Among the 24 participants 5
were female and 16 were pursuing their MS degree and (the remain-
ing were pursuing a doctoral degree). The age of the participants
ranged from 22 to 31 years. We compensated participants with a
$30 Amazon gift card after completion of the study.

5.1.1 Recruitment Criteria & Selection Process. Before starting the
study the experimenter asked qualification questions to make sure
the participants had a sufficient understanding of machine learning
and deep learning algorithms (the models participants were asked
to make sense of during the user study tasks were deep neural net-
works). The qualification questions focused on the basic concepts
of supervised and unsupervised machine learning and the basic
mechanism of a deep learning model, e.g. epochs and layers. The
purpose of the qualification questions was to ensure the user stud-
ies were conducted with the target audience Parallel Embeddings is
designed to benefit. In total, 33 people signed up for the user study
but 6 were disqualified based on their answers to the qualification
question and 3 did not show up for the study.

5.1.2 Experience & Expertise. Based on the response to one of the
questions in the pre-questionnaire regarding participants’ experi-
ence with neural networks, all participants self-identified as either
deep learning researchers or practitioners. More specifically, 12 par-
ticipants self-identified as deep learning experts who implement and
extend deep learning models thus have a deeper understanding of
how the deep learning algorithms work. The other 12 participants
identified as deep learning practitioners who apply deep learning
algorithms using existing libraries for their work and research.

In our pre-questionnaire, in addition to asking participants’ expe-
rience with machine learning and deep learning, we also included
questions on their familiarity with visualization and dimension
reduction techniques. Twelve of the participants did not have any
academic training in information visualization. All of them had at
least “some” familiarity with information visualization and 10 of
them identified themselves as above average to very familiar with
it. Three participants did not have any familiarity with dimension
reduction techniques; while some had a vague understanding of
PCA, they were unfamiliar with UMAP and t-SNE. Fourteen of the
participants self-identified as having sufficient to very good under-
standing of the applications and implementation of deep learning
algorithms, whereas the rest of them claimed some to average
knowledge in these areas.

5.2 Within Subjects Variable: Tool
To evaluate the efficacy of Parallel Embeddings for model compari-
son, we chose TensorBoard Embedding Projector5 as our comparison
condition. TensorBoard Embedding Projector is a freely available
visualization tool for exploring learned representations via 2- or
3-dimensional projections. We adapted TensorBoard Embedding Pro-
jector for model comparison by opening the tool in two separate
windows, with each window showing a different embedding repre-
sentation. Each participant performed the same set of tasks with
5https://https://projector.tensorflow.org/

both tools. To control for learning effects and fatigue, we random-
ized the order of which tool participants experienced first.

We believe that TensorBoard Embedding Projector was a fair and
valid comparison condition for several reasons. Of the research
we surveyed, the most similar concept-oriented visualization [44]
simply juxtaposes dimension reduction plots of the CNN model’s
layers—Parallel Embeddings builds on this technique. However, Ten-
sorBoard Embedding Projector is a feature rich tool for exploring
high dimensional data; its polished user interface helps avoid ex-
perimental confounds due to usability issues that are more likely to
be found in research prototypes. Though TensorBoard Embedding
Projector was not designed to do so, the user can also similarly
juxtapose by creating two views side by side. Thus our comparison
condition directly evaluates the main contribution of Parallel Em-
beddings, i.e. integrating these side-by-side views, while attempting
to avoid confounds due to usability issues.

5.3 Between Subjects Variable: Use Case
Our experiment involves two use cases — (1) Understanding dif-
ferences in what a model learns over time (epochs) and (2) Under-
standing differences between layers for two different tools.

We asked 3 sets of questions when participants perform tasks
with each tool. The questions are:

(1) Overall Understanding: How are the two epochs (layers)
different in terms of instance-level memberships and how
does the visualization portray the agreement or disagree-
ment?

(2) Accuracy Task (AT): Can you identify the classification
accuracy or inaccuracy by looking into the visualization?

(a) Which are the top 2-3 breeds mostly misclassified and
with which breeds are they being confused with?

(b) Which are the top 2-3 breeds most often correctly classi-
fied?

(3) Comparison Task (CT): Can you summarize what con-
cepts themodel learned or unlearned in the later (right frame)
compared to earlier (left frame)?

(a) Which breeds’ classification improved over layers or epochs?
(b) Which breeds’ classification unimproved over layers or

epochs?

5.4 Experiment Materials
5.4.1 Data for the experiment tasks. We trained a classification
model on the Stanford Dog Breed dataset6. This dataset is built
with images and annotations from ImageNet7 on 120 breeds of dogs
across the world for fine-grained image categorization. We chose
the images of 10 most represented breeds in the dataset.

5.4.2 Deep Learning Model. We built a Convolutional Neural Net-
work to predict the breed of a given image of a dog. The model
uses the pre-trained VGG-19 [35] and Resnet-50 [12] models as a
fixed feature extractor, where the last convolutional output of both
networks is fed as input to another, second-level model. Combining
these two models achieves a small boost compared to using them
separately. At the beginning of the second-level model, we added

6http://vision.stanford.edu/aditya86/ImageNetDogs/
7http://www.image-net.org/

7

265

IUI ’20, March 17–20, 2020, Cagliari, Italy Arendt, et al.

a global average pooling layer to make the network invariant to
small translations or perturbations of an image. We then added
multiple batch normalization layers which help to learn on a more
stable distribution of inputs and to limit the co-variate shift by
normalizing the activation of each layer. Several dropout layers are
used in to help the network learn independent representations and
prevent overfitting. Then we add a fully connected layer with a
softmax with one node for each dog category to extract the last
convolutional output for both networks.

5.4.3 Use-cases. For the epoch usecase, we projected the activa-
tions from the second layer to the output layer. The accuracy of
the second epoch in the left frame of the visualization is 76.9% and
the right frame (epoch = 20) is 80.3 %. Since we cannot project two
activations in one single embedding view of TensorBoard Embedding
Projector , we projected the two activations in two different Tensor-
Board Embedding Projector in two browsers (the left monitor was
used for epoch=2 and the right monitor is used for the later epoch).
This setup was to ensure both tools provide the same amount of
information for the participants to complete the experiment tasks.

In the layer usecase, the left frame of the visualization presents
the activation from an earlier layer (a dense layer with relu activa-
tion function) in the network to the output layer; the right frame
presents activation from a later layer (batch normalization layer) to
the output layer. The activations from the two different layers are
collected in the same epoch (epoch=20). After training the model
until 20th epoch, the accuracy of the model was 80.3%.

5.4.4 Ground Truth. We computed the ground truth for the use
cases on 1000 testing instances for the target variables of each sub-
task allowing us to quantitatively measure user performance. We
identified misclassified breeds for both left and right epoch/layer,
properly classified breeds, and the breeds which have an improved
classification in the later frame or have a decline.

5.5 Data Collections and Measurements
At the beginning of each study, we collected the following demo-
graphic information: age, major, sex, familiarity with deep learning
algorithms, information visualization, and dimension reduction. We
then trained participants on the first tool explaining the features
and functions, and provided a printout of the task questions. We
also provided participants with a reference sheet for the features of
the tool. The experimenter was available throughout the study to
answer questions about the tools or the tasks.

During the experiment, the participants wrote down their an-
swers directly on the paper with experiment questions. The experi-
menter also recorded participants’ response time for the task and
sub-tasks for each tool during each experiment session.

After completion of each task, we asked participants to answer
a post questionnaire that employs a subset of the NASA TLX [11]
questions in order to assess the task, system, and effectiveness of
their performance. In the post-questionnaire, we also asked partici-
pants to report the usefulness of different features of the tool they
just experienced on a Likert scale [21]. We collected data regarding
the common strategies participants used to complete the task with
the tool and asked for suggestions for improvements to the Parallel
Embeddings tool. We repeated the same process for the second tool.

Figure 4: Precision vs. Recall for model comparison and ac-
curacy tasks.

The post-questionnaire for the second tool included an extra set of
questions asking participants for their preferences on the two tools
for both model comparison and accuracy estimation tasks.

6 RESULTS
6.1 H1: Analyzing Difference in Participants’

Performance
To compare the participants’ performance between Parallel Em-
beddings and TensorBoard Embedding Projector , we calculated the
precision and recall per participant for the accuracy estimation (AT)
and model comparison (CT) tasks. To present our analysis results,
we followed the advice from HCI literature on best practices to
present effect size [6] and used a non null-hypothesis statistical
testing approach focusing on sample means and bootstrapped 95%
confidence intervals (C.I.s). Figure 4 shows bootstrapped confidence
interval plots for both tools with model comparison and accuracy
tasks separately. Overall, the results showed participants are more
likely to achieve higher precision and recall with Parallel Embed-
dings in comparison to TensorBoard Embedding Projector , with the
recall of the model comparison task being significantly different
between the two tools.

Figure 5: Response time by tasks and use cases: Parallel Em-
beddings Vs. TensorBoard Embedding Projector.

In addition to analyzing differences in accuracy, we also investi-
gated differences in response time between the two tools. Overall,
for the epoch use case (during which the users completed both
accuracy and model comparison tasks), participants using Paral-
lel Embeddings took significantly less time (Figure 5 right). The
response time for the layer use case did not exhibit significant dif-
ferences between the two tools. Across different tasks, the response

8

266

Parallel Embeddings: a Visualization Technique for
Contrasting Learned Representations IUI ’20, March 17–20, 2020, Cagliari, Italy

time for the model comparison sub-task is significantly lower for
Parallel Embeddings (Figure 5 left). Our analysis results showed
Parallel Embeddings yielded better accuracy and response time in
the model comparison task and the epoch use case.

Overall, our findings on accuracy and response time supportH1.
Moreover, the performance gain in accuracy with Parallel Embed-
dings did not come at the cost of longer response time.

6.2 H2: Analyzing Participants’ Strategies
To identify user strategies, we adopt an open coding process fol-
lowed by selective coding focusing on concepts related to strategies
[29]. We observed the performance and analytical process for the
first tool influenced the overall strategy, and the participants are
likely to employ a similar process for the second tool they experi-
enced. Overall, the participants spent more time to complete the
same tasks with the first tool (avg 27 minutes 57 seconds) com-
pared to the second tool (avg 18 minutes 47 seconds). We suspect
the reduction in completion time with the second tool is due to
the participants being familiar with the data and tasks after the
first tool. To control for the impact of the possible learning effect
on task completion time, we further analyzed the response time
when using either Parallel Embeddings and TensorBoard Embedding
Projector as the first tool. We observed patterns similar to those al-
ready presented in Figure 5; participants completed the tasks faster
with Parallel Embeddings. We also observed Parallel Embeddings
is more intuitive and easier to start with to understand what con-
cepts are captured by the embeddings and how this relates to the
metadata. This observation is supported by less training time and
fewer clarification questions with Parallel Embeddings.

We observed participants’ strategies not only depend on the
first tool they used, but also vary by treatments (Epoch vs. Layer);
Table 1 presents a summary of participants’ strategies. We noticed
that when the participants see Parallel Embeddings first, they are
more likely to start by examining multiple clusters based on their
accuracy while participants using TensorBoard Embedding Projector
first are more likely to dive into one particular cluster at a time. We
summarize the overall strategy derived from Parallel Embeddings as
“overview first, individual clusters next”, and the strategy derived
from TensorBoard Embedding Projector as “one cluster at a time”.

Figure 6: NASA TLX ratings for TensorBoard Embedding Pro-
jector and Parallel Embeddings.

For example, one participant who started with Parallel Embed-
dings inspected the clusters with the darkest color and verified the
distribution of different breeds in those clusters. The participant
then did a downstream analysis by increasing the cluster numbers
to divide the clusters to smaller number of breeds as much as pos-
sible to do a breed-wise analysis. This participant then followed a

Table 1: Top Strategies for use cases and Parallel Embeddings
(PE) vs. TensorBoard Embedding Projector (TF).

Groups Top Strategies
First tool vs.
Second tool:
Epoch
use-case

First tool (PE): Clicking between the clusters,
dog types, and filters to see how things would
change.
Second tool (TF): Starting with the inspector
panel to search for proper classification and mis-
classification for left and right layer/epoch’s to
make a judgement of the accuracies for different
breeds. And then clicking on different instances
frequently to see the closest neighbors and to
find out how similar/dissimilar they are with
the selected instance.
First tool (TF): Counting the number of mis-
classified instances for each breed one by one
for the both epochs/layers.
Second tool (PE): Looking into the clusters
which exclusively clustered just one breed with
darker color (higher classification accuracy),
and exploring the clusters which did not classify
that breed successfully and then observing the
classification errors for each cluster

First tool vs.
Second tool:
Layer
use-case

First tool (PE): Checking the distribution of
the metadata for a selection (either cluster or
line) or for clusters highlighted with the color
filters.
Second tool (TF): Using the distance of nearest
neighbors feature in the inspector panel.
First tool (TF): Looking specifically to the near-
est neighbors of a misclassified dog to find out
if its neighbor and their classification is correct
or not.
Second tool (PE): Checking the cluster color
and opacity to identify which breeds were clas-
sified correctly by taking additional help from
the distribution of the metadata.

similar process using TensorBoard Embedding Projector by looking
into neighbors via neighborhood search within different clusters.

Another participant mentioned that he started looking into breed
one at a time in the TensorBoard Embedding Projector to find out
the accuracy by breed and then proceeded into analyzing different
instances to find out their association with nearest breeds with
cosine or euclidean similarities in the clusters. He applied the same
strategy with Parallel Embeddings as the second tool. In Parallel Em-
beddings, he started with selecting each breed from the "Dog breed"
bar charts group and then looked into the distribution for darkest
clusters in left/right frames. We observe the participants’ overall
strategies are heavily influenced by the first tool they experience.

In addition to presenting the summary and individual strategies,
we plotted responses from the post-questionnaire which employed
the NASA TLX on the stress level and efficiency of the participants
in Figure 6. The results showed that participants tend to report the
tasks as less demanding and perceive their performance as more

9

267

IUI ’20, March 17–20, 2020, Cagliari, Italy Arendt, et al.

successful with Parallel Embeddings. The results also showed the
participants thought they needed to work harder to complete the
tasks with TensorBoard Embedding Projector . These findings support
H2, that Parallel Embeddings facilitates discovery of more efficient
strategies and makes the overall experience less demanding.

7 DISCUSSION
7.1 Interpretation of Results
Participants were faster and more accurate on the model compari-
son task with Parallel Embeddings compared to TensorBoard Embed-
ding Projector . We can account for these differences as follows. The
Parallel Embeddings tool was explicitly designed to contrast multi-
ple models compared to TensorBoard Embedding Projector which is
intended for exploring a single model in detail. For example, Parallel
Embeddings abstracts clusters of examples into fewer points which
can be more easily interpreted. The tool also shows exactly what
changes between clusters. Using TensorBoard Embedding Projector ,
users would need to flip back and forth between views and perform
manual lookups of examples to find the same example in both views.
Furthermore, TensorBoard Embedding Projector contained extra fea-
tures which served to increase the complexity of the interface and
potentially distracted users. This could account for the increased
learning time and time on task.

When analyzing the rating of each visual component collected
through the post-questionnaire, participants reported all visual
components and interactive features as equally helpful or very
helpful for Parallel Embeddings. In comparison, almost all of the
participants found the inspector panel was the most helpful feature
in TensorBoard Embedding Projector with other views less helpful
for the tasks. This is not surprising considering each of the features
in Parallel Embeddings were designed to support more challenging
model comparison. Using TensorBoard Embedding Projector , partici-
pants used a sub-set of the features, and had to rely the inspector
panel for multiple uses, including discerning cluster meaning.

Interestingly, when Parallel Embeddings was experienced as the
second tool in the user experiments, participants appreciated the
storylines more than the participants who used Parallel Embeddings
first. Some of them mentioned that since they struggled with model
comparison task in TensorBoard Embedding Projector , and were
unsure of how to start with finding out the difference. They thought
Parallel Embeddings gives a good starting point with the storylines
for identifying disagreements in two different frames quickly. This
is an indication that further abstracting cluster differences provided
a helpful overview visualization.

In addition, some participants were excited about the images
in Parallel Embeddings and said the images for a selected cluster
provide visual information on the dog breeds they are not familiar
with. While the images were also available in TensorBoard Embed-
ding Projector , they may have been too small in the tool to be usable.
However, some participants thought the images in Parallel Embed-
dings were less helpful and wanted to know the breeds to explore
the images in a cluster. This could be addressed by visually encod-
ing metadata, e.g. dog breed, onto these example images so this
information is visible in the context of the images, similar to how
this information is available in TensorBoard Embedding Projector .

7.2 Limitations & Possible Improvements
The number of cohorts visible in the tool can increase rapidly
as additional frames are added. In the worst case, when there are
cohorts between every pair of c clusters across f frames, the number
of cohorts is O(f c). However, this number is also bounded by the
total number of samples, as samples can only belong to a single
cohort, and cohorts must have at least one sample. In practice the
number of cohorts depends on how different the adjacent model
embeddings are — more similar models will lead to less cluttered
visualizations when more frames are present.

While the routing of cohorts’ paths around clusters helps reduce
clutter, the routing technique causes paths to sometimes overlap.
An improvement would be to bias path to also avoid overlapping
an already routed pathway. Finally, while the use of cohorts ab-
stracts the visualization and removes clutter, sometimes this can
be misleading. We plan to incorporate a view which allows the
user to see all of the samples in a cluster. This allows the user to
better understand how well the clustering reflects the underlying
distribution of samples in the embedding, letting the user more
effectively choose the number of clusters.

Our evaluation of Parallel Embeddings has limitations as well. For
experimental control, we chose TensorBoard Embedding Projector as
a comparison condition to measure the primary contribution of our
approach — integrating the side-by-side views of the learned repre-
sentations. While the experiment produced evidence that this was a
valuable contribution, our experiment did not address whether our
tool was more useful than other performance- or concept-oriented
model comparison tools. Future work that makes this direct com-
parison would be valuable. Other experimental designs that more
directly assess users’ mental models of the learned representations
while using the tool would also be beneficial. This would be a
significant contribution beyond the tasks used in our experiment.

8 CONCLUSION
Data scientists and decision makers need tools that allow them to
compare models beyond coarse performance metrics like F-score.
Existing tools like TensorBoard Embedding Projector target data sci-
entists as users, allowing them to explore the functionality of a
particular layer in a single network. However, these tools do not di-
rectly support concept-oriented model comparison. To address this,
we designed Parallel Embeddings to contrast sequences of learned
representations and applied it to two model comparison use cases.
We evaluated our tool’s ability to help data scientists understand
how two models interpret the same data differently. We found users
were more efficient and more accurate with Parallel Embeddings for
these tasks, in part because our tool was designed with these more
challenging tasks in mind. Parallel Embeddings might be used more
generally for use cases outside machine learning, for example, as
an alternative to animated scatter plots [32].

ACKNOWLEDGMENTS
The research described in this paper was conducted under the
Laboratory Directed Research and Development Program at Pacific
Northwest National Laboratory, amultiprogram national laboratory
operated by Battelle for the U.S. Department of Energy.

10

268

Parallel Embeddings: a Visualization Technique for
Contrasting Learned Representations IUI ’20, March 17–20, 2020, Cagliari, Italy

REFERENCES
[1] Eric Alexander and Michael Gleicher. 2015. Task-driven comparison of topic

models. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2015),
320–329.

[2] Saleema Amershi, Max Chickering, Steven M Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. 2015. Modeltracker: Redesigning performance analysis
tools for machine learning. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. ACM, 337–346.

[3] Dustin Arendt and Meg Pirrung. 2017. The “y” of it Matters, Even for Storyline
Visualization. In 2017 IEEE Conference on Visual Analytics Science and Technology
(VAST). IEEE, 81–91.

[4] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.
Network dissection: Quantifying interpretability of deep visual representations.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
6541–6549.

[5] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.

[6] Pierre Dragicevic. 2016. Fair statistical communication in HCI. In Modern
Statistical Methods for HCI. Springer, 291–330.

[7] Tim Dwyer and Lev Nachmanson. 2009. Fast edge-routing for large graphs. In
International Symposium on Graph Drawing. Springer, 147–158.

[8] Niklas Elmqvist and Jean-Daniel Fekete. 2009. Hierarchical aggregation for
information visualization: Overview, techniques, and design guidelines. IEEE
Transactions on Visualization and Computer Graphics 16, 3 (2009), 439–454.

[9] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning.
InAdvances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 2962–2970.

[10] Kārlis Freivalds. 2001. Curved edge routing. In International Symposium on
Fundamentals of Computation Theory. Springer, 126–137.

[11] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in Psy-
chology. Vol. 52. Elsevier, 139–183.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. 770–778.

[13] Julian Heinrich and Daniel Weiskopf. 2013. State of the Art of Parallel Coordi-
nates.. In Eurographics (STARs). 95–116.

[14] Fred Matthew Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau.
2018. Visual analytics in deep learning: An interrogative survey for the next
frontiers. IEEE Transactions on Visualization and Computer Graphics (2018).

[15] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever,
Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos,
Avraham Ruderman, et al. 2018. Human-level performance in first-person multi-
player games with population-based deep reinforcement learning. arXiv preprint
arXiv:1807.01281 (2018).

[16] Jimmy Johansson, Patric Ljung, Mikael Jern, and Matthew Cooper. 2005. Reveal-
ing structure within clustered parallel coordinates displays. In IEEE Symposium
on Information Visualization, 2005. INFOVIS 2005. IEEE, 125–132.

[17] Minsuk Kahng, Pierre Y Andrews, Aditya Kalro, and Duen Horng Polo Chau.
2017. ActiVis: Visual exploration of industry-scale deep neural network models.
IEEE Transactions on Visualization and Computer Graphics 24, 1 (2017), 88–97.

[18] Minsuk Kahng, Dezhi Fang, and Duen Horng Polo Chau. 2016. Visual explo-
ration of machine learning results using data cube analysis. In Proceedings of the
Workshop on Human-In-the-Loop Data Analytics. ACM, 1.

[19] Wiebke Köpp and Tino Weinkauf. 2018. Temporal treemaps: Static visualization
of evolving trees. IEEE transactions on visualization and computer graphics 25, 1
(2018), 534–543.

[20] Antoine Lhuillier, Christophe Hurter, and Alexandru Telea. 2017. State of the
art in edge and trail bundling techniques. In Computer Graphics Forum, Vol. 36.
Wiley Online Library, 619–645.

[21] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
Psychology (1932).

[22] Dongyu Liu, Weiwei Cui, Kai Jin, Yuxiao Guo, and Huamin Qu. 2018. Deep-
tracker: Visualizing the training process of convolutional neural networks. ACM
Transactions on Intelligent Systems and Technology (TIST) 10, 1 (2018), 6.

[23] Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia Liu. 2016.
Towards better analysis of deep convolutional neural networks. IEEE Transactions
on Visualization and Computer Graphics 23, 1 (2016), 91–100.

[24] Jonas Lukasczyk, Gunther Weber, Ross Maciejewski, Christoph Garth, and Heike
Leitte. 2017. Nested tracking graphs. In Computer Graphics Forum, Vol. 36. Wiley
Online Library, 12–22.

[25] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, Nov (2008), 2579–2605.

[26] Kevin T McDonnell and Klaus Mueller. 2008. Illustrative parallel coordinates. In
Computer Graphics Forum, Vol. 27. Wiley Online Library, 1031–1038.

[27] Leland McInnes, John Healy, and James Melville. 2018. UMAP: Uniform man-
ifold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018).

[28] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. 2013.
Ad click prediction: a view from the trenches. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data mining. ACM,
1222–1230.

[29] Paul Mihas. 2019. Qualitative data analysis. In Oxford Research Encyclopedia of
Education.

[30] Paulo E Rauber, Samuel G Fadel, Alexandre X Falcao, and Alexandru C Telea. 2016.
Visualizing the hidden activity of artificial neural networks. IEEE Transactions
on Visualization and Computer Graphics 23, 1 (2016), 101–110.

[31] Khairi Reda, Chayant Tantipathananandh, Andrew Johnson, Jason Leigh, and
Tanya Berger-Wolf. 2011. Visualizing the evolution of community structures in
dynamic social networks. In Computer Graphics Forum, Vol. 30. Wiley Online
Library, 1061–1070.

[32] Hans Rosling and Zhongxing Zhang. 2011. Health advocacy with Gapminder
animated statistics. Journal of epidemiology and global health 1, 1 (2011), 11–14.

[33] Martin Rosvall and Carl T Bergstrom. 2010. Mapping change in large networks.
PloS one 5, 1 (2010), e8694.

[34] Emily Saldanha, Brenda Praggastis, Todd Billow, and Dustin L. Arendt. 2019.
ReLVis: Visual Analytics for Situational Awareness During Reinforcement Learn-
ing Experimentation. In EuroVis 2019 - Short Papers, Jimmy Johansson, Filip Sadlo,
and G. Elisabeta Marai (Eds.). The Eurographics Association.

[35] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[36] Daniel Smilkov, Nikhil Thorat, Charles Nicholson, Emily Reif, Fernanda B Viégas,
and Martin Wattenberg. 2016. Embedding projector: Interactive visualization
and interpretation of embeddings. In Proc. Neural Inf. Process. Syst. Workshop
Interpretable ML Complex Syst.

[37] Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter
Pfister, and Alexander M Rush. 2018. Seq-2-seq-vis: A visual debugging tool for
sequence-to-sequence models. IEEE Transactions on Visualization and Computer
Graphics 25, 1 (2018), 353–363.

[38] C. J. Van Rijsbergen. 1979. Information Retrieval (2nd ed.). Butterworth-
Heinemann.

[39] Corinna Vehlow, Fabian Beck, and Daniel Weiskopf. 2017. Visualizing group
structures in graphs: A survey. In Computer Graphics Forum, Vol. 36. Wiley Online
Library, 201–225.

[40] Junpeng Wang, Liang Gou, Han-Wei Shen, and Hao Yang. 2018. Dqnviz: A
visual analytics approach to understand deep q-networks. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (2018), 288–298.

[41] John Wenskovitch, Ian Crandell, Naren Ramakrishnan, Leanna House, and Chris
North. 2017. Towards a systematic combination of dimension reduction and
clustering in visual analytics. IEEE Transactions on Visualization and Computer
Graphics 24, 1 (2017), 131–141.

[42] Wathsala Widanagamaachchi, Cameron Christensen, Valerio Pascucci, and Peer-
Timo Bremer. 2012. Interactive exploration of large-scale time-varying data
using dynamic tracking graphs. In IEEE Symposium on Large Data Analysis and
Visualization (LDAV). IEEE, 9–17.

[43] Moritz Wittenhagen, Christian Cherek, and Jan Borchers. 2016. Chronicler:
Interactive exploration of source code history. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. ACM, 3522–3532.

[44] Wei Yu, Kuiyuan Yang, Yalong Bai, Hongxun Yao, and Yong Rui. 2014. Visualizing
and comparing convolutional neural networks. arXiv preprint arXiv:1412.6631
(2014).

[45] Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. 2016. Graying the black box:
Understanding DQNs. (2016), 1899–1908.

[46] Haipeng Zeng, Hammad Haleem, Xavier Plantaz, Nan Cao, and Huamin Qu.
2017. CNNComparator: Comparative analytics of convolutional neural networks.
arXiv preprint arXiv:1710.05285 (2017).

[47] Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and David S Ebert. 2018. Man-
ifold: A model-agnostic framework for interpretation and diagnosis of machine
learning models. IEEE Transactions on Visualization and Computer Graphics 25, 1
(2018), 364–373.

11

269

Parallel Embeddings: a Visualization Technique for
Contrasting Learned Representations IUI ’20, March 17–20, 2020, Cagliari, Italy

A SUPPLEMENTAL MATERIALS
A.1 Additional Demonstration
Figure A.1 demonstrates how the two adjacent layers of a simple convolutional neural network changes towards correct classification. We
developed a simple convolutional network for classifying ten classes of the MNIST handwritten digits dataset 8 dataset. We visualized the
learned representation (neural activation) of the two adjacent dense layers of the network with Parallel Embeddings. As expected, we found
the learned representations differ slightly between the adjacent layers — though the apparent number of clusters remains the same, their
memberships differ.

For example, in the earlier layer (See Figure A.1.a), the digit "two" clustered with mostly the digits "seven", "nine" and "one". Eventually in
the later layer (See Figure A.1.b), the other digits are being separated from the digit "two" and mostly being clustered with themselves. The
highlighted storyline represents that the cluster membership is not changing in the later layer for the digit "two" .

A.2 Additional Implementation Details
Figure A.2 shows an example modified triangular lattice for the Parallel Embeddings path routing algorithm. The routing follows a triangular
lattice except where modified by the presence of clusters. Dislocations in the lattice are due to the removal of regular lattice points and the
addition of cohort centroids.

Figure A.3 shows the integration of the Parallel Embeddings tool with a Jupyter Notebook. It also highlights the minimal code needed to pass
learned representations to the tool. For scalability reasons, Parallel Embeddings is most effective for comparing two learned representations.
However, the tool is capable of arbitrary n−way comparison. In Figure A.4 shows Parallel Embeddings with a four-frame comparison for a
simple dataset.

A.3 Additional Study Details
Figure A.5 shows what the dataset from the user study looked like in the TensorBoard Embedding Projector comparison condition. We used a
dual monitor setup to let participants interact with the two embeddings. The user can choose the data columns to color from the “color by”
menu and to label the instances for hovering from the “label by” menu in the Data Panel. For example, if the user wants to label by “Dog
breed”, while hovering it will show the name of the breeds.

In the Projection Panel, the user can select a number of “Neighbors” to do the projection and then hit the “Run” button. For this user study,
we only used “UMAP” and 3D projection. In the Inspector Panel on the right side, the user can search for particular metadata and see list of
nearest neighbors selected on the projection panel. The user can also inspect nearest-neighbor subsets. Clicking on a point causes the right
panel to list the nearest neighbors, along with distances to the current point.

8MNIST Dataset: http://yann.lecun.com/exdb/mnist/

1

270

IUI ’20, March 17–20, 2020, Cagliari, Italy Arendt, et al.

(a) One cluster in the left layer containing several classes of digits splits into many clusters in the right layer.

(b) Inspection of a particular cohort from the splitting cluster shows it to be more coherent than the original left cluster.

Figure A.1: MNIST dataset: exploring layers of a simple convolutional network (a) highlights transition of cluster member-
ship from earlier to later layers of the network. (b) highlights a cluster with a highest membership of digit "two" and the
corresponding metadata, demonstrating that the second dense layer is further separating instances by their class.

2

271

Parallel Embeddings: a Visualization Technique for
Contrasting Learned Representations IUI ’20, March 17–20, 2020, Cagliari, Italy

(a) path routing graph (b) weighted lattice

(c) actual paths with routing graph

Figure A.2: Path routing. (a) shows the control point graph, a modified triangular lattice. (b) shows the lattice edge weights
(arbitrarily high weights are denoted with a *) (c) shows the cohort paths routed between clusters in the context of the control
point graph.

3

272

IUI ’20, March 17–20, 2020, Cagliari, Italy Arendt, et al.

Figure A.3: Parallel Embeddings integration with Jupyter Notebooks. The tool is simple to instantiate and renders and inter-
active visualization below the code block.

Figure A.4: A demonstration of Parallel Embeddings with more than two frames.

4

273

Parallel Embeddings: a Visualization Technique for
Contrasting Learned Representations IUI ’20, March 17–20, 2020, Cagliari, Italy

Figure A.5: Example of the TensorBoard Embedding Projector comparison condition used in the study.

5

274

	Abstract
	1 Introduction
	2 Related Work
	2.1 Model Comparison
	2.2 Explanation via Dimension Reduction

	3 Design
	3.1 Target Users
	3.2 Needs, Goals, and Use Cases
	3.3 Parallel Embeddings Design & Overview
	3.4 Design Alternatives

	4 System Implementation
	4.1 Projection and Clustering
	4.2 Path Routing
	4.3 Workflow Integration

	5 Evaluation
	5.1 Participants
	5.2 Within Subjects Variable: Tool
	5.3 Between Subjects Variable: Use Case
	5.4 Experiment Materials
	5.5 Data Collections and Measurements

	6 Results
	6.1 H1: Analyzing Difference in Participants' Performance
	6.2 H2: Analyzing Participants' Strategies

	7 Discussion
	7.1 Interpretation of Results
	7.2 Limitations & Possible Improvements

	8 Conclusion
	Acknowledgments
	References
	A Supplemental Materials
	A.1 Additional Demonstration
	A.2 Additional Implementation Details
	A.3 Additional Study Details

