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Abstract— This paper presents asynchronous distributed al-
gorithms for information leader selection in multi-robot systems
based on local communication between each robot and its direct
neighbours in the system’s communication graph. In particular,
the information leaders refer to a small subset of robots that
are near the boundary of the swarm and suffice to characterize
the swarm boundary information. The leader selection problem
is formulated as finding a core set that can be used to compute
the Minimum-Volume Enclosing Ellipsoid (MVEE) representing
the swarm boundary. Our algorithms extract this core set
in a fully distributed manner and select core set members
as information leaders, thus extending abstract centralized
MVEE core set algorithms for robotic swarm applications.
We consider different communication conditions (e.g. dynamic
network topology) and system configurations (e.g. anonymous
robots or uniquely identified robots) and present a variety of
approaches for core set selection with associated proofs for
convergence. Results for simulated swarms of 50 robots and
experiments with a swarm of 10 TurtleBots are provided to
evaluate the effectiveness of the proposed algorithms.

I. INTRODUCTION

Distributed multi-robot systems where local interactions
between individual robots and their neighbors result in
collective behaviors (e.g. foraging, rendezvous, flocking)
are known as robotic swarms. Robotic swarms hold great
potential for automation in various applications including
search and rescue , environmental monitoring (e.g. water
monitoring, flood response) and environmental cleanup (e.g.
oil spills).

For effective human supervisory control of robot swarms,
the swarm’s state must be perceptually accessible to the
human [1]. However, communication bandwidth constraints
may make infeasible communicating the positions of all
swarm robots to the human supervisor [2]. Previous ex-
periments showed that enhanced displays [3] enable the
human to effectively control the swarm with a summary
representation (e.g. convex hull [4]). Thus, effective human
control may be possible with position information of a few
appropriately selected swarm members. The goal of this
paper is to present methods for the swarm to automatically
select a set of robots, which we call information leaders,
whose local state information enables effective construction
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of a summary representation of the complete swarm state
presented to a remotely located supervisor.

Swarm properties of interest are the number of connected
(communication graph) components and spatial dispersion of
robots in each component. We use Minimum-Volume Enclos-
ing Ellipsoids (MVEE) to represent spatial dispersion with
one MVEE for each swarm component. MVEE computation
for point sets is a well-studied problem in computational
geometry with a variety of algorithms proposed to solve
the problem. However, these algorithms are centralized,
whereas in our problem there is no centralized process that
knows the position information of all the robots. Therefore,
the key contribution of this paper is distributed algorithms
for computing the information leaders under a variety of
conditions (e.g. dynamic network topologies, anonymous or
uniquely identified robots) employing different underlying
methods for MVEE core set selection as needed. Further, we
present the results of applying our algorithms in simulated
swarms of 50 robots and experiments with 10 TurtleBots.

II. RELATED WORK

In applications of robotic swarms, ellipsoids are often
used to represent the swarm shape [5], [6]. Using the
MVEE to characterize the swarm shape provides a concise
description of the swarm boundary, which motivates selecting
boundary robots as information leaders summarizing relevant
information for the entire swarm. There is significant prior
work on computing the MVEE — known as the Löwner-
John ellipsoid [7], [8] — for a set of points. For two
dimensional point sets, [9] gives a fast algorithm (time
complexity is linear in number of points). A more general
approximate approach was presented by Khachiyan in [10],
which computes the MVEE for higher dimensional point
sets. Modifications to the algorithm can be found in [11],[12]
and [13], which extract a subset of points known as the
core set to represent the original group of data points and
return approximately the same MVEE as [10]. These core
set approaches are inspired by [8], which shows that the
MVEE in d-dimensional space is supported by a subset
of points with size at most d(d+3)

2 [14]. Although these
algorithms work well in solving high dimensional MVEE
problems, the requirement for global information (i.e. all data
points) during core set computation makes it challenging to
implement them directly on distributed robotic systems.

In contrast to previous work focusing on the abstract prob-
lem of finding the MVEE for point sets, we develop practical
asynchronous distributed frameworks that employ and extend



existing MVEEE core set algorithms [12], [11] and apply
them to concise boundary representation for robotic swarms.
Moreover, by using our MVEE core set formulation instead
of all the boundary points employed in [15], the number of
effective boundary robots can be effectively reduced to the
same size as core sets in [12], [11] and made independent
of the size of the swarm.

III. PROBLEM STATEMENT

Consider a robotic swarm consisting of N robots, where
each robot knows only its own position qi ∈ Rd with
d ∈ {2, 3} in a common reference frame. The set of robot
spatial positions is given by S = {q1,q2, . . . ,qN}. Each
robot can communicate directly with a subset of the other
robots (i.e. neighbours). The communication graph is given
by G = (V, E) where each node v ∈ V represents a robot.
If robot vi ∈ V can communicate with robot vj ∈ V , then
edge (vi, vj) ∈ E . We assume that the communication graph
is undirected (i.e. (vi, vj) ∈ E ⇒ (vj , vi) ∈ E), but we do
not assume the graph is connected (i.e. it may have multiple
components).

For simplicity of exposition, assume the graph consists
of only one connected component. We demonstrate later
that our algorithms do not require this assumption and have
the capability to implicitly handle communication graphs
with multiple components. The MVEE for this group of
robots is denoted by MVEE (S), and the corresponding full-
dimensional ellipsoid EA,x0

in Rd is defined by a symmetric
positive definite matrix A ∈ Rd×d and its center x0 ∈ Rd.
The problem of finding MVEE (S) can be written as follows:

argmin
EA,x0

det
(
A−1

)
subject to ∀qi ∈ S : (qi − x0)

TA(qi − x0) ≤ 1

A � 0

(1)

IV. MINIMUM-VOLUME ENCLOSING ELLIPSOIDS USING
CORE SETS

Before describing the distributed leader selection algo-
rithms, we first look at identifying a core set to generate
a (1 + ε)-approximation to the MVEE as in Khachiyan’s
algorithm [10] in a centralized manner. A core set is a small
subset of points (robots) X ⊆ S in the entire data set (swarm)
S such that using this subset gives the approximately same
MVEE as the one obtained from considering the entire data
set. In this paper we mainly discuss two basic core sets: the
set of convex hull vertices for S denoted by CH core set
XCH [11], [16] and the KY core set denoted by XKY [12].
The convex hull of the robotic swarm is defined as follows.

Conv (S) =

{
N∑
i=1

aiqi | ∀ai ≥ 0 :

N∑
i=1

ai = 1

}
(2)

In [8], it has been proven that since the convex hull contains
all the boundary information for a given point set and
Conv(S) ⊆ MVEE(S), then the resulting MVEE(XCH)
from CH core set XCH must also cover all the robots in
S, which satisfies the core set definition.

In [12], a modification of Khachiyan’s algorithm [10] is
proposed with reduced computational complexity that uses a
smaller KY core set XKY ⊆ S to incrementally generate
a (1 + ε)-approximation to the MVEE(S). In this case,
the ellipsoid EA,x0

⊇ S satisfies volEA,x0
≤ vol(1 +

ε)MVEE(S). It follows from (1) that

(1+ε)EA,x0 = {qi ∈ Rd : (qi−x0)
TA(qi−x0) ≤ (1+ε)2}

(3)
The existence of the core set XKY ⊆ S has been proven in
[12] with the property that its size is bounded by |XKY| =
O(d log d+ d[(1 + ε)2/d+1 − 1]−1).

In [12] the KY core set algorithm works in two stages.
The first stage is the initialization of KY core set using
[17] which leads to a rough approximation to the volume of
Conv(S) as well as the byproduct of the initial KY core set
XKY ← XBB, where XBB ⊆ S is the union of the vertex of the
2D bounding box of S with the size at most |XBB| = 2d. The
second stage is the iterative update of KY core set, in which
the algorithm goes into a loop to incrementally expand the
MVEE from MVEE(XBB) to MVEE(S), by keeping adding
violator points qj to XBB such that XKY ← XKY ∪ {qj},
until the resulting new expanding ellipsoid MVEE(XKY) ⊇
MVEE(S). In [12], such a process has been proven to com-
pute the MVEE in a reduced computational complexity of
O(Nd2(log d+[(1+ ε)2/d+1−1]−1)) arithmetic operations,
making it advantageous for large-scale cases with N � d
and reasonably small values of ε.

Compared to the CH core set, we prove that for the same
swarm S the KY core set is guaranteed to be a subset of the
convex hull vertices as in Figure 1c.

Theorem 1: For the robotic swarm S =
{q1,q2, . . . ,qN}, with CH core set XCH ⊆ S and
KY core set XKY ⊆ S, we have XKY ⊆ XCH.

Proof: Based on the preceding discussion, the KY core
set consists of two sets of points: (a) extreme points in S
along the directions of the orthogonal basis vectors for Rd,
which are vertices of the corresponding bounding box and
(b) points in S that are furthest from the expanding ellipsoids
EA,x0

in each iteration. By definition of the extreme points,
it is straightforward that part (a) of KY core set is a subset of
CH core set. For part (b), it follows from (3) that the furthest
distance with respect to the current expanding ellipsoid is
defined by maxi=1...N

(
qi − x0)

TA(qi − x0

)
, which can be

regarded as the affine transformation that preserves points
and ratios of distances between points on a straight line.
Hence the convex hull and the extreme points (CH core set)
in S are preserved after the transformation, and the furthest
points (extreme points) found by (3) must also belong to the
vertices of the convex hull, which completes the proof.

V. DISTRIBUTED INFORMATION LEADER SELECTION
USING CORE SETS

A. Distributed Leader Selection with Uniquely Identified
Robots

Assume that robots have unique identifiers (UIDs) and
robots can identify each other by their UIDs. For simplicity



of exposition, assume UID(vi)= i. The UIDs of communi-
cation graph neighbors of robot vi are denoted by Ni = {j |
vj ∈ V : (vi, vj) ∈ E}. Ideally, we want to solve (3) in a
distributed manner by using only local information between
connected robots.

1) CH-KY Approach: In this approach, we compute the
XCH for the swarm S in a distributed manner and only the
component leader robot (with lowest UID) further extracts
the KY core set XKY from the obtained XCH, which is called
the CH-KY core set XCH-KY. Each individual robot vi ∈ V
maintains a vertex set Xi such that it lies within the convex
hull Conv (Xi) where initially Xi just describes the geometry
of the robot. Then given the convex hulls Conv (Xi) and
Conv (Xj) for robot vi and vj respectively, the convex
hull containing both robots is given by Conv (Xi ∪ Xj) =
Conv (Conv (Xi) ∪ Conv (Xj)).

Conv

( ⋃
∀vi∈V

Xi

)
= Conv

( ⋃
∀vi∈V

Conv (Xi)

)
(4)

We want to find the convex hull containing all the robots
using only local communication between each robot vi
and its direct neighbours in the communication graph. The
UIDs of the neighbors of robot vi are denoted by Ni =
{j|vj ∈ V : (vi, vj) ∈ E}. Most of the convex hull algo-
rithms take a finite set of points X as input and return the
vertices H ⊆ X of the convex hull as output.

H = {x ∈ X | x 6∈ Conv (X \ {x})} (5)

In Algorithm 1, we define the function H =
CONVEXHULL(X ) that applies one of any known convex
hull algorithms to compute the convex hull of the robot
swarm S and use a distributed scheme similar to the one
in [18] to achieve decentralized computation. For this and
the rest parts, CORESET() is defined as the KY algorithm
in [12] to compute the KY core set for the input point sets.
Every robot executes asynchronous distributed Algorithm 1

Algorithm 1 Distributed CH-KY Core Set Selection
1: procedure DISTRIBUTEDCHKY(u, Hu, Nu)
2: HS ←Hu, CS ← CORESET(Hu), l← u, h← 0, m← NIL
3: for all i ∈ Nu do
4: SENDMSG(i, u, h, l,HS)
5: end for
6: while {n, h′, l′,HS′} ← RECVMSG() do
7: if (l > l′) ∨ ((l = l′) ∧ (h > h′ + 1)) then
8: l← l′, h← h′ + 1, m← n
9: HS ←Hu, CS ← CORESET(Hu)

10: for all i ∈ Nu do
11: SENDMSG(i, u, h, l,HS)
12: end for
13: else if (l = l′) ∧ (h < h′) then
14: HS ← CONVEXHULL(HS ∪HS′ )
15: if m 6= NIL then
16: SENDMSG(m,u, h, l,HS)
17: else
18: CS ← CORESET(HS)
19: end if
20: end if
21: end while
22: end procedure

to ensure that the robot with the lowest UID in each
connected component has the correct CH-KY core set for
the entire connected component. The algorithm inputs are
robot’s own UID u, convex hull of its body Hu and set of
its neighbour UIDs Nu. On line 2, it initializes its estimate
of the CH core set HS , CH-KY core set CS , leader UID
l, number of hops h from leader and master UID m. On
lines 3–5, it sends a message to each neighbour i ∈ Nu

to initiate the algorithm. Then the algorithm interleaves
two different tasks: (1) implicitly establish a spanning tree
(lines 8–12) and (2) propagate CH-KY information from
leaves of the tree to the root of the tree (lines 14–18). The
algorithm terminates when every robot in the connected
component has the correct leader UID l, hop ID h and
master UID m (master is parent in the spanning tree) and
has finished propagating all messages from each robot to
the leader through their masters. The termination of the
algorithm is implicit. Only the component leader knows
the final CH-KY core set XCH-KY = CS for the swarm and
communicates this to the human operator periodically. The
total number of inter-robot messages transmitted during
execution is O (|V|+ |E|) – the same as a breadth-first
search through the communication graph. Since each
message includes an estimate of the convex hull, inter-robot
message size is O (|V|).

2) KY Approach: Convex hulls have the beneficial prop-
erty given in (4) where the convex hull of the union of
two CH core sets will contain the points enclosed by both
individually. Unfortunately, KY core sets don’t have the
same property. Namely, given KY core sets MVEE (AKY) ⊆
MVEE (A) and MVEE (BKY) ⊆ MVEE (B), we note
that MVEE (A ∪ B) 6= MVEE (AKY ∪ BKY). Algorithm 2
accounts for this difference by maintaining a hypothesis core
set that is updated by parents and verified by descendants
in the spanning tree. Every robot executes asynchronous

Algorithm 2 Distributed KY Core Set Selection
1: procedure DISTRIBUTEDKY(u, Cu, Nu)
2: CS ← Cu, l← u, h← 0, m← NIL
3: for all i ∈ Nu do
4: SENDMSG(i, u, h, l, CS)
5: end for
6: while {n, h′, l′, CS′} ← RECVMSG() do
7: if (l > l′) ∨ ((l = l′) ∧ (h > h′ + 1)) then
8: l← l′, h← h′ + 1, m← n, CS ← Cu
9: for all i ∈ Nu do

10: SENDMSG(i, u, h, l, CS)
11: end for
12: else if (l = l′) ∧ (h < h′) then
13: CS ← CORESET(CS ∪ CS′ ∪ Cu)
14: SENDMSG(n, u, h, l, CS)
15: if m 6= NIL then
16: SENDMSG(m,u, h, l, CS)
17: end if
18: else if (l = l′) ∧ (m = n) ∧ (CS 6= CS′ ) then
19: CS ← CORESET(Cu ∪ CS′ )
20: for all i ∈ Nu do
21: SENDMSG(i, u, h, l, CS)
22: end for
23: end if
24: end while
25: end procedure



distributed Algorithm 2 to identify a small KY core set
CS such that MVEE (CS) will enclose all robots in the
same connected component of the communication graph.
Lines 2–11 are similar to Algorithm 1. When a message
is received from a descendant, the robot updates its KY core
set estimate (line 13) and notifies both its master (line 16)
and the descendant (line 14). When a message containing
a different core set estimate is received from its master,
the robot updates its estimate and notifies its neighbours
(lines 19–22).

Theorem 2: Assuming all swarm robots use the same
orthogonal basis in Rd in the initialization phase of the KY
algorithm, Algorithm 2 is guaranteed to converge to the same
KY core set XKY as the one obtained by the centralized KY
core set algorithm [12].

Proof: Recalling the two stages of the centralized KY
algorithm, we write the identified core set using [12] as
CKY = XBB∪X ′, where XBB and X ′ are the initial KY core
set approximation (first stage) and the global furthest violator
points set based on that (second stage) respectively. Since
each robot uses the same orthogonal basis in the initialization
process in CORESET(), as messages propagate through the
network, each robot will finally have the same XBB as the
one obtained from the centralized KY core set algorithm.
Besides, with line 13 and 19 all violators qk ∈ X ′ for
k = 1, . . . , |X ′| are added to the KY core set maintained
by each robot. Thus, all robots eventually agree on both XBB
and X ′ with XKY ← CKY , and then the algorithm terminates
due to no more messages being transmitted.

Algorithm 2 has the benefit over Algorithm 1 that all
robots are aware whether they are in the KY core set or
not. But due to necessary message transmission from parents
to descendants in the spanning tree for Algorithm 2, more
messages are sent than in Algorithm 1.

B. Distributed Leader Selection with Anonymous Robots

In many real-world situations, the swarm’s communication
graph topology may change over time and communication
links may appear or disappear due to changing environmental
conditions (e.g. dynamic obstacles, multiple inner-connected
components). In addition, it may be necessary to dynamically
add or remove robots from the swarm without engineering
the swarm in advance to ensure uniquely identified robots.
For these cases, we consider distributed leader selection
and computation of the MVEE with anonymous robots that
don’t rely on a fixed graph topology. Again, we discuss two
approaches with CH-KY and KY core sets respectively.

1) CH-KY Approach (Anonymous): Each anonymous
swarm robot can execute asynchronous distributed Algo-
rithm 3 to identify CH-KY core set for the swarm. The
algorithm takes as input Hu, which is a set of points that
describe the geometry of the robot itself. If robot geometry
is not important, this can just be the position of the robot’s
centroid. After each robot initializes its estimate of the
convex hull vertices (CH core set HS ) and CH-KY core
set (CS ) for the robot swarm (line 2), it propagates this
message of CH core set to its direct neighbours (line 3), and

then falls into the loop (lines 4–10) that for each received
message it keeps updating its CH and CH-KY core set and
broadcasting the updated CH core set message to others until
the received CH core set is identical to its current estimate,
which eventually causes the algorithm to implicitly terminate
due to that the CH core set for each connected component
is unique. The algorithm does not assume that the graph
topology is fixed during execution.

Algorithm 3 Distributed CH-KY Core Set Selection with
Anonymous Robots
1: procedure DISTRIBUTEDANONYMOUSCHKY(Hu)
2: HS ←Hu, CS ← CORESET(Hu)
3: BROADCASTMSG(HS)
4: while HS′ ← RECVMSG() do
5: if HS 6= HS′ then
6: HS ← CONVEXHULL(HS ∪HS′ )
7: CS ← CORESET(HS)
8: BROADCASTMSG(HS)
9: end if

10: end while
11: end procedure

2) KY Approach (Anonymous): Each anonymous swarm
robot can execute asynchronous distributed Algorithm 4
to identify the KY core set for the swarm. Each robot
communicates and updates its KY core set estimate until the
estimate agrees with all of its neighbors. As discussed in the
termination analysis in Theorem 2 for the KY approach with
uniquely identified robots, this exchange of information will
eventually result in all robots agreeing on single KY core set
and hence lead to the termination of the algorithm.

Algorithm 4 Distributed KY Core Set Selection with Anony-
mous Robots
1: procedure DISTRIBUTEDANONYMOUSKY(Cu)
2: CS ← Cu
3: BROADCASTMSG(CS )
4: while CS′ ← RECVMSG() do
5: if CS 6= CS′ then
6: CS ← CORESET(CS′ ∪ CS ∪ Cu)
7: BROADCASTMSG(CS )
8: end if
9: end while

10: end procedure

Similar to Algorithm 3, Algorithm 4 does not assume the
communication graph topology is fixed, but it does assume
that robot do not move during execution. Compared to Al-
gorithm 1 and Algorithm 2 which require uniquely identified
swarm robots, even though Algorithm 3 and Algorithm 4 are
simpler, their lack of use of the graph structure usually results
in a larger number of messages transmitted during execution.
Note that the function CORESET() may also implement other
algorithms such as the minimal core set algorithm [9] (for
d = 2) and be proven to converge similarly to the proof of
Theorem 2.

Remark 1: If the robot position information is noisy, each
robot can maintain a particle set (e.g. for particle filter),
instead of the deterministic point set formulating its body, to
approximate the belief distribution of the robot’s position and



form its initial core set estimate. In this way, the proposed
algorithms can generate a core set whose MVEE contains
all hypotheses of all robot positions that characterizes the
swarm boundary.

VI. RESULTS

A. Simulation Results

Figure 1 shows the distributed KY core set algorithm
implemented on a simulated robot swarm with 35 robots
labeled with their UIDs, where each robot is only able to
communicate with its direct neighbours due to its limited
communication range R = 25. The communication graph
and the spanning tree for the system is shown in Figure 1a. In
simulation, we track “time steps” for the purpose of estimat-
ing the time to convergence for each algorithm. At each time
step every robot will handle all of its received messages from
the last “time step” and send out new messages as determined
by the algorithm. As shown in Figure 1a, after n time steps,
where n is equal to the maximum hops from leader in the
graph (n = 5 in this case), the distributed KY algorithm will
implicitly form a complete spanning tree (red edges) in the
graph rooted at the black robot with UID 1. Figure 1b shows
the intermediate state of the algorithm at the same time step
T = 5, where there are still five different hypothesis core
sets each producing one of the blue ellipsoids. At time step
T = 9, Figure 1c shows that the algorithm terminates (no
more messages sent) having converged to one specific KY
core set consisting of 4 robots (red) that can well characterize
the swarm boundary. For comparison, the distributed CH-KY
core set algorithm was also implemented on the same swarm.
As in the preceding discussion, although the selected CH-KY
core set is identical to the distributed KY core set, only the
robot with minimum UID, instead of all the robots, knows
the CH-KY core set in the CH-KY algorithm.

To further compare the performance of each algorithm in
a robot swarm with / without UIDs, 1000 simulation trials
were conducted with each trial consisting of a randomly
distributed robot swarm containing 50 robots. For each trial,
we ran the distributed KY, distributed CH, distributed CH-
KY and centralized KY algorithms on the swarm with UIDs
and then the distributed anonymous KY and distributed
anonymous CH-KY algorithm on the same swarm without
UIDs (anonymous). In particular, for this simulation with
planar robots, an optimal (minimum size) core set can be
computed using the centralized algorithm in [9], which
served as a benchmark for the minimal core set size that
can be achieved for each trial.

The core set size comparison is given in Figure 2a. As
proven in the preceding discussion, the converged core sets
from distributed KY, distributed CH-KY, distributed anony-
mous KY and CH-KY algorithms are identical to the one
computed from the centralized KY algorithm. In addition, the
proposed KY-based distributed algorithms identify core sets
that are minimum size (match the benchmark) most of the
time. Since our algorithms are derived from the centralized
KY algorithm, they are directly applicable to both 2D and
3D robot swarms, rather than being limited to 2D as in [9].

(a) (b)

Fig. 3: Distributed algorithms running on 10 TurtleBots. Robots with LEDs
lit red are not in any core set. (a) Distributed KY algorithm results. Robots
with LEDs lit green are in the KY core set. (b) Distributed CH-KY algorithm
results. Robots with LEDs lit blue are in the CH-KY core set. Robots with
LEDs lit green are in the CH core set, but not KY core set.

Time (s) Mess. Transmitted Ave. Mess. Size (bytes)
KY 9.74 881 192

CH-KY 3.96 60 191
Anonymous KY 8.54 1045 95

Anonymous CH-KY 5.27 533 101

TABLE I: Experimental results summary. Convergence time, number of
messages transmitted and average message size for each of the distributed
algorithms are reported. In all cases, the final core set included 4 robots.

With the proposed algorithms the size of the core set is still
independent of the number of robots and in large-scale robot
swarms it would still return a small set of boundary robots.

In Figure 2b–Figure 2d, algorithm performance on
communication-related metrics is reported. The message size
is represented by the number of floating point numbers trans-
mitted in one message (e.g. IDs, position coordinates). Since
each message includes a core set estimate, message size
also indirectly reflects the intermediate core set size for each
algorithm. In Figure 2b, note that the anonymous distributed
algorithms converge in fewer communication rounds (time
steps), but as shown in Figure 2c, the average number of
messages transmitted across trials is significantly higher than
for algorithms using uniquely identified robots.

B. Experimental Results

To evaluate our algorithms on real robots, we conducted
experiments on a swarm of 10 TurtleBots running the Robot
Operating System (ROS). Each TurtleBot was assigned a
unique UID (only for experiments involving Algorithm 1
and 2) and communicated with its neighbours in a predefined
communication graph. Each TurtleBot estimated its position
from an Extended Kalman Filter using onboard sensor mea-
surements (wheel encoders, gyroscope). Using the algorithms
described in Section V, the TurtleBots autonomously iden-
tified a representative core set to generate a MVEE for the
swarm. Qualitative results are shown in Figure 3.

Table I summarizes quantitative results from experiments
on 10 TurtleBots. All algorithms returned a core set consist-
ing of 4 robots. The average message sizes for anonymous
KY and anonymous CH-KY algorithms are much lower than
KY and CH-KY with UIDs respectively. However, since
the algorithms for anonymous robots do not exploit any
communication graph structure (spanning tree), the number
of messages transmitted during their execution is much
higher than their UID counterparts.



(a) (b) (c)

Fig. 1: Simulation Example on a robot swarm with 35 uniquely identified robots. (a) Robot swarm communication graph (grey) and spanning tree (red) at
time step T = 5. (b) Intermediate state of the estimated MVEE for the swarm at time step T = 5. Blue ellipses show individual robot’s current MVEE
estimates and red robots are members of the current KY core set estimates. (c) Final MVEE (blue ellipse) formed from KY core set (red) at time step
T = 9. Robots belonging only to the CH core set are marked by green.
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Fig. 2: Simulation Results Summary.

VII. CONCLUSION

We developed four asynchronous distributed algorithms
for information leader selection in swarm robot systems
based on local communication and considering both cases
of uniquely identified robots and anonymous robots. Our
algorithms identify a small core set of robots which are a
representative subset of robots at the boundary of the swarm
that may be communicated back to the human operator to
generate an MVEE that is guaranteed to enclose all robots in
the swarm. Key performance properties (e.g. execution time,
average message size, total number of messages transmitted)
and convergence of the proposed algorithms were explored
and proven. The performance for the algorithms was evalu-
ated in both simulations and experiments.
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