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Abstract— We consider the problem of online environmental
sampling and modeling for multi-robot sensor coverage, where
a team of robots spread out over the workspace in order
to optimize the overall sensing performance. In contrast to
most existing works on multi-robot coverage control that
assume prior knowledge of the distribution of environmental
phenomenon, also known as density function, we relax this
assumption and enable the robot team to efficiently learn the
model of the unknown density function on-line using adap-
tive sampling and non-parametric inference such as Gaussian
Process (GP). To capture significantly different components of
the environmental phenomenon, we propose a new approach
with mixture of locally learned Gaussian Processes for col-
lective model learning and an information-theoretic criterion
for simultaneous adaptive sampling in multi-robot coverage.
Our approach demonstrates a better generalization of the
environment modeling and thus the improved performance of
coverage without assuming the density function is known a
priori. We demonstrate the effectiveness of our algorithm via
simulations of information gathering from indoor static sensors.

I. INTRODUCTION

Multi-robot systems are capable of doing complex tasks
and have been widely used in applications such as envi-
ronmental sampling [1], coverage [2], and others, in which
the robots employ local communication or control laws to
achieve some collective goals. In this paper we are interested
in the Multi-Robot Sensor Coverage problem [2], [3], [4],
[5], where a group of robots are deployed in an environment
from given starting configurations and then seek for the final
optimal placements such that the overall sensing performance
over the environmental phenomenon from those particular
locations is maximized, which is also known as the Loca-
tional Optimization problem [6]. Although the Multi-Robot
Sensor Coverage problem [2] and its variants [3], [5] have
been extensively studied with the optimal solutions of Cen-
troidal Voronoi tessellation (CVT) [8], the results are often
based on the assumption that the density function is known
beforehand, which may not be applicable in real-world sit-
uations where the robots operate in unknown environments.
This motivates the need for taking samples along with the
coverage control law so as to efficiently learn the distribution
of environmental phenomenon via statistical models such as
GP, while at the same time allowing each robot to estimate its
current belief of the optimal sensing locations. The problem
of navigating robots to collect the samples that best describe
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Fig. 1: Three robots are deployed and navigate to locations that maximize
the sensing/coverage performance over environmental phenomenon such as
temperature in the map. The upper layer represents the actual temperature
distribution interpolated from 54 deployed stationary sensors in the Intel
Berkeley Lab [7]. The lower layer represents the 2D multi-robot sensor
coverage scenario with projected heat map of the temperature distribution.

the environment model is referred to as the informative
sampling [9], or adaptive sampling [10] if the sampling
strategy updates accordingly based on the on-line observed
sample value. On the other hand, due to the distributed nature
of multi-robot systems and spatially neighboring correlations
of locations nearby, each robot could have a different GP
model that best describes the density function for its local
data segment. In contrast, modeling with uni-model GP [11]
may have poor prediction performance when the density
function is significantly different at various locations. It is
challenging to 1) efficiently learn the density function on-
line while optimizing the coverage performance, and 2) mix
various GPs from all robots for an input-dependent model.
In this paper, we present a novel approach to tackle these
challenges by combining the Multi-Robot Sensor Coverage
Control with adaptive sampling and online learning using
mixture of GP models.

We consider the example scenario shown in Fig. 1, where
a group of robots move in an environment to find the best
stationary placements with maximum sensing performance
for monitoring the environmental phenomenon such as tem-
perature over the map. It is desired for the robots to spread
out while keep as close as possible to the centroid of each
assigned sub-region determined by 1) the Euclidean distance
between the robots and all points in the region (Voronoi



cell) and 2) the temperature distribution [2], [5]. Since we
do not assume the temperature distribution as a prior, the
robots need to learn the temperature distribution on-line by
continuously taking observations. For efficient sampling and
modeling, the robots are desired to move towards the places
that have best predicted sensing performance and are most
informative to reduce further prediction uncertainty based
on the learned non-parametric model. This differentiates our
paper from other recent works [4], [12] that still assumes
some form of the parameterized density function. We also
notice from Fig. 1 that the temperature distribution consists
of relatively smooth background and two peaks reflecting
higher temperature observations, which can be locally cap-
tured by the corresponding robot close by but difficult to be
accurately represented using uni-model GP as mentioned in
[13].

This paper presents two main contributions of our novel
approach. First, we couple the adaptive sampling with
information-theoretic criterion into the multi-robot coverage
control framework for efficient model learning and simul-
taneous locational optimization with reduced number of
samples in an initially unknown environment. Second, we
present an algorithm that allows for collaboratively learning
the generalized model of density function using Mixture
of GPs with hyper-parameters learned locally from each
robot. The resulting GP mixture model provides improved
prediction accuracy and reduced model uncertainty for com-
plex distributions with significantly distinctive components,
and hence increases the multi-robot coverage performance.
We provide experimental results using a public dataset [7]
from Intel Berkeley Research Lab demonstrating the superior
performance of our approach.

II. RELATED WORK

In the multi-robot sensor coverage problem [2], [3], the
sensing performance to optimize is determined by the dis-
tance between each robot and its assigned point to sense
assuming negative correlation as well as the density function
of the points. Solutions of such a locational optimization
problem are known as the centroid of the Voronoi tessellation
[8] and the algorithm is often referred to as the move-
to-centroids controller navigating the robots towards the
centroids of their Voronoi cells. However, most of them
assume the prior knowledge of either the environmental
phenomenon (often modelled as density function) [2], [5], or
basis functions of density function [12], which could be im-
practical in real-world application. To allow for online model
learning, recent works [4] have proposed to use two-stage
decoupled processes that embed an on-line sampling process
to first obtain an estimate of the density function and then
follow the move-to-centroid control law in performing the
multi-robot coverage. As mentioned in [11], this approach
could demand unnecessarily larger number of samples to take
before reaching the optimal locations.

To improve sampling efficiency, a very recent work [11]
proposed to use informative adaptive sampling within dy-
namic Voronoi partitions for the robots, so that each robot

will only need to take the best samples close by. However, in
[11] the uni-model GP for prediction was built on aggregated
samples collected from all robots, which may not provide
accurate prediction regarding distinctive distribution compo-
nents as shown in Fig. 1. To develop an input-dependent
model, the general approach of mixture of GPs was proposed
in [14] and has been applied to single robot environment
modeling [13] that is able to accurately represent complex
distributions with the linear combination of different GP
models. Inspired by these works, we propose to employ
the adaptive sampling with information-criterion for efficient
modeling of the unknown environmental phenomenon and
extend the mixture of GPs to multi-robot model learning
with locally optimized hyper-parameters to improve the
environment modeling efficiency and accuracy in solving the
mutli-robot sensor coverage problem.

III. PROBLEM STATEMENT

Consider a set of n robots moving in a bounded en-
vironment Q ⊂ R2 and assume the environment can be
discretized into a set of point q ∈ Q, with the position of each
robot i ∈ {1, 2, . . . , n} denoted by xi ∈ Q. We assume the
environment is free of obstacles and can be partitioned into
n Voronoi cells, as done in most multi-robot sensor coverage
algorithm [2], [3], [5].

Vi = {q ∈ Q|‖q − xi‖ ≤ ‖q − xj‖,∀j 6= i} (1)

where ‖·‖ is the l2-norm. Each Voronoi cell Vi corresponds
to its generator robot xi who will be responsible for sensing
the points inside the cell q ∈ Vi.

Regarding the distribution of environmental phenomenon
on each point of interest q, there exists an unknown density
function φ(·) : Q→ R+ that maps the location information
q to the scalar value of the phenomenon φ(q). Intuitively, in
environmental monitoring task we want each robot to stay
close to the area with higher phenomenon value φ(·) since
the sensing performance usually degrades as the distance
between the robot and the point to sense increases. As (see
(1)) each point is assigned to one robot, the cost function
of static multi-robot coverage can be formally defined as
follows [2], [3].

H(xi, . . . , xn) =
n∑
i=1

∫
q∈Vi

‖q − xi‖2φ(q)dq (2)

Hence the lower H(xi, . . . , xn) the better. Then by taking
the gradient of (2), we have the local optimal solutions for
minimizing H(·) for all i ∈ {1, . . . , n} as follows.

x∗i = arg minH(xi, . . . , xn) =

∫
Vi
qφ(q)dq∫

Vi
φ(q)dq

= CVi (3)

where CVi
∈ R2 is also referred to as the centroid of each

Voronoi cell Vi. Although this critical point of H is a local
minimum, due to the intractable solution (NP-hard) to the
global optimum H the local optimal solution x∗i is often
considered optimal (see [3], [5]). The decentralized gradient-
based move-to-centroid controller [2] has been proven to
navigate the robots to the local optimal locations.

ẋi = kp(CVi − xi) (4)



where kp is a user-defined control gain. Note that the realiza-
tion of φ(q) will not be available to the robots unless q = xi
and without loss of generality we ignore the intermediate
visited points between consecutive waypoints by the robots.
To that end, the objective is to drive the robot towards the
locations with high predicted value of the phenomenon and
informativeness so as to efficiently learn the distribution
φ(·) while simultaneously optimizing H(·) with (4). In other
words, we will use the optimal controller with the same form
as in (4), but with a different specification of CVi

.

IV. GAUSSIAN PROCESS REGRESSION FOR SINGLE
ROBOT ENVIRONMENT MODELING

In this section, we introduce the modeling of density
function by a single robot with its locally sampled training
data set.

A. Gaussian Process Regression

A common approach for modeling spatial phenomena is
GP regression. Such a natural non-parametric generalization
of linear regression allows for modeling the hidden mapping
from training data to the target phenomenon with consider-
ation of uncertainty [15]. Assume the target phenomenon,
such as temperature in our case, satisfies a multivariate joint
Gaussian distribution [16], [17]. The learned GP model from
training data outputs the Gaussian probability distribution of
the phenomenon φ(q) specified by mean function µ(q) =
E[φ(q)] and covariance function k(q, q′) = E[(φ(q) −
µ(q))T (φ(q′)− µ(q′))] for any query data.

Formally, let Ṽi = [qi1, . . . , q
i
Ni

]T be the set of Ni collected
samples associated with observed noisy values of tempera-
ture yi = [yi1, . . . , y

i
Ni

]T by robot i. Each observation is
noisy y = φ(q) + ε with ε ∼ N(0, σ2

n) assuming the mean
function to be zero without loss of generality. To that end,
given a testing location qtest ∈ Q, we have the conditional
posterior mean µqtest|Ṽi,yi

and variance σ2
qtest|Ṽi,yi

as fol-
lows from the learned GP model describing the Gaussian
distribution of φ(qtest) ∼ N (µqtest|Ṽi,yi

, σ2
qtest|Ṽi,yi

).

µqtest|Ṽi,yi
= k(qtest)

T (KṼi
+ σ2

nI)
−1yi

σ2
qtest|Ṽi,yi

= k(qtest, qtest)− k(qtest)
T (KṼi

+ σ2
nI)
−1

· k(qtest)

(5)

where k(qtest) = [k(qi1, qtest), . . . , k(qiNi
, qtest)]

T with the
covariance (kernel) function k(q, q′) that captures the correla-
tion between q and q′. KṼi

is the positive definite symmetric
kernel matrix [k(q, q′)]q,q′∈Ṽi∪qtest . In particular, we use the
following squared-exponential kernel function to specify the
inter-sample correlation.

k(q, q′) = σ2
fe
− (q−q′)T (q−q′)

2l2 (6)

where the hyper-parameters l and σf are length-scale and
scale factor, respectively. Hence, each robot i maintains its
own GP model learned from local samples {Ṽi,yi} and
the hyper-parameters of (σ2

n, σ
2
f , l) are optimized from the

local training data {Ṽi,yi}, which will be introduced in
Section IV-B.

B. Estimation of Hyper-Parameters

The GP model of each robot i is determined by its local
training data set {Ṽi,yi} and local hyper-parameters denoted
by θi = {σ2

n, σ
2
f , l}. In particular, the hyper-parameters are

desired to be the optimizer such that the kernel function
can accurately describe the underlying phenomena. In order
to improve computation efficiency, we assume the hyper-
parameters for each robot are optimized using the local
training data of the robot itself, regardless of the GP mixture
process which we discuss in Section V-A. One common
approach for learning the hyper-parameters in a Bayesian
framework is to maximize the log of the marginal likelihood
as follows.

θ∗i = arg max
θi

log p(yi|Ṽi, θi)

= −1

2
yi
T K̃−1

Ṽi
yi −

1

2
log |K̃Ṽi

| − Ni
2

log 2π
(7)

where K̃Ṽi
= KṼi

+ σ2
nI. The maximizer of (7) can be

computed by taking the partial derivatives of the marginal
likelihood p(yi|Ṽi, θi) w.r.t. the hyper-parameters θi as de-
scribed in [18].

V. MIXTURE OF GAUSSIAN PROCESSES MODELS IN
MULTI-ROBOT COVERAGE

Given the local GP model learned by each robot, in this
section, we introduce the centralized learning step of mixture
of GPs for every robot, assuming knowledge of all the
robots’ data available through inter-robot communication,
and then compute the corresponding decentralized control
and sampling strategy built on the GP mixture model.

A. Mixture of Gaussian Process Models and Adaptive Sam-
pling Strategy

The mixture of GP models proposed in [14] is a linear
combination of multiple GP models. From the Section IV,
we have a set of locally learned GP models {GP1, . . . ,GPn}
from all n robots as aforementioned and denote P (z(q) = i)
as the probability of any random point q ∈ Q being best
described by the ith GP model from robot i. Then we have
the GP mixture model defined by the conditional posterior
mean µ∗

q|Ṽ ,Y
and variance σ∗2

q|Ṽ ,Y
for any location q ∈ Q

as follows.

µ∗q|Ṽ ,Y =

n∑
i=1

P (z(q) = i) · µq|Ṽi,yi

σ∗
2
q|Ṽ ,Y =

n∑
i=1

P (z(q) = i) · (σ2
q|Ṽi,yi

+ (µq|Ṽi,yi
− µ∗q|Ṽ ,Y)2)

(8)

where {Ṽ ,Y} represents the set of collected samples by all
the robots with Ṽ = {Ṽ1, . . . , Ṽn} and Y = {y1, . . . ,yn}.
To that end, for any point q its actual temperature φ(q)
is assumed to be sampled from the Gaussian distribution
N (µ∗

q|Ṽ ,Y
, σ∗2

q|Ṽ ,Y
). And the common approach for efficient

sampling and modeling is to navigate the robots to the
point q∗ = arg maxµ∗

q∗|Ṽ ,Y
or q∗ = arg maxσ∗2

q|Ṽ ,Y
to

maximize the sampled value of phenomenon or minimize
the prediction uncertainty.



In our problem, we want to simultaneously sample the
area with high value of phenomenon to get closer towards
the Voronoi centroid CVi while reducing the uncertainty for
the learned model of the density function φ(·). Here we use
the Gaussian Process Upper Confidence Bound (GP-UCB)
[19], a sequential stochastic optimization strategy that trades
off between exploration (reduce prediction uncertainty) and
exploitation (maximize sampled value). Each location q is
evaluated with the information-theoretic criterion defined as
follows.

h(q) = µ∗
q|Ṽ ,Y

+ βσ∗2q|Ṽ ,Y (9)

where β is a parameter relates to the current sampling
iteration number and regret bound [19]. When β is specified
by a much higher value, then our solution becomes similar
to the informative sampling [4] in which we want to reduce
the model uncertainty before switching to the static coverage
optimization. The GP-UCB strategy works by sequentially
sampling point q that maximizes (9) and immediately update
the GP model accordingly, such that we will be able to reach
a balance by such an adaptive sampling strategy between
reducing future GP model uncertainty and maximizing sam-
pled value. However, our primary goal is to minimize the
sensing cost function H(·) in (2) by approaching unknown
centroid of Voronoi cell CVi

for each robot i. Thus, we
modify the optimal solution in (4) by replacing unknown
density function realization with the GP-UCB evaluation (9),
which yields our adaptive sampling strategy for each robot
i as follows.

q∗i =

∫
Vi
qh(q)dq∫

Vi
h(q)dq

= C̃Vi
(10)

And the local coverage control law for each robot i becomes

ẋi = kp(C̃Vi − xi) (11)

In this case, the robots are able to simultaneously consider
density function learning and sensing performance optimiza-
tion. To solve for the feedback control law (11), it boils
down to optimize the mixture of GP model by 1) finding
the appropriate weight distribution P (z(q) = ·), and 2)
modifying local GP model with training data from other
robots for generalizing the overall regression model. To
simplify our discussion, we assume the robots are always
connected as in [20] and are able to share their sampled data
by communicating with its direct Voronoi neighbors [4].

B. GP Mixture Model Learning with Expectation-
Maximization (EM) for Prediction

The EM algorithm [13], [14] has been widely used for es-
timating hidden and observable variables, such as the weight
distribution of Gaussian Mixture Models for unsupervised
learning. It consists of two stages such as the estimation (E)
stage and the maximization (M) stage and it keeps looping
until convergence under some threshold [14]. In our problem,
we initialize the probability of weight distribution for any
given query data point qj by setting

P (z(qj) = i) ≈
{

1 if qj ∈ Ṽi
0 Otherwise

∀ i = 1, . . . , n (12)

Then in the E-stage, the algorithm updates the probability
P (z(qj) = i) by computing the marginal likelihood of
each data qj for all GP models. To simplify the notation
we use Ni(qj) to define the probability of observation of
qj regarding the local GP model GPi. Then we have the
P (z(qj) = i) update rule over the previous one as follows.

P (z(qj) = i) :=
P (z(qj) = i) · Ni(qj)∑n

k=1 P (z(qj) = k) · Nk(qj)
(13)

Then in the M-stage, the local GP models will be modified
by embedding the updated probability of each query point qj
to the GP model updates steps (5). Here we present the main
result for updating model GPi from [13], [14] as follows.

µqtest|Ṽi,yi
= k(qtest)

T (KṼi
+ ΨiI)−1yi

σ2
qtest|Ṽi,yi

= k(qtest, qtest)− k(qtest)
T (KṼi

+ ΨiI)−1

· k(qtest)

(14)

where
Ψi

jj =
σ2
n

P (z(qj) = i)
(15)

It is noted that by modifying the value of diagonal hyper-
parameter Ψi

jj from local value of σ2
n the effects of each

training data to the local GP models are adjusted so as to
account for the observations for the points outside the local
traning data set. Once the EM algorithm converges, we will
have the new training data set consisting of {qj} and the
corresponding weight distribution P (z(qj) = i) for each
updated GP model i. With such training data set and the
updated GP model, for any new query data q∗j , we can predict
its corresponding weight distribution P (z(q∗j ) = i) as well as
the expected value from local GP models (14), and then feed
into the GP mixture model (8) to further yield the updated
control law (10)-(11) to govern the motion of the robots.

VI. RESULTS

In this section, we present several simulation results on the
benchmark real-world dataset from Intel Berkeley Lab [7]
with MATLAB toolboxes: the GPML [18]. The dataset
contains sensory data collected from 54 sensors in an office
area between Feb 28th and Apr 5th, 2004. The data includes
the time-stamped readings such as sensor 2D locations,
temperature, humidity, light, and voltage. In our particular
tasks, we use the 2D location information (meters) of each
sensor with the temperature readings (degrees Celsius) as the
ground truth of the environmental phenomenon over map and
compare our algorithm performance to other approaches.

First we consider an example where we have 3
robots deployed from random starting points (19.78, 6.84),
(10.22, 11.89) and (15.09, 29.90) to find the optimal final
configurations for stationary sensing as shown earlier in Fig.
1, where the temperature distribution has two peaks around
the top corners. Once deployed the robots are governed
by our adaptive coverage controller (11) with mixture of
GPs (kp = 0.5, β = 10) to simultaneously learn the
environmental model and try to approach the actual centroid
of each Voronoi cell based on its own model inference.
As shown in Fig. 2(a) and (d) the robots first assume a



(a) Initial configurations (b) Converged final configurations
(c) Actual temperature distribution

(d) Initial prediction variance by GP mixture
model

(e) Final prediction variance by GP mixture
model

(f) Final prediction variance by uni-model GP

(g) Prediction from uni-model GP (h) Prediction from GP mixture model (i) RMS error comparison
Fig. 2: An example of the multi-robot sensor coverage and environment modeling results by using GP mixture model with comparison to uni-model GP.
(a) Initial and (b) final configurations of the robots (marked by blue circles) with history footprints by controller using GP mixture model. The background
heatmap indicates the predicted temperature distribution based on the sampled data. Edge of Voronoi cells and the optimal locations (centroids of Voronoi
cells from actual temperature distribution) are represented by red dashed lines and red stars, respectively. (c) Actual temperature distribution over map.
(d) Initial and (e) final predicted variance distribution by GP mixture model. (f) Converged prediction variance from uni-model GP. (g)-(h) Temperature
prediction comparison with standard deviation from (g) uni-model GP and (h) GP mixture model. (i) RMS error comparison.

(a) (b) (c) (d)

Fig. 3: Comparisons of RMS error, sensing cost, average prediction variance and maximum prediction error occurred v.s. different number of robots.



uniform distribution of temperature over the map based
on the data collected from the initial configurations with
little uncertainties. Note that the temperature from each
discrete point can only be acquired when the robot chooses
it as the next point to visit (sample) except for the initial
configuration. The converged results are shown in Fig. 2(b)
in comparison with the actual temperature distribution in Fig.
2(c) and the prediction variance is also given in Fig. 2(e).
It is noted that the converged configuration is very close to
the optimal one from the actual temperature distribution due
to our adaptive sampling algorithm that trades off between
uncertainty reduction and centroid approaching. Moreover,
although none of the robots actually visited the top corner
areas with much higher temperature, the mixture of GPs is
able to identify the prediction differences among the robots
over similar areas and adjust the mixture accordingly to
best fit the various local features, by predicting a higher
temperature with higher uncertainties over those areas in Fig.
2(e). In contrast, using uni-model GP could ignore the local
features and hence the prediction variance is almost the same
over any unvisited areas as shown in Fig. 2(f).

To better understand the performance, we provide the
comparisons on local temperature prediction as shown in
Fig. 2(g)-(h). Note that although the uni-model GP can
have accurate prediction over places close to the sampled
points, it fails to recognize the peak temperature in areas
surrounding the robots, which can be identified by the
mixture of GPs. We also compare the root-mean-square error
(RMS) in Fig. 2(i), where the mixture of GPs shows a better
performance with lower prediction error. To further compare
our algorithms with other sampling approaches, we run the
simulations with different number of robots under different
algorithms, including the aforementioned uni-model GP and
the Entropy minimization algorithm [11] that seeks to find
the point in Voronoi cell which best reduces the model
prediction uncertainty. The results are shown in Fig. 3 and
our Mixture of GPs algorithm always outperforms the uni-
model GP algorithm. Although the algorithm in [11] has
a better sampling performance w.r.t. model uncertainty, the
resultant sensing cost is much higher in Fig. 3(b) and hence
it cannot be directly applied to our problem. The reason lies
in that it prefers areas with higher uncertainty to the ones
with higher predicted value, and due to the greedy based
coverage control law it could converge to the locations that
are further away from the areas with peak temperature.

VII. CONCLUSION

In this paper, we present an adaptive sampling algorithm
for learning the density function in multi-robot sensor cov-
erage problem using Mixture of Gaussian Processes models.
By using the information-theoretic sampling criterion we
are able to modify the traditional coverage control law to
consider the uncertainty as well as the potential environ-
mental phenomenon inferred from the environmental model
learned on-line. Besides, considering significantly different
components that may exist in the real-world environmental
phenomenon, we propose to employ the mixture of GP

models to capture local features for the global distribution
by optimizing the linear combination of GP models locally
learned by the robots. Simulation results have shown the
effectiveness of our algorithm compared to other approaches.
Despite the decentralized coverage control law, the learning
of mixture of GPs in this work is still centralized and requires
data from all the robots. In the future, we will investigate
fully distributed GP mixture model learning algorithm.
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