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Abstract We develop algorithms for inferring long-term intentions and parameters of local
collision-avoidance behavior of agents in a multiagent system from their trajectories. This
problem is challenging because an agent’s observed trajectory only partially manifests its
long-term task; it also contains adjustments made by the agent to ensure collision avoidance
with other agents and obstacles in the environment. Since an observer would have no means
to determine the magnitude of these adjustments, it is difficult to isolate the task-oriented
component from the observed motion. To circumvent this problem, we model the agent’s
dynamics using a reactive optimization whose objective function captures the long-term task
while its constraints capture collision-avoidance behavior. We develop two robust mixed-integer
programming algorithms that infer the task and safety related parameters of this optimization
problem from the positions and velocities of the agents. These algorithms are validated on
synthetic datasets using parameter estimation errors, displacement errors and computation
time as metrics. We further test these algorithms on a dataset of real human trajectories. We
show that the learned parameters capture the true underlying pedestrian dynamics by rolling
out the learned model and showing similarity between the ground truth trajectories and the
reconstructed trajectories.

Keywords: Inverse Optimization, Safe Control, Human Motion Prediction, Optimal Control.

1. INTRODUCTION

As robots are envisioned to co-exist with humans, frequent
close-proximity interactions amongst robots and humans
are inevitable. One critical challenge in programming
the behavior of robots around humans is ensuring that
the robots’ motions are safe, i.e., avoid collisions with
humans. This is all the more pressing when the underlying
dynamics models of humans are unknown. This is because
the safety guarantees of most model-based control design
methods assume that the dynamic models of other agents
(including humans) are known a-priori. Thus to ensure
that such guarantees are respected, it is necessary to
develop methods for inferring the dynamics of these agents
so that the control engineer can use those models to
predict future behaviors of humans for generating safe
robot motions.

In this paper, we consider the problem of dynamics infer-
ence for a group of heterogeneous agents such as pedes-
trians. The objective is to identify a set of behavior and
safety-related parameters for each agent’s dynamics model
that describe their (i) long-term intention (such as goal,
desired velocity etc.), and (ii) collision avoidance behav-
ior around other agents or walls, (e.g. underlying safety
margin, aggressiveness etc). From the perspective of an
observer watching these agents, this inference problem is
challenging because the motion that the observer watches
comes through the filters of goal-directed behavior and

safety combined. Because of this, the observer cannot
tell the extent to which safety constraints manifest in
the agent’s motion. Therefore, the observer must learn
the safety margins of each agent as well to perform this
dynamics disaggregation.

To address this challenge, we take recourse to control
barrier function-based quadratic program (CBF-QP) to
model the dynamics of each agent Wang et al. (2017).
CBF-QP models an agent’s intent to follow a nominal task-
oriented plan as closely as possible unless this plan causes
the agent to come too close to another agent or a wall
Ames et al. (2019); Cheng et al. (2020); Luo et al. (2020);
Lyu et al. (2021). It also captures the aggressiveness of
an agent i.e. the extent of its unwillingness to sacrifice
optimality for attaining collision-free motions. Finally,
it models cooperation among different agents to achieve
collision-free behavior.

We develop two mixed-integer quadratic programming
(MIQP) based algorithms to learn the parameters of the
CBF-QP based model describing each agent’s behavior
from its observed trajectories. This allows for individu-
ally learning the parameters of the task-oriented compo-
nent and the collision avoidance-related component of the
agent. We use stationarity error and prediction error as
heuristics to learn parameters that best explain the ob-
served measurements. Our proposed algorithms are decen-
tralized, robust to model mismatch and do not require long



training times (we show empirical results to support these
claims). Additionally, by virtue of being model-based, the
parameters we learn have an intuitive physics-based inter-
pretation. Because of this feature, our inference approach
enables reliable prediction that is generalizable to unseen
scenarios, e.g. it describes how an agent will behave when
entering a new scenario with a different set of nearby
obstacles. Lastly, in addition to learning these parameters,
our algorithm automatically learns which obstacles/agents
in the environment influence the ego agent’s dynamics
from its velocity. Identification of these interest entities is
what makes our algorithms integer-programs. We validate
these algorithms on several simulated datasets and show
small values of parameter reconstruction errors and small
average and final displacement errors. Next, we evalu-
ate them on a pedestrian dataset called THöR Rudenko
et al. (2020a) which contains human motion trajectories

recorded in a controlled indoor experiment at Örebro Uni-
versity. These trajectories exhibit social interactions that
occur in populated spaces like offices, thus making them
suitable for evaluating our algorithms. Our results show
that the learned parameters capture pedestrian dynamics
accurately, which we demonstrate by showing low values
of average and final displacement errors.

2. RELATED WORK

Among all human motion prediction methods, physics
based models are the most classic, which generate fu-
ture human trajectories based on explicit dynamic models
Rudenko et al. (2020b). Since this paper focuses on in-
ferring the interactive mechanism among agents, we pri-
marily review literature incorporating local agent interac-
tion models into their inference pipeline Rudenko et al.
(2020b). Social Force (SF) model Vasquez et al. (2008);
Luber et al. (2010) is widely used to describe attractive
forces from a goal and repulsive forces from other agents
and obstacles. Grover et al. (2020b,a, 2021) learn task-
related parameters of heterogeneous agents but assume
known safety margins. In Elfring et al. (2014) a sparse
topological map of the dynamic environment consisting of
varying state-destination pairs is generated and used to
infer the most likely goal. For human-agent interactions
in a crowded environment, Oli et al. (2013) proposed a
method to classify each human as aware or not aware to the
agent based on visual cues, which is then used to describe
the sources of the repulsive forces the agent feels from
entities in the environment. However, the classification cor-
rectness on each human affects the prediction performance
greatly. Therefore, a more principled approach is needed
that automates the process of identifying which entities
in the environment influence the ego agent’s dynamics
explicitly.

Compared to social forces approaches considering perpet-
ual and long-range repulsion from other agents, our pro-
posed modeling choice is able to automatically filter out in-
fluence from agents far away from the ego agent in the ego-
agent’s dynamics. Additionally, our model incorporates
repulsion from only those agents/walls in the ego agent’s
dynamics that stand in the way of the ego agent en-route to
its goal, i.e. it implicitly captures directional ‘local gaze’ of
the agents. This computation is completely automated i.e.
our model figures out these interest agents/walls among all
agents/obstacles in the environment automatically.

Approaches based on reachability analysis have also been
explored recently to address the trajectory forecasting
problem. In Zechel et al. (2019), the reachable space of
each pedestrian is determined based on a physical model
and pruned by eliminating areas of static obstacles or other
agents. However, these approaches are generally computa-
tionally expensive. Luo et al. (2019) treats the prediction
task as constrained optimization in traffic agents’ velocity
space and leverages the prediction of human states as an
optimization problem of prediction-related parameters to
account for different human behaviors. To address joint
motion prediction, the concept of linear trajectory avoid-
ance is proposed based on expected point of closest ap-
proach between pedestrians Pellegrini et al. (2009). The
expected point is used as the driving force to perform
collision avoidance between agents. Built upon the idea
of linear trajectory avoidance, Yamaguchi et al. (2011);
Robicquet et al. (2016) further formulate the trajectory
prediction task as an energy function minimization prob-
lem, which considers different motion properties, including
speed and direction. However, these methods rely on hand-
constructed cost functions, which contain scene-dependent
variables that needed to be learned. In our method, we
use basis functions to capture the nominal task-oriented
motion of each agent agent, and we learn the coefficients
of those basis functions from trajectory data. By virtue of
this, there is a less restrictive requirement on parameter
tuning.

The outline of this paper is as follows. In 3, we describe our
model of the dynamics of each agent and pose the task +
safety constraint inference problem. In 4, we propose our
MIQP inference algorithms based on stationarity-residual
and predictability-loss minimization. In 5, we validate
these algorithms on synthetic data sets, compare them
using parameter inference and trajectory reconstruction
errors and evaluate their robustness to measurement noise.
In 6, we show the results of our algorithms on the THöR
dataset. Finally, we conclude in 7 with directions for future
work.

3. MULTIAGENT SAFE TASK-BASED CONTROL
AND INFERENCE PROBLEM

In this section, we propose our model for the dynamics
of each agent in the system. We use CBF-QPs Wang
et al. (2017) to capture the task-oriented objective of each
agent as well as its safety constraints with other agents
and obstacles in the environment. After settling on the
dynamic model, we formalize the inference problem with
respect to this model.

3.1 Agents’ dynamic model

We model each agent as a single integrator that is velocity-
controlled. Suppose there are a total of NA + 1 agents in
the system. Let the position of the agents be xi ∈ R2

and their velocities be ui ∈ R2 ∀i ∈ {1, · · · , NA + 1}. We
assume that their dynamics are given by

ẋi = ui ∀i ∈ {1, · · · , NA + 1} (1)

To keep the discussion simple, we focus on one agent
located at x. This agent has a primary task and we assume
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Figure 1. Sample trajectories produced by (13) with one
rectangular obstacle as a constraint. Increasing γ
makes the trajectory less conservative and makes it
follow the reference controller more closely.

it can accomplish this task by using a reference control ûθ

in (1). We represent this control as

ûθ(x) = C(x)θ + d(x) (2)

Here θ are the parameters capturing the task of that agent
and are in general different for each agent. C(x),d(x)
are some task-oriented basis functions. This representation
is general enough to capture the elementary tasks, for
example:

(1) Reaching a goal position: Suppose that the primary
task is to reach a goal position xd at an exponentially
fast speed governed by a gain kp. A candidate control
that can achieve this is û(x) = −kp(x−xd). This can
be written in a form akin to (2):

ûθ =

[
−xx 1 0
−xy 0 1

]
︸ ︷︷ ︸

C(x)

[
kp

kpxdx

kpxdy

]
︸ ︷︷ ︸

θ

+ 0︸︷︷︸
d(x)

(3)

(2) Maintaining a constant velocity : Suppose the task of
the agent is to maintain a constant velocity vd, then
we can select û(x) = vd. This control expressed akin
to (2) is

ûθ = I︸︷︷︸
C(x)

vd︸︷︷︸
θ

+ 0︸︷︷︸
d(x)

(4)

In addition to the task, this agent is also driven by the
need to stay collision-free with the remaining agents and
obstacles. Next, we describe how we capture these aspects
of the agents’ motion.
Modeling safety with other agents: We assume that
all agents cooperate to achieve collision avoidance amongst
one another while performing their respective tasks. Let
the other agents be located at positions {xo

j} ∀j ∈
{1, 2, · · · , NA}. The ego agent and agent j are collision-

free iff their positions (x,xo
j) satisfy ∥∆xj∥2 ≥ D2

s where
∆xj := x−xo

j and Ds is a desired safety margin. In prior
work Wang et al. (2017), control barrier functions were
used to derive linear constraints on agents’ velocities u for
ensuring inter-agent collision-free behavior. We use these
constraints as is:

AAu ≤ bAγ,Ds
, (5)

where superscript A denotes that these constraints model
safety with other agents. AA ∈ RNA×2, bA ∈ RNA are

defined so that the jth row of AA and jth entry of bAγ,Ds

are

aT
j := −∆xT

j = −(x− xo
j)

T (6)

bj := γ(
∥∥x− xo

j

∥∥2 −Ds
2) ∀j ∈ {1, 2, . . . , NA} (7)

Here γ > 0 is a hyperparameter unique to each agent. In 1,
we illustrate that γ captures the unwillingness of an agent
to compromise on task completion to ensure safety.

Modeling safety with walls/obstacles: Let there be
NO obstacles in the environment, which we assume are
polytopic. We denote them as Pi := {y ∈ R2|AP

i y ≤ bPi }
∀i ∈ {1, · · · , NO}. To model the agent’s safety with the
Pi, we assume that the agent (located at x) tries to stay
Ds distance away from the point on Pi closest to x. This
point can be calculated by the following QP

yO
i = argmin

y
∥x− y∥2

subject to y ∈ Pi ⇐⇒ AP
i y ≤ bPi

(8)

Akin to (5), the following constraints on the ego agent’s
velocity u account for its safety with each obstacle Pi:

AOu ≤ bOγ,Ds
, (9)

where superscript O denotes that these constraints model
safety with obstacles. AO ∈ RNO×2, bO ∈ RNO are defined
such that the ith row of AO and the ith entry of bγ,Ds

are

aT
i := −(x− yO

i )
T (10)

bi := γ(
∥∥x− yO

i

∥∥2 −Ds
2) ∀i ∈ {1, 2, . . . , NO} (11)

Constraints (5) and (9) can be combined as[
AA

AO

]
︸ ︷︷ ︸

A

u ≤
[
bAγ,Ds

bOγ,Ds

]
︸ ︷︷ ︸

b

(12)

To combine the collision avoidance requirements (12) with
the task completion objective (2), we assume that the
agent solves a QP that computes a controller closest to
its reference ûθ(x) and satisfies NA+NO constraints (12)
as follows:

ẋ = u∗ = argmin
u

∥u− ûθ(x)∥2

subject to Au ≤ bγ,Ds

(13)

Going forward, we will assume that each agent in the
multiagent system uses (13) as its underlying dynamic
model. The task+constraint parameters {θ, γ,Ds} are
what distinguish one agent from another. Fig. 1 shows
example trajectories computed by this controller for an
agent with one collision avoidance constraint relative to
a rectangular obstacle. The reference control is û(x) =
−kp(x − xd). To get an intuitive understanding of the
parameter γ, we conducted several simulations of (13)
with increasing values of γ keeping Ds,x0,xd, kp fixed.
It is evident that a large γ makes the trajectory follow the
reference controller more closely while still maintaining Ds

relative to the obstacle. There are several reasons in favor
of using (13) as the candidate model:

(1) The nominal control ûθ(x) represents the agent’s
preferred plan should there be no other agents. This
represents the self-motivated dynamics of that agent.
Thus, having an optimization model the dynamics
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automatically encourages the agent’s intent to follow
this plan as much as possible while also ensuring that
safety is respected if and when other agents show up.

(2) The general representation of the task-oriented con-
trol (2) allows us to capture both linear and nonlinear
behaviors in agent motion. Additionally, we can incor-
porate previously proposed agent dynamics models
into our framework using this representation in (13).

(3) This model implicitly captures the ‘local gaze’ of the
ego agent. In our prior work Grover et al. (2019), we
showed that for the goal reaching task using (13),
agents that do not lie in the way of the ego agent
en-route to its goal do not influence its dynamics i.e.
they lie outside its ‘local gaze’. Thus, this model then
automatically filters out agents far away from the ego
agent that don’t interfere with the ego agent’s task.

3.2 Task + Safety Behavior Inference Problem Formulation

We now state the inference problem for the multiagent
system. In informal terms, an external observer wishes to
understand the parameters of the task + safety constraints
of each agent by tracking its positions and velocities. Let’s
state all assumptions on the observer’s knowledge:

Assumption 1. The observer knows the task functions
C(x),d(x) of ûθ(x).

Assumption 2. The observer knows the form of safety
constraints AA, bAγ,Ds

, AO, bOγ,Ds
except for γ,Ds.

Definition 1 (Multiagent Behavior Inference). The ob-
server’s problem is to infer parameters {θ, γ,Ds} for each
agent by monitoring its position x(t) and the positions of
other agents xo

j(t) ∀j ∈ {1, 2, · · · , NA} over some time.

The observer will use a batch of K signal-response pairs

i.e.

((
x(k), {xo

j(k)}
NA
j=1

)︸ ︷︷ ︸
signal

, u∗(k)︸ ︷︷ ︸
response

)
∀k ∈ {1, 2, · · · ,K} to

compute an estimate of θ, γ,Ds. The focus is on inferring
these for one agent (i.e. the ego agent). The observer
can parallelize the algorithm to infer these parameters
for other agents simultaneously. In the next section, we
propose two algorithms to solve this problem using MIQP.

4. MIQP-BASED ROBUST INFERENCE
ALGORITHMS

The general approach for inferring θ, γ,Ds is to pose
an empirical risk minimization algorithm that uses a
reasonable heuristic as a loss. We propose two algorithms:
the algorithm in 4.1 considers the prediction error as a
heuristic while the algorithm in 4.2 considers a variant
of the KKT loss proposed in Keshavarz et al. (2011)
as a heuristic. Both these algorithms rely on the KKT
conditions of (13). Thus, we state these conditions first
before presenting these algorithms.

Let (u∗,λ∗) be the optimal primal-dual solution to (13).
The KKT conditions are Boyd and Vandenberghe (2004):

(1) Stationarity: u∗
θ = ûθ(x)− 1

2A
T (x)λ∗

(2) Primal Feasibility: A(x)u∗ ≤ bγ,Ds(x)

(3) Dual Feasibility: λ∗ ≥ 0
(4) Complementary Slackness:

λ∗ ⊙
(
A(x)u∗ − bγ,Ds

(x)
)
= 0

Complementary slackness can be re-posed with an equiva-
lent formulation by using the big-M approach Dong et al.
(2018). This is done by augmenting the lower bounds
0 ≤ bγ,Ds

(x) − A(x)u∗ and 0 ≤ λ∗ with artificial upper
bounds as follows:

0 ≤ bγ,Ds
(x)−A(x)u∗ ≤ Mz

0 ≤ λ∗ ≤ M(1− z) (14)

Here z ∈ {0, 1}NA+NO are Boolean variables and M is a
large number chosen as a hyperparameter. The Boolean
variables z are also unknown and will be learned as part
of the inference problem in the next section. Given these
conditions, we are ready to develop the first inference
algorithm.

4.1 Predictability Loss MIQP

The observer assumes that each agent uses (13) as the
underlying model. Akin to this model, the observer poses a
copy problem in which he treats θ, γ,Ds as tunable knobs.
These can be tuned until the predicted velocities computed
by solving the copy problem match with the measured
velocities. This can be done by solving:

θ̂, γ̂, D̂s, {ûk}Kk=1 = argmin
θ,γ,Ds,{uk}K

k=1

K∑
k=1

∥uk − umeas
k ∥2

such that uk solves (13) ∀k ∈ {1, · · · ,K}
(15)

The cost function in (15) is the empirical sum of the
deviations of the predicted controls uk from the measured
controls umeas

k . This is known as the predictability loss
Aswani et al. (2018). Naturally, it makes sense to minimize
this loss only if the observer’s predicted controls solve the
forward problem (13) which is posed as a constraint in
(15). Since (13) is in itself an optimization problem, (15)
is a bi-level optimization problem, which is known to be
computationally difficult to solve. We convert this to a
single level problem by replacing the inner problem with
its KKT conditions as follows:

θ̂, γ̂, D̂s,{ûk}Kk=1, {λ̂k}Kk=1, {ẑk}Kk=1, {δ̂k}Kk=1 =

argmin
θ,γ,Ds,{uk}K

k=1,

{λk}K
k=1,{zk}K

k=1,{δk}K
k=1

K∑
k=1

∥uk − umeas
k ∥2 + ρ

K∑
k=1

∥δk∥2

subject to

0 ≤ bγ,Ds
(xk)−A(xk)uk ≤ Mzk

0 ≤ λk ≤ M(1− zk)

{zk}Kk=1 ∈ {0, 1}NA+NO

− δk ≤ uk − ûθ(xk) +
1

2
AT (xk)λk ≤ δk

θL ≤ θ ≤ θU , γL ≤ γ ≤ γU , DsL ≤ Ds ≤ DsU

(16)

The cost function in (16) is quadratic. The first term
in the cost is the aggregated prediction error and the
second penalizes the magnitude of the slack variables.
These variables account for how much the stationarity
condition is violated. In case the observed measurements
of the agent’s velocity are noisy, this algorithm tries to
find the controls that satisfy the KKT conditions as best
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Figure 2. Environment used for generating the simulated
trajectories using (13).

as they can while simultaneously ensuring that the in-
ferred/predicted velocities are as close to the measured ve-
locities as possible. Thus including slack variables confers
robustness to this algorithm. The constraints are linear in
θ, γ, γD2

s , {uk,λ, zk, δk}Kk=1. Since {zk}Kk=1 are restricted
to be Boolean, the overall problem is a mixed-integer QP.
We use Gurobi to solve this problem.

4.2 Stationarity Loss MIQP

Another heuristic that can be used to solve the inference
problem is the stationarity loss. This loss quantifies the
residual of the stationarity condition evaluated on ob-
served positions and velocities:

lStat.
k =

∥∥∥∥umeas
k − ûθ(xk) +

1

2
AT (xk)λk

∥∥∥∥2 (17)

This residual is quadratic in both θ and λk. Using K ob-
served signal-response pairs, the observer poses an empiri-
cal risk minimization problem that queries for θ, γ,Ds, La-
grange multipliers {λk}Kk=1 and Boolean variables {zk}Kk=1
which minimize the total stationarity loss evaluated on the
observed measurements:

θ̂, γ̂, D̂s, {λ̂k}Kk=1, {ẑk}Kk=1 = argmin
θ,γ,Ds,

{λk}K
k=1,{zk}K

k=1

K∑
k=1

lStat.
k

subject to

0 ≤ bγ,Ds(xk)−A(xk)u
∗ ≤ Mzk

0 ≤ λk ≤ M(1− zk)

{zk}Kk=1∈ {0, 1}NA+NO

θL ≤ θ ≤ θU , γL ≤ γ ≤ γU , DsL ≤ Ds ≤ DsU

(18)

The constraints in this problem capture all the KKT
conditions in addition to bounds on θ, γ,Ds from our prior
knowledge. Since the cost is quadratic and all constraints
are linear in (θ, γ, γD2

s , {uk}Kk=1, {λk}Kk=1, {zk}Kk=1), the
overall problem is a mixed-integer QP. We use Gurobi to
solve this problem.

5. RESULTS: VALIDATION ON SYNTHETIC
DATASETS

Before testing these algorithms on the human trajectory
dataset, we evaluate them on a simulated dataset. We gen-
erated several trajectories of a single agent using (13) by
varying its initial position x(0) in each run. The nominal
task for this agent is to follow a constant velocity ûθ = v∗

d.

Additionally, the agent has to ensure safety margin of D∗
s

with the obstacles with a conservativeness factor of γ∗.
The observer’s problem is to infer vd, γ,Ds of this agent
from the obtained trajectories using the predictability loss
MIQP (15) and stationarity loss MIQP (18).

Testing Robustness: To test the robustness of these
algorithms, we consider two scenarios: scenario (1) has
no noise in the measured velocities and in scenario (2)
we add zero mean Gaussian noise with 2 m/s standard
deviation to the velocities (ϵ ∼ N (0, 2m/s)). To assess
repeatability, we conduct ten simulations with a randomly
chosen initial position of the agent. The hyperparameter ρ
for the predictability loss MIQP was chosen systematically
by tuning performance on a validation dataset.

Warm Starting: Expecting that the computation time of
predictability loss MIQP can be longer than stationarity
loss MIQP due to more variables, we also compare the per-
formance for predictability loss MIQP with and without a
warm start using the result from stationary loss MIQP to
see if there is any added benefit.

Error Metrics: The proposed algorithms are compared
based on parameter reconstruction accuracy and compu-
tation time for parameter identification. In the human
dataset, ground truth values of parameters are not avail-
able since the underlying model of humans is not (13)
necessarily. Therefore, we consider the reconstructed tra-
jectories using inferred parameters for performance eval-
uation. To this end, comparisons are made based on the
average displacement error (ADE) and final displacement
error (FDE) of the trajectories generated using the inferred
parameters relative to the ground truth trajectories.

Environment: We consider the environment modeled
after the map in the THöR dataset. For this, we manually
convert the walls and obstacles into polytopes. There are
a total of 14 obstacles in this enivornment i.e.NO = 14.
This is shown in 2.

Analysis of Results: Table 1 shows the parameter re-
construction errors and ADE, FDE errors averaged over
ten runs with noiseless demonstrations for the THöR en-
vironment. It is evident that when perfect measurements
are available to the observer, all the three methods share
the same performance in terms of inferred parameters
accuracy and ADEs and FDEs. However, we notice that
stationary loss MIQP takes much longer for computation.
Warm start does reduce the computation time for pre-
dictability loss MIQP, but only marginally.
Table 2 shows these errors with noisy demonstrations.
From these tables, it is evident that the stationarity loss
MIQP exhibits a great amount of robustness to measure-
ment noise. The ADEs and FDEs are much smaller for the
stationarity loss MIQP compared to the other algorithms.
The computation time for this algorithm is still very large
compared to the other two. Additionally, we observe that
warm start improves the performance of predictability loss
MIQP with lower error in inferred parameters accuracy
and as well as ADE and FDE. There is not much reduction
in computation time. Overall, stationarity loss MIQP has
the best performance and strongest tolerance to noise in

5



Table 1.
Performance comparison on THoR environment with perfect velocity measurements

``````````Algorithm
Metric

∥∥v̂d − v∗
d

∥∥[m/s] |γ̂ − γ∗|[1/s] |D̂s −D∗
s | [m] ADE [m] FDE [m] Time [s]

Stat. Loss MIQP 0± 0 49.71± 0.29 0.0238± 0.028 0.0012± 0.0014 0.044± 0.0534 8.17± 0.49

Pred. Loss MIQP 0± 0 49.71± 0.29 0.0238± 0.028 0.0012± 0.0014 0.044± 0.0539 1.63± 0.067

Pred. Loss (warm
start)

0± 0 49.71± 0.29 0.0238± 0.028 0.0012± 0.0014 0.044± 0.0539 1.61± 0.056

Table 2.
Performance comparison on THoR environment with noisy velocity measurements

``````````Algorithm
Metric

∥∥v̂d − v∗
d

∥∥[m/s] |γ̂ − γ∗|[1/s] |D̂s −D∗
s | [m] ADE [m] FDE [m] Time [s]

Stat. Loss MIQP 0.574± 1.558 49.64± 0.2 0.0295± 0.0164 0.0476± 0.1047 0.806± 1.432 8.008±0.0827

Pred. Loss MIQP 2.90± 2.73 49.64± 0.2 0.0295± 0.0164 0.3734± 0.3718 12.90± 12.01 1.6± 0.082

Pred. Loss (warm
start)

2.93± 2.766 49.64± 0.2 0.0295± 0.0164 0.3317± 0.3461 9.67± 10.281 1.592± 0.048

the velocity measurements. In the next section, we show
that the stationarity loss MIQP performs best on the
human dataset as well.

6. RESULTS: VALIDATION ON HUMAN DATASETS

In this section, we validate the proposed methods on a
human dataset THöR Rudenko et al. (2020a). The trajec-
tories in this dataset exhibit social interactions that occur
in populated spaces like offices, malls etc., thus making
them suitable for evaluating our algorithms. Our results
show that the learned parameters capture pedestrian dy-
namics accurately, which we demonstrate by showing low
ADE and FDE values.

We assume that the nominal task of the humans is to
move at a constant velocity. Because of this assumption, we
handpicked some scenes in the dataset where the humans
approximately moved at a constant velocity. Thus, instead
of using the entire datase for parameter identification,
we selected 15 handpicked scenarios with selected time
intervals of human trajectories where the constant velocity
assumption was valid for most of the human pedestrians.
Parameter inference is conducted on each single pedestrian
independently.

The predictability loss MIQP (16) has a hyperparameter
ρ which corresponds to the penalty on the slack variables.
We chose this hyperparameter by doing a brute force
search on all these scenarios. Since the humans do not
necessarily follow (13) as the underlying model, the only
way to check whether our inferred parameters rationalize
the observed measurements is by rolling out (13) with
the learned parameters and comparing the reconstructed
trajectories with the ground truth trajectories. We use
ADE and FDE as the metrics to do this comparison.

In 3, we plot the mean and standard deviation of the
ADE and FDE errors averaged over all 15 scenarios for
the predictability loss MIQP without warm start (3(a)),
predictability loss MIQP with warm start (3(b)) and the
stationarity loss MIQP (3(c)). The y axis denotes these
errors and the x axis corresponds the value of the slack
penalty hyperparameter ρ (on log10 scale).

It is observed that predictability loss MIQP with warm
start performs better then predictability loss MIQP with-

out warm start, exhibiting both smaller mean and stan-
dard deviation in both ADE and FDE. Predictability loss
MIQP with warm start performs exactly the same as
the stationarity loss MIQP for ρ < 10−4. However, the
stationarity loss MIQP performs the best, exhibiting the
smallest mean ADE and smallest mean FDE with small
standard deviation as well.

Thus, we select the stationarity loss MIQP to highlight
some results on the human dataset. Figure 4 shows re-
sults from six scenarios sampled from our dataset. The
black trajectories are the ground truth trajectories of the
humans. The green dots indicate their starting positions.
Using these trajectories, we learn the v̂d, D̂s, γ̂ with (18)
and then roll out (13) with the learned parameters. The
obtained trajectories are plotted in red in 4. Since most of
the red trajectories almost overlap with the given demon-
strations, we conclude that the learned parameters do
indeed rationalize the ground truth trajectories. In 4(e),
there is one pedestrian whose motion changes abruptly
exhibiting a turn and so technically this pedestrian does
not satisfy the constant velocity assumption. Yet our algo-
rithm learns the average behavior giving low FDE error for
this pedestrian albeit high ADE. We can fix this problem
by including some basis functions in C(x),d(x) in (2) and
relaxing the constant velocity model. Making the nominal
task more complex with richer basis functions will allow
us to get additional accuracy in trajectory reconstruction.

7. DISCUSSION AND CONCLUSIONS

We considered the problem of simultaneously inferring
task and safety constraint parameters of individual agents
of a multiagent system. We modeled the agents using
control barrier functions and developed the predictability
loss MIQP and the stationarity loss MIQP to solve the in-
ference problem. We demonstrated that the reconstructed
parameters rationalize the observed measurements in a
simulated single-agent scenario and also a real human
dataset. There are several directions that we would like
to take in future work.

• Richer basis functions C(x),d(x): Sticking to the
constant velocity model was a first-order choice and
this itself gave us accurate reconstructions. However,
we hope that including richer functions that capture
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(a) Pred. Loss MIQP (without warm start)
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(b) Pred. Loss MIQP (with warm start)
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(c) Stat. Loss MIQP

Figure 3. ADE and FDE Errors averaged over 15 scenarios sampled from the THöR dataset with varying number of
pedestrians in each scenario. X axis represents the log of the slack penalty hyperparameter ρ in (16). Among all
three algorithms, the stationarity loss MIQP (3(c)) exhibits the lowest mean ADE and mean FDE as well as a low
standard deviation.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Figure 4. Validation on human dataset: Comparison between the ground truth trajectories (solid black lines) and
reconstructed trajectories with learned parameters (dotted red lines) on six selected scenarios. Starting points are
marked in green.
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the spatial frequencies of motion can allow us to
get more accuracy. The overall problem complexity
will only increase marginally since as we showed the
problem is still an MIQP. This will allow us to capture
changes in human trajectory better.

• Time-varying parameters: In our framework, we
assumed that the task and constraint parameters
θ, γ,Ds are constant. However, humans may become
more conservative as they come around agents that
exhibit uncertain motions. As a result, these param-
eters may be time-varying. In our future work, we
will adjust our code to allow for time-varying param-
eters. The overall problem will still remain an MIQP,
although it will have to learn many parameters.

• Multimodal Learning: Currently, our proposed
method learns one set of parameters for a human.
However, humans may exhibit a distribution of be-
haviors. In future work, we will explore how to adjust
the inference framework so that we can reverse en-
gineer a distribution of these parameters instead of
learning one set of parameter values.
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