Module 1: Vertical Gear

Function Requirement	Design Parameters	Analysis	Resources	Risk	Countermeasures
Gear able to lift pet door	Large enough and	T = F*r*sin 0	Physics	Gear could fail	Sturdy material
Teeth on the door able to	enough gear	Tc/J	Mechanics	Material could break	stresses
grip gear	Durable material	F=MA			Use a sturdy and tested motor

Module 2: Horizontal Gear

Function Requirement	Design Parameters	Analysis	Resources	Risk	Countermeasures
Have a track that can	Track along bottom edge	T = F*r*sin0	Physics	Door could be too long	Make sure gear and motor are positioned
navigate door		Tc/J	Mechanics		optimaliy
along path	Gear and motor			Door could tip instead of	Ensure that force is enough to cause
Have a	positioned to	F=MA		slip	slippage
strong enough to slide door across track	range of motion	Friction force = N * Uf			

Module 3: Vertical Pulley System

Function Design Requirement Parameters	Analysis	Resources	Risk	Countermeasures
---	----------	-----------	------	-----------------

Have winch to pull cord/ wire	A pulley large enough	F = M*a	Physics	Wire could break	Sturdy material
Have pulley	extend past door	T = F*r*sin0	2156 Spreadsheet	Winch/motor	Sturdy wire
system to lift door	Winch strong	Torsion = Tc/J	Solid	could fail	Use a sturdy and tested motor
Have vertical track system to	door		Mechanics	become unaligned	Track with low clearance to avoid
keep door alligned	Vertical track system			Loop for wire	becoming misaligned
				breaks on door	