
Rethinking about Guessing Attacks

Zhiwei Li
Department of SIS

UNC Charlotte
Charlotte, NC 28223
zli19@uncc.edu

Weichao Wang
Department of SIS and CyberDNA

UNC Charlotte
Charlotte, NC 28223

weichaowang@uncc.edu

ABSTRACT
Although various past efforts have been made to character-
ize and detect guessing attacks, there is no consensus on the
definition of guessing attacks. Such a lack of generic defini-
tion makes it extremely difficult to evaluate the resilience of
security protocols to guessing attacks.
To overcome this hurdle, we seek a new definition in this

paper to fully characterize the attacker’s guessing capabili-
ties (i.e., guessability). This provides a general framework
to reason about guessing attacks in a symbolic setting, in-
dependent of specific intruder models. We show how the
framework can be used to analyze both passive and active
guessing attacks.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol verification; D.2.4 [Software]: Soft-
ware/Program Verification—Formal methods

General Terms
Security, Theory, Verification

1. INTRODUCTION
Many security protocols are vulnerable to guessing attack-

s, which aim to obtain a poorly chosen password or data by
trying every possible value for it. Let us consider a simple
one-way authentication protocol:

Message 1. A → B : {NA}KAB

Message 2. B → A : {f(NA)}KAB

Here NA is a fresh nonce generated by A and KAB is the
symmetric key shared between A and B, and f is a given
function (e.g., f(NA) = NA + 1). An attacker may obtain
KAB by trying to decrypt both messages with a guessed key
k and then to compare the results, say r1 and r2: if r2 equals
f(r1), then k is the correct guess. Such attacks become more
feasible when one chooses a low entropy secret.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

Starting from the early work of Gong et al. [32, 31], a lot of
efforts have been made either to formulate guessing attacks
or to detect them. Many approaches focus on heuristics to
explore ways of validating a guess [17, 42, 33]. This is usual-
ly done by enumerating rules to determine whether a guess
can be “verified”, a term widely accepted to characterize a
correct guess. These rules are used to derive an inference
system modeling the guessing capabilities [22], by extending
the standard Dolev-Yao model [25]. Realizing the “incom-
pleteness” of such an inference system in a sense that it may
fail to capture some guessing attacks, Drielsma et al. [26]
develop a precise formalization of off-line guessing attack-
s, which is independent of any particular intruder model.
However, no automatic procedure is given in [26] and, more
importantly, it only allows guessing atomic values. In [17],
Corin et al. first use static equivalence from the applied pi
calculus [2] to characterize guessing attacks, which is then
used to derive a procedure for detecting guessing attacks [3].
More recently, Blanchet and Abadi [7] refine the definition
by imposing the observational equivalence condition.

Up to now, there is still no clear consensus regarding the
general definition of guessing attacks, which explains why
some protocol previously shown resistant to guessing attacks
turns out to be vulnerable [40, 32]. There are two main
reasons for this lack of generality.

First, the term “verifiable” is not fully understood or for-
malized, while being used implicitly as a synonym for“guess-
able” in all previous approaches. It is fair to mention here
that several definitions regarding verifiability do exist, al-
though none of them is general enough to be independent of
protocol modeling and/or specific intruder models. For in-
stance, Lowe [42] presents a group of rules to verify a guess.
Indeed, these rules correctly identify verifiable guesses. It
is unclear whether or not the rule set can completely cov-
er all guesses that can actually be verified somehow, even
under the Dolev-Yao intruder model. Similarly, Corin et al.
[17] define a “verifiable” guess based on two conditions of a
“verifier”. However, without any intuitive appeal, this def-
inition can fail to capture some practically verifiable guess.
Besides, the verifier itself can be very difficult to find. Corin
et al. [16] then formulate a new definition of verifying a
guess using static equivalence [2], which elegantly captures
the essence of verifying a guess. Nonetheless, this defini-
tion may require the modeling of security protocols by the
applied pi calculus. Moreover, it only considers guesses of
atomic messages.

Second, guessing attacks have been studied from two d-
ifferent perspectives: (1) the process perspective [16, 3, 7],

316

which relies on the modeling of security protocols; and (2)
the attacker’s perspective [17, 22, 42], which emphasizes the
guessing capabilities from a logical point of view. Neither
provides a unified view towards guessing attacks.

Our work is therefore geared towards a unified framework
for the study of guessing attacks. The primary goal is to
establish an intimate understanding of guessing, which is
intuitive, yet provides a rigorous basis for guessing attacks.
In other words, the new framework should be

• faithful (i.e., fits the common sense of guessing attacks),

• expressive (i.e., accounts for multiple guesses), and

• complete (i.e., captures all guessing attacks in a symbolic
setting).

Unlike most previous work, we treat “guessing” and “at-
tack” separately, because guessing relates closely to the at-
tacker’s ability to reason about its knowledge, whereas at-
tack further exploits the vulnerability of security protocols.
It is worthwhile to reveal the dominant factor of a guessing
attack — the attacker’s guessing capabilities or the interac-
tions between entities.

Contributions.
In this paper, we propose a new definition to fully charac-

terize the attacker’s guessing capabilities and then show how
it relates to finding guessing attacks in security protocols.
Specifically, this paper makes the following contributions:

• To uncover relationship between“verifiable”and“guess-
able”, we formalize the idea of verifying a message in
terms of recognizability [39] — the ability to distin-
guish a message from noise. To our best knowledge,
this is the first definition of verifiability that is inde-
pendent of security protocols and/or intruder models.
We show, surprisingly, that a guessable message need-
s NOT to be verifiable. In other words, even though
some message is not verifiable, it can still be guessed
correctly by the intruder.

• We propose a weaker notion of verifiability to recover
the intuitive understanding of guessing — a message
can be guessed if and only if it is weakly verifiable.
This weaker notion thus provides a faithful, expres-
sive, and complete framework for the study of guessing
attacks.

• We introduce a novel way to evaluate the hardness of
guessing. While some guessing attack turns out to be
(computationally) infeasible, the new metric provides
an accurate way to discriminate between feasible and
infeasible guessing attacks, reducing the gap between
formal methods and real implementation. To our best
knowledge, this is the first explicit measurement about
guessing.

• As a case study, we apply our methodology to find
passive guessing attacks under the standard Dolev-Yao
intruder model and discuss how to extend this method-
ology to analyze active attacks.

Additional Related Work.
Our work is inspired by previous research efforts on apply-

ing knowledge to security problems, which is often divided
into two groups: deducibility [41] and indistinguishability
[1].

Deducibility is one kind of algorithmic knowledge [35], in
which “knowing what” can be determined by an algorith-
m. The BAN [9] logic, proposed by Burrows, Abadi and
Needham, is probably the first extensively studied logic in
protocol analysis based on knowledge.

The concept of indistinguishability comes from the clas-
sical possible-worlds approach to model knowledge [30], in
which the actual world is considered to be one of many pos-
sible worlds. Recently, Cohen and Dam [13] provide a gener-
alized Kripke semantics for studying this type of knowledge
in security protocol analysis. They use a static equivalence
[2] to capture the indistinguishability for agents. Abadi and
Cortier [1] examine the decidability of these two notions of
knowledge by studying the underlying equational theories
for deduction and static equivalence.

Organization.
In Section 2, we introduce some background material. In

Section 3, we formalize the idea of verifying a guess and
explain why (strong) verifiability is not a necessary condition
for guessing. After presenting a new knowledge model that
accounts for the attacker’s guessing capabilities in Section
4, we introduce a weaker notion of verifiability that fully
characterizes guessing capabilities in Section 5. In Section 6,
we present our metric to gauge the hardness of guessing. In
Section 7, we move our attention to finding guessing attacks.
Section 8 concludes the paper.

2. PRELIMINARIES
In this section, we briefly review the basic definitions of

term rewriting systems and the deducibility. We mainly
follow the notations in [23].

2.1 Term Algebra
A signature is a finite set of function symbols F and a

possibly infinite set of constants A. Each function symbol
has an associated arity. We discriminate two types of func-
tion symbols, namely, public and private function symbols,
the sets of which are denoted by F+ and F−, respectively.
Public functions are used to describe operations that can
be freely performed by a principal, such as encryption and
decryption. We need to point out that a decryption oper-
ation is conducted by calling a decryption algorithm even
without the proper decryption key and can be applied to
any message. It can be different from the decryption of a
ciphertext.

We define the term algebra T (F ,A,X) as the smallest set
containing X and A such that f(t1, · · · , tn) ∈ T (F ,A,X)
whenever f ∈ F with arity n, and t1, · · · , tn ∈ T (F ,A,X).
Elements of the set T (F ,A,X) are called terms. We will
use l, r, s, t to denote terms and x, y, z to denote variables.
To avoid confusion, syntactic equality of two terms t1 and t2
will be denoted by t1 =s t2. We tend to use the words“term”
and “message” interchangeably in the rest of this paper.

We say s is a subterm of t, written s ⊆ t, if either s =s t
or t =s f(t1, · · · , tn) and s is a subterm of ti for some i. We
also write s ⊂ t to mean s ⊆ t and s ̸=s t. A term s occurs

317

in a term set T if s ⊆ u for some u ∈ T . As usual, fv(t) is
defined as the set of variables that occur in term t. A term
is ground if fv(t) = ∅.
We define the length of a term t, notation |t|, as the length

of its binary representation. For convenience, we will use
ff(t) and sub(t), respectively, to denote the outmost func-
tion symbol of t and the immediate subterm set of a term
t1. A context C is a term with exactly a “hole” 2. Then
the term C[t] is C except 2 is replaced by t. Abusing no-
tation slightly, we refer to t[u 7→ v] as t except that every
occurrence of u in t is replaced by v.
A substitution is a finite tuple [t1/x1, ..., tn/xn] mapping

from variables xi to terms ti. The domain and range of a

substitution σ are defined by Dom(σ)
def
= {x|xσ ̸=s x} and

Ran(σ)
def
=

∪
x∈Dom(σ){xσ}, respectively. We write σ = θ if

Dom(σ) = Dom(θ) and xσ =s xθ for all x. We define the
composition of substitutions σ and θ as a new substitution
σ ◦ θ such that tσ ◦ θ =s (tσ)θ.

2.2 Term Rewriting Systems
An equation is a pair of terms, written s = t and an equa-

tional theory E is presented by a finite set of equations. We
write t1 =E t2 when equation t1 = t2 is a logical consequence
of E.
As is commonplace, the reflexive transitive closure of a bi-

nary relation → is denoted by →∗. A term rewriting system
R consists of a set of rules, l → r. A term rewriting system
R defines a term rewriting relation →R in a standard way:
C[lσ] →R C[rσ] where C is a context, l → r ∈ R, and σ is
a substitution. Relation ↔R is defined by s ↔R t iff s →R t
or t →R s.
We say that an element p is reducible for → if there is an

element q such that p → q and irreducible otherwise. We
write p →! q if p →∗ q and q is irreducible. If s →!

R t, then t
is called an R-normal form of s. →R is terminating if there
exists no infinite derivation t0 →R t1 →R · · · and →R is
confluent if there is a term t such that t1 →∗

R t and t2 →∗
R t

whenever t0 →∗
R t1 and t0 →∗

R t2. A term rewriting system
R is convergent if →R is terminating and confluent. Given
an equational theory E, we define term rewriting system

RE
def
= {l → r|l = r ∈ E}. When →RE is convergent,

t1 =E t2 iff t1 and t2 have the same RE-normal form[4, 23].
A substitution σ is RE-normal if all terms in Ran(σ) are

RE-normal. We write σ1 =E σ2 to indicate that Dom(σ1) =
Dom(σ2) and xσ1 =E xσ2 for all x ∈ Dom(σ1).

2.3 Modeling Standard Adversaries
The most straightforward way to model the attacker’s

knowledge is in terms of message deducibility [25, 41]. That
is, given an equational system E and some messages T one
might be able to compute another message t from T under
equational theory E. Formally,

⊢(n) (R1)
t ∈ T

T ⊢(1) t

(R2)
T ⊢(n1) t1 · · ·T ⊢(nk) tk

T ⊢
(1+ max

1≤i≤k
ni)

f(t1, · · · , tk)
f ∈ F+

⊢(n)
E (R3)

T ⊢(n) s s =E t

T ⊢(n+1)
E t

1We let sub(t) = {t} and ff(t) = ∅ if t ∈ X ∪ A.

We say that t can be deduced from T , written T ⊢ t, if
T ⊢(n) t for some n. Likewise, t is deduced from T under

E, notation T ⊢E t, if T ⊢(n)
E t for some n. We say that

S and T are equivalent (under E), denoted as S ≡E T , if
S ⊢E t for every t ∈ T and T ⊢E s for every s ∈ S. As we
can see, both ⊢ and ⊢E are closed under substitution. We
informally refer to all terms in T as the attacker’s explicit
knowledge and all terms deducible from T under E as its
implicit knowledge.

Lemma 2.1. Let T be a term set and σ be a substitution.
Then, Tσ ⊢ t if and only if T ⊢ t′ for some t′ such that
t′σ =s t.

The following equational theory Edy is used to model the
standard Dolev-Yao intruder.

Public function symbols pair, fst, snd, enc, dec
Private function symbols kp

Equations Edy fst(pair(x, y)) = x
snd(pair(x, y)) = y
dec(enc(x, y), kp(y)) = x
dec(enc(x, kp(y)), y) = x

Figure 1: Equational Theory Edy modeling the stan-
dard Dolev-Yao intruder.

The equational theory Edy contains two public construc-
tive function symbols for encryption and concatenation, three
destructive function symbols for decryption and split, and
one private function symbol for key pair. Our analysis does
not rely on the actual cryptosystem being used. Rather, we
would use kp(k) to denote the pair key of an encryption key
k. So, for symmetric encryption key k, we implicitly assume
that kp(k) = k. To reduce notational clutter, we will often
use {s}t, s · t, and k− as shorthands for enc(s, t), pair(s, t),
and kp(k+), respectively.

3. FORMALIZING THE IDEA OF VERIFY-
ING A GUESS

As mentioned in the introduction, although the intuitive
idea of verifying a guess has been extensively used to ana-
lyze guessing attacks in security protocols, it has not been
adequately formalized. The purpose of this section is to for-
malize the meaning of “verifying a guess”.

It is crucial to note that verifiability requires one to dis-
tinguish useful information (a correct guess) from noise —
an ability that is independent of security protocols. For
instance, as seen in the example in the introduction, the
attacker who knows {NA}KAB and {f(NA)}KAB can easily
test whether a message g is the correct guess of KAB . And
the test can be done off-line by checking

dec({f(NA)}KAB , g)
?
=Edy f(dec({NA}KAB , g))

Some may argue, however, that for more complicated pro-
tocols (e.g., simplified LGSN protocol [24]) the attacker do
need to communicate with other parties to verify a guess.
We adopt a cognitive point of view here: verifying a guess
is a process of using its knowledge, whereas communication
is a way for protocol participants to exchange knowledge.

318

It is desirable to formalize verifiability independent of in-
truder models and security protocols. This demand res-
onates with a recent work on type-flaw attacks [39], which
introduces “recognizability” to characterize the fact that a
message could not be type-flawed, i.e., the incoming message
can never be replaced by another message without detection.
Although their concern appears to be different from here, the
methodology is exactly the same: using one’s knowledge to
distinguish a message from another. We thus build our work
on the concept of “recognizability”.

Definition 3.1 (Operational Equivalence [39]). Let T be
a term set and σ1 and σ2 be two ground substitutions such
that Dom(σ1) = Dom(σ2) = fv(T). They are operational
equivalent in equational theory E w.r.t. term set T , written
σ1 ≈E,T σ2, if for all terms u and v such that T ⊢ {u, v} we
have uσ1 =E vσ1 ⇔ uσ2 =E vσ2.

Intuitively, operational equivalence establishes the fact
one can never discriminate two ways of instantiating mes-
sages by exploiting the difference with what he knows. More
specifically, we use term set T to model one’s deductive
knowledge with variables denoting possibly ambiguous (or
informally unverified) messages.
The following lemma gives some useful characterizations

of operational equivalence.

Lemma 3.2 (Transformation Lemma [38]).

(i). Suppose that T ⊢E t. Then, σ1 ≈E,T σ2 iff σ1 ≈E,T∪{t}
σ2;

(ii). Suppose that T ⊢ s, sσ1 =E w1, sσ2 =E w2, and x
never occurs in T . Then, σ1 ≈E,T σ2 iff σ′

1 ≈E,T∪{x}
σ′
2, where σ′

1 = σ1 ◦ [w1/x] and σ′
2 = σ2 ◦ [w2/x].

Example 1. Consider again the one-way authentication
protocol presented in the introduction. Assume a passive
attacker can eavesdrop on communication links and save all
the messages. Then, we can use T0 = {{NA}KAB , {f(NA)}KAB}
to represent the attacker’s knowledge. Here and hereafter,
whenever needed, we implicitly add the public unary func-
tion symbol f into the term algebra presented in Figure 1.
Suppose that the attacker wants to guess the value of NA

and we use variable x to signify the guess. Let T = T0∪{x},
σ1 = [NA/x], and σ2 = [NB/x]. Clearly, xσ1 is a correct
guess, but xσ2 is not. Then, it can be shown that σ1 ≈Edy ,T

σ2. In other words, the attacker is unable to check whether
a guess (of NA) is correct or not.
We now suppose that the attacker wants to guess the value

of KAB. Again, we use x to signify the guess, and let σ3 =
[KAB/x] and σ4 = [NB/x]. We choose

u =s dec({f(NA)}KAB , x)

v =s f(dec({NA}KAB , x))

Then,

uσ3 =s dec(f({NA)}KAB ,KAB)

vσ3 =s f(dec({NA}KAB ,KAB))

uσ4 =s dec({f(NA)}KAB , NB)

vσ4 =s f(dec({NA}KAB , NB))

Consider now, T ⊢ {u, v}, uσ3 =Edy vσ3 =Edy f(NA), and
uσ4 ̸=Edy vσ4. By the definition of operational equivalence,
we have σ1 ̸≈Edy,T σ2.

In the above example, we see that the attacker can dis-
criminates a correct guess of KAB from NA by investigat-
ing the operational equivalence relation between two guesses
(described by two substitutions): if the two different substi-
tutions (resp. a correct and an incorrect guess) do not sat-
isfy operational equivalence, then the guess can be verified;
otherwise, the attacker cannot capture any nuance and the
guess is not verifiable.

Definition 3.3 (Recognizability [39]). Let T be a ground
term set, t be a ground term, and σ0 = [t/x]. We say that
t is recognizable by T under equational theory E, and write
T �E t, if the following condition holds:

σ ≈E,T∪{x} σ0 iff σ =E σ0

With this hindsight, we say a guess of t is (strongly) verifi-
able by T under equational theory E if T�E t. As in the pre-
vious example, we have T �̸Edy

NA and T �Edy KAB , which

confirm that the protocol is vulnerable to off-line guessing
attack.

Remark. It should be noticed that operational equivalence
is closely related to that of static equivalence [2, 1]. The
main difference is that operational equivalence is from a
cognitive perspective, whereas static equivalence is from a
process point of view. Nonetheless, deciding recognizabili-
ty and deciding static equivalence are significantly different.
For recognizability, we concern with the problem: given a
message m whether there exists another message m′ that is
indistinguishable from m by the observer. In other words,
we need to consider all possible message m′ that is rele-
vant to the operational equivalence relation. Consequently,
deciding recognizability can be much harder than deciding
static equivalence.

Example 2. We extend the equational theory Edy to model
probabilistic encryption scheme by adding two public func-
tion symbols renc and rdec, and the following two equations:

rdec(renc(x, y, r), kp(y)) = x
rdec(renc(x, kp(y), r), y) = x

We use {s}rt to denote renc(s, t, r) and Edyr to represent
the new extended equational theory.

Let us consider the Encrypted Password Transmission (EP-
T) protocol [34]

Message 1. S → U : NS ·K+
S

Message 2. U → S : {NS · P}r
K+

S

Here, we use P to denote the secret password memorized by
the user U and shared with the server S2. Now, suppose
that a passive attacker knows NS, K

+
S , and wants to guess

P . Let T = {NS ,K
+
S , {NS · P}r

K+
S

} and σ0 = [P/x].

Since the encryption scheme is randomized, the attacker
does not know r and thus it is not able to compute {NS ·
P}r

K+
S

by the guess of P , say P ′. It is not hard to see that

for all u, v such that T ∪ {x} ⊢ {u, v} we have uσ0 =Edyr

vσ0 iff u =Edyr v. Similarly, for all u, v such that T ∪
{x} ⊢ {u, v} we have u[P ′/x] =Edyr v[P ′/x] iff u =Edyr v.

Hence, uσ0 =Edyr vσ0 iff u[P ′/x] =E v[P ′/x]. Because

σ0 =Edyr [P ′/x] needs not to be true, using the definition

2In implementation, the secret password is either stored in
plain text or hashed under some one-way function.

319

of recognizability we get T �̸Edyr
P . This confirms the claim

that this protocol is resistant to guessing attacks [34, 16].
However, if the protocol uses deterministic encryption,

that is the second message is replaced by {NS · P}
K+

S
, then

the value of P can actually be guessed. Let T ′ = {NS ,K
+
S , {NS ·

P}
K+

S
} . Towards a contradiction, suppose that σ ≈Edy,T∪{x}

σ0 and σ ̸=Edy σ0.
Let u =s {NS · x}

K+
S

and v = {NS · P}
K+

S
. Clearly,

T ∪ {x} ⊢ {u, v} and uσ0 =E vσ0. By the definition of
operational equivalence, we get uσ =Edy vσ. That is, {NS ·
P ′}

K+
S

=Edy {NS · P}
K+

S
. So, P ′ =Edy P and thus σ =Edy

σ0, a contradiction. Therefore, σ ≈Edy,T∪{x} σ0 implies

σ =Edy σ0 and thus T ′ �Edy P .

Indeed, (strong) verifiability implies the ability to guess.
Nonetheless, we claim that this notion may fail to fully cap-
ture all possible guesses. Here’s an example to show why.

Example 3. Let T = {NA, {NA · P}
K+

B
} denotes the at-

tacker’s knowledge. Suppose that the attacker wants to guess
the value of P , say P ′. Note that the attacker does not know
K−

B . It is not hard to see that for all u, v such that T ∪{x} ⊢
{u, v} we have uσ =Edy vσ iff u =Edy v. So, u[P ′/x] =Edy

v[P ′/x] iff u[P/x] =Edy v[P/x]. Since P ′ =Edy P does not
necessarily need to be true, using the definition of recogniz-
ability we know T �̸Edy

P . In other words, P is not strongly

verifiable by T under Edy.
Now, we suppose that the attacker first tries to guess K−

B .
Let σ0 = [K−

B/x]. Towards a contradiction, suppose that
σ ≈Edy,T∪{x} σ0 and σ ̸=Edy σ0. Let u =s fst(dec({NA ·
P}

K+
B
, x)) and v =s NA. Clearly, T ∪ {x} ⊢ {u, v} and

uσ0 =E vσ0. By the definition of operational equivalence, we
get uσ =E vσ. That is, fst(dec({NA·P}

K+
B
, x))σ =Edy NA.

So, σ =Edy σ0, a contradiction. Therefore, σ ≈Edy,T∪{x} σ0

implies σ =Edy σ0 and thus T �Edy K−
B . Then, with the

correct guess of K−
B , the attacker can easily get P .

We thus close this section by remarking that a complete
characterization of guessing attacks requires a more general
notion than strong verifiability.

4. ACCOUNTING FOR THE ATTACKER’S
GUESSING CAPABILITIES

Before proceeding any further with a more general notion
to characterize guess, we introduce a new knowledge model
to account for the attacker’s guessing capabilities.

4.1 Explicit Guess and Implicit Guess
We have already seen in Example 3 that a guessable term

is not necessarily a term that the attacker actually guesses.
To avoid confusion, we use “explicit guess” to refer to the
actual guess that the attacker makes; and “implicit guess”
to refer to new terms deducible from the attacker’s updated
knowledge (i.e., knowledge plus explicit guess(es)). Besides,
when we say a term is “guessable” or “can be guessed”, we
always refer to implicit guess. In this terminology, we say
P is guessable by making explicit guess of K−

B in Example
3. We tend to omit “implicit” or “explicit” when it is clear
from the context.
As we will see, such a distinction between explicit and im-

plicit guesses is important to understand the innate nature

of guessing attacks. Let us consider some other examples
that highlight this distinction.

Example 4. Let T = {NA,K
+
B , {NA · P}

K+
B
} denotes the

attacker’s knowledge. Suppose that the attacker aims to ob-
tain P . There are two possible ways: First, the attacker can
explicitly guess P by using

{NA · x}
K+

B
σ =Edy {NA · P}

K+
B

Second, it can explicitly guess K−
B by using

fst(dec({NA · P}
K+

B
, y))σ =Edy NA

These two methods differ in their explicit guesses. Clearly,
the one with the shorter binary length is easier to be guessed.

The above example shows that to launch a guessing at-
tack, there might be several ways for the attacker to make
explicit guess; The following example illustrates the situa-
tion involves multiple explicit guesses.

Example 5. Let T = {NA,K
+
B , {NA·KAB}K+

A
, {NA·{P}KAB}

K+
B
}

denotes the attacker’s knowledge. Suppose that the attacker
aims to obtain P (i.e., implicitly guess P). One straightfor-
ward way is by explicitly guessing K−

A and P . Let x and y
signify the two guesses, respectively. At first, the attacker
can use

fst(dec({NA · P}
K+

B
, x))σ =Edy NA

to obtain the correct guess of K−
A . Then, it gets KAB by

decrypting {NA ·KAB}K+
A
. Finally, it can use

{NA · {y}KAB}
K+

B
σ =Edy {NA · {P}KAB}

K+
B

to obtain the correct guess of P .

Remark. An explicit guess might turn out to be an implicit
one, due to the redundancy in explicit guesses. For example,
suppose the attacker knows {NA, {NA ·P}KAS} and it makes
explicit guesses of KAS and P . Note that

snd(dec({NA · P}KAS ,KAS)) =Edy P

It is not hard to see that P can be derived from the explicit
guess of KAS . So, there is no need to make explicit guess of
P . We postpone to Section 6 some further discussion of the
redundancy in explicit guesses.

4.2 A New Knowledge Model
We now define a new notion to describe the attacker’s

knowledge that accounts for the attacker’s guessing capabil-
ities.

Definition 4.1 (Markup Term Set). A markup term set,

notated as T⃗ , is a pair ⟨T, σ⟩, where σ is a ground substitu-
tion such that Dom(σ) = fv(T).

Here, all ground terms and free variables in T correspond
to its explicit knowledge and explicit guesses, respectively.
We use the substitution σ to indicate either the correct guess
value or a possible guess value. In the analysis of type-flaw
attack [36, 43], free variables in T correspond to potentially
ambiguous incoming messages.

This definition accords with the possible worlds seman-
tics for knowledge [30], in which the true state resides in

320

one of the many possible states. More specifically, if σ and
σ′ correspond to the correct guess and a possible guess, re-
spectively, then ⟨T, σ⟩ and ⟨T, σ′⟩ are the actual state and a
possible one. It is worth pointing out that the “true” state
does not account for the attacker’s true knowledge state, but
rather describes the expected state from the attacker’s point
of view. To avoid confusion, we will informally refer to σ and
σ′ as the expected substitution and possible substitution, re-
spectively. Similarly, ⟨T, σ⟩ (resp. ⟨T, σ′⟩) is regarded as the
expected (resp. possible) markup term set (or state).
As usual, we require the possible worlds to be indistin-

guishable to an agent from the true world/state. This means
that the attacker should not be able to distinguish the ex-
pected state from all possible states. In our terminology,
they comply with the operational equivalence relation, i.e.,
they fit into one equivalence class. Therefore, both the ex-
pected state and possible state suffice to model the knowl-
edge of an attacker with guessing capabilities.
For instance, in Example 4, the attacker’s knowledge can

be modeled by

⟨{NA,K
+
B , {NA · P}

K+
B
, x}, [P/x]⟩

and

⟨{NA,K
+
B , {NA · P}

K+
B
, y}, [K−

B/y]⟩

corresponding the two explicit ways of guessing.

5. A COMPLETE CHARACTERIZATION OF
GUESSING

In this section, we introduce a weaker notion of verifi-
ability to fully characterize the intuitive understanding of
guessing.

5.1 Weak Verifiability
The possible-worlds semantics lends more sense to recog-

nizability: a term t (indicated by x) is recognizable if and
only if x indicates t (i.e., xσ =E t) in all possible states.
This suggests a more general definition of recognizability,
which extends Definition 3.3 to the case of multiple free
variables (indicating potentially ambiguous messages [39] or
unchecked guesses).

Definition 5.1 (Weak Recognizability). Let T⃗ = ⟨T, σ0⟩ be
a markup term set and t be a ground term. We say that t
is weakly recognizable by T⃗ under equational theory E and
write T⃗ �E t if xσ =E t for all σ satisfying σ ≈E,T∪{x}
(σ0 ◦ [t/x]) where x is a fresh variable.

Example 6. Consider again Example 5. The attacker’s
knowledge is modeled by

T⃗ = ⟨{NA, {NA·KAB}K+
A
, {NA·{P}KAB}

K+
B
, x, y}, [K−

B/x, P/y]⟩

in which x and y correspond to two distinct explicit guess-
es made by the attacker. Then, T⃗ �Edy P . However, if

the attack only makes a single guess, either K−
B or P , then

T⃗ ′ �̸Edy
P , where T⃗ ′ is either

⟨{NA, {NA ·KAB}K+
A
, {NA · {P}KAB}

K+
B
, x}, [K−

B/x]⟩

or

⟨{NA, {NA ·KAB}K+
A
, {NA · {P}KAB}

K+
B
, y}, [P/y]⟩

At this point, one may be tempted to conjecture that this
weaker notion of recognizability suffices to describe the de-
sired new notion of verifiability, as the stronger notion (Defi-
nition 3.3) does. Unfortunately, this is not the case, because
in Definition 5.1 [t/x] is composed with σ0, introducing a
new explicit guess of t, as shown by the following example.

Example 7. Let

T⃗ = ⟨{NA, {(NA ·NB) · {NA}K+
B
}KAS , x}, [KAS/x]⟩

denotes the attacker’s knowledge. Suppose that the attacker
wants to obtain K+

B . Note that the attacker only makes one
explicit guess of KAS. It is not hard to see that the attacker
indeed can correctly guess KAS. Then, the attacker’s knowl-
edge becomes T⃗ ′ = ⟨{NA, NB ,KAS , {NA}K+

B
}, ϕ⟩ . Now, it

is not hard to see that, without any further guess(es), the
attacker is still not able to obtain K+

B . On the other hand,

however, it can be shown that T⃗ �Edy K+
B .

There is one simple fix to avoid adding the new explicit
guess. As explained earlier, an explicit guess may turn out to
be an implicit one by exploiting the redundancy in explicit
guesses. The trick is that we impose condition(s) to ensure
that the newly added explicit guess becomes an explicit one.

Definition 5.2 (Weak Verifiability). Let T⃗ = ⟨T, σ0⟩ be a
markup term set and t be a ground term. We say that t is
weakly verifiable by T⃗ under equational theory E and write
T⃗ IE t if T⃗ �E t and Tσ0 ⊢E t.

The condition Tσ0 ⊢E t implies that T ⊢ s and sσ0 =E t
for some s. In other words, the explicit guess can be exactly
described by using T , obviating the need to explicitly guess
t. The following lemma states this formally.

Lemma 5.3. Let T⃗ = ⟨T, σ0⟩ be a markup term set and t

be a ground term. If T⃗ IE t, then there exists a term s such
that T ⊢ s and sσ0 =E sσ =E t for all σ ≈E,T σ0.

Proof. By Definition 5.2, we have T⃗ �E t and Tσ0 �E t.
Then, it follows from Lemma 2.1 that there exists a term
s such that T ⊢ s and sσ0 =E t. It remains to show that
sσ =E t for all σ ≈E,T σ0.

Let sσ =E t′ and x be a fresh variable. Since σ ≈E,T σ0,

we get σ ◦ [t′/x] ≈E,T∪{x} σ0 ◦ [t/x]. Moreover, since T⃗ �E t,
we thus have xσ ◦ [t′/x] =E t by Definition 5.1. Hence,
t′ =E t. This completes the proof.

Recall the example given at the end of Section 4.1, where
the attacker knows NA and {NA · P}KAS . Suppose that it
only makes one explicit guess of KAS and aims to obtain P .
Then, his knowledge is represented by

T⃗ = ⟨{NA, {NA · P}KAS , x}, [KAS/x]⟩

Moreover, it can be shown that T⃗�EdyP and T [KAS/x] ⊢Edy

P . That is, P is weakly verifiable by T⃗ . Here, the attacker
needs not to explicitly guess P .

On the contrary, in Example 7, we notice that

{NA, {(NA ·NB) · {NA}K+
B
}KAS , x}[KAS/x] 0Edy K+

B

Thus, as noted before, the attacker has to make other ex-
plicit guess(es) (e.g., a guess of K+

B) to obtain K+
B .

321

5.2 Guessability
Finally, we coin the term guessability (i.e., the attacker’s

ability to guess) in terms of weak verifiability.

Definition 5.4 (Guessability). Let T⃗ be a markup term set
representing the attacker’s knowledge. We say that a ground
term t is guessable by the attacker if T⃗ IE t.

This provides the last step to formalize and justify the long
held intuition between “guess” and “verify”.
Noticing that the attacker’s knowledge should be updated

to ⟨T ∪{t}, σ⟩ if ⟨T, σ⟩ IE t, one may reasonably think that
we need to recursively add new guessable terms into the
attacker’s knowledge until no new guessable term can be
found. It seems probable that Definition 5.4 fails to account
for this dynamics.
Somewhat surprisingly, we find that adding t into the at-

tacker’s knowledge makes no difference in terms of guessabil-
ity. The following theorem states this formally and justifies
the Definition 5.4.

Theorem 5.5. Suppose that ⟨T, σ0⟩ IE s. Then, ⟨T, σ0⟩ IE

t if and only if ⟨T ∪ {s}, σ0⟩ IE t.

6. HARDNESS OF GUESSING
Until now we have mainly focused on the possibility of

guessing. In this section, we concern ourselves with the hard-
ness of guessing, that is, how much computational efforts are
required to obtain a guessable term t, provided T⃗ I t.

It should be noted that different guessing problems in-
cur different computational cost. For example, (explicitly)
guessing a 128-bit symmetric key is significantly harder than
guessing a poorly chosen password. In fact, there is a phys-
ical argument [37] that implies that guessing a 128-bit sym-
metric key is “practically infeasible”. Moreover, even for the
same guessing problem, the efforts can vary considerably in
different ways of (explicit) guessing. For instance, in Exam-
ple 4, the attacker can either explicitly guess P or explicitly
guess K−

B to obtain P . Let us assume K−
B is a 1024-bit pri-

vate key and P is a poorly chosen password. Then, guessing
P could be much easier than guessing K−

B .
Thus, despite the guessability results, we also need a new

notion to characterize the hardness of guessing. One may
think of using the binary length of all the explicit guesses.
Unfortunately, this simple way may fail to faithfully charac-
terize the hardness, as the following examples show.

Example 8. Let us consider two scenarios, in which the
attacker’s knowledge is, respectively, represented by

T⃗1 = ⟨{NA, {NA · P}KAB , {NA ·K+
A}KAS}, x, y},

[KAB/x,KAS/y]⟩

and

T⃗2 = ⟨{NA, {{NA · P}
K+

B
}KAB , {K−

B}KAS , x, y},

[KAB/x,KAS/y]⟩

Suppose that the attacker wants to obtain {P}
K+

A
in the first

scenario and P in the second. In both cases, these can be
done by explicitly guessing KAB and KAS. It is tempting to
conclude that guessing {P}

K+
A

and P is equally difficult.

However, a closer examination reveals the difference.

In the first scenario, the attacker can use

fst(dec({NA · P}KAB , x))σ =Edy NA (1)

to obtain the correct guess of KAB. Note that Equation (1)
does not involve the guess of KAS. So, the attacker can
correctly guess KAB without guessing KAS. Similarly, we
see that the attacker can also correctly guess KAS without
guessing KAB. After correctly guessing KAB and KAS, the
attacker can easily get P and K+

A , and thus derive {P}
K+

A
.

To sum up, the maximum number of times the attacker has
attempted to obtain {P}

K+
A

is 2|KAB | + 2|KAS |.

On the contrary, in the second scenario, the attacker can
only use

fst(dec(dec({{NA · P}
K+

B
}KAB , x), y))σ =Edy NA (2)

to obtain the correct guesses of KAB and KAS, and thus
derive P . This means the attacker has to guess KAB and
KAS simultaneously. Hence, the maximum number of times
it has attempted to obtain P is 2|KAB |+|KAS |.

Therefore, guessing in the second scenario is considerably
harder than in the first scenario.

Example 9. Let

T⃗ = ⟨{NA, {NA · P}KAB , {KAS}P , {NA ·K+
B}KAS , x, y},

[KAB/x,KAS/y]⟩

denotes the attacker’s knowledge. Suppose that the attacker
wants to obtain {P}

K+
B
. Similar to the first scenario in the

previous example both explicit guesses (of KAB and KAS)
can be made independently. But we have to be careful not
to conclude that the maximum number of times the attacker
has attempted to obtain {P}

K+
B

is also 2|KAB |+|KAS |.

Let us take a closer look at T⃗ . We notice that after obtain-
ing the correct guess of KAB the attacker can use snd(dec({NA·
P}KAB ,KAB)) =Edy P to derive P , which can be further
used to derive KAS as dec({KAS}P , P) =Edy KAS. So, the
attacker can derive KAS only by a single explicit guess of
KAB. In other words, the maximum number of times the
attacker has attempted is just 2|KAB |.

As noted in the above examples, the number of bits that
the attacker has to guess might be less than that of all ex-
plicit guesses. There are two main reasons for this: (i) some
explicit guess(es) can be readily made without dealing with
other guesses, dividing an overall hard guess problem into
several easier ones; and (ii) the redundancy inherent in all
the explicit guesses makes it possible to derive useful infor-
mation between them.

We thus propose to use the search space, rather than the
number of bits of the explicit guesses, to characterize the
hardness of guess.

Definition 6.1 (Hardness). We define minmax(T⃗ I t) as
the minimum maximum number of times one might attempt
to obtain t. Moreover, we say that the hardness of T⃗ I t is
in order of n (or n-bit hard) if n = ⌈log2 minmax(T⃗ I t)⌉.

Now, it is not hard to see that T⃗1 I{P}
K+

A
and T⃗2 IP

in Example 8 are in order of log2 (2
|KAB | + 2|KAS |) and

|KAB | + |KAS |, respectively; T⃗ I{P}
K+

B
in Example 9 is

in order of |KAB |.

322

Remark. Although Definition 6.1 allows us to evaluate the
hardness of guess accurately, it does not provide much in-
sight into how to determine minmax(T⃗ I t) and thus the

hardness of T⃗ I t. Obviously, much future work remains
to be done for solving minmax(T⃗ I t). There are two is-
sues to be considered in addressing this problem: first, to
explore the redundancy in those explicit guesses, and sec-
ond, to partition the explicit guesses into groups that can
be done without involving others. We do not explore these
issues further in this paper.

7. DETECTING GUESSING ATTACKS
In this section, we briefly discuss how the proposed frame-

work can be used effectively in detecting guessing attacks.

7.1 A Cognitive Perspective
Before diving into the technical discussion, it helps to have

a clear distinction between passive and active attacks (not
just guessing attacks).

Passive attack.
The passive attacker does not interact with protocol par-

ticipants; whether or not it can launch an attack solely based
upon the eavesdropped data. We thus informally view the
passive attack as a computing problem: given a set of ob-
served messages, whether it is possible to “compute” confi-
dential data.
In the literature, intruder deduction [15, 1, 21, 18] and

static equivalence [2, 1, 7, 12] correspond to this computa-
tional view, where computing is regarded as a knowledge
reasoning process.

Active attack.
Besides its ability to reason about knowledge as the pas-

sive attacker, the active attacker can also communicate with
legitimate participants. Benefit from a cognitive perspec-
tive, this can be understood in two complementary ways:

1. (Communication view) we can think of communication
with external entities as a way of gaining new informa-
tion that cannot be deduced from its current knowledge.

2. (Computational view) we can regards the external enti-
ties as as an internal oracle that computes new informa-
tion from its current knowledge.

Example 10. Let us consider again the protocol presented
in the introduction:

Message 1. A → B : {NA}KAB

Message 2. B → A : {f(NA)}KAB

An active attacker can act in the role of A initiate commu-
nication with B. Assume that the attacker’s knowledge is
represented by term set TI = {I, A,B, {NA}KAB}.
From a communication point of view, the attacker does

not know {f(NA)}KAB (i.e., TI 0Edy {f(NA)}KAB) at first.
Only after exchanging messages with B, it obtain message
{f(NA)}KAB and thus its knowledge becomes

T ′
I = {I, A,B, {NA}KAB , {f(NA)}KAB}

Clearly,

TI ̸≡Edy T ′
I (3)

From a computational point of view, the attacker is en-
dowed with an oracle that takes t as input and outputs

g(t) = enc(f(dec(t,KAB)),KAB) (4)

where g is a public function symbol that never occurs in the
original term algebra T . As the oracle is internal, we thus
incorporate the above equation to equation theory Edy and
get E′

dy. Therefore,

TI ≡E′
dy

T ′
I (5)

In this light, we can categorize the security protocol mod-
els into two groups: one is based on communication view,
such as Strand Space Model [28], CSP [45], and applied pi-
calculus [2]; the other is based on computational view, such
as multiset rewriting [10], constraint solving[44], Prolog rules
[5], and Horn clauses [6].

We remark that a clear distinction between passive and
active attack enables us to determine whether the attack is
primarily due to the attacker’s knowledge or its interaction
with legitimate participants. Moreover, a thorough under-
standing of passive attacks will shed important light on the
study of active attacks and security protocol design as well.

7.2 Passive Guessing Attacks
In terms of passive guessing attack, the knowledge rea-

soning problem is that, given a set of observed messages,
whether it is at all possible to correctly guess any confiden-
tial data.

Our framework formulates the above knowledge reason-
ing problem accurately. We use term set T to describe the
set of observed messages, term t to represent some confi-
dential data, variables set X to correspond to all the guess
made by the attacker, and substitution σ with Dom(σ) = X
to indicate the correct guesses. Because passive eavesdrop-
ping is performed over legitimate protocol sessions, observed
messages must comply with the protocol specification and
thus we can assume T to be a ground term set. Likewise,
t is also ground. Then, markup term set ⟨T ∪ X,σ⟩ mod-
els the passive attacker’s knowledge. Finally, the problem
of detecting passive guessing attacks is reduced to deciding
⟨T ∪X,σ⟩IE t.

At this point, detection of passive guessing attacks boils
down to deciding guessability. The last missing step is to
give a decision procedure for ⟨T ∪X,σ⟩IE t. Unfortunately,
in general, this may be undecidable [1].

Deciding Guessability under standard Dolev-Yao in-
truder model.

Recently, Li and Wang [38] proposed a terminating proce-
dure to determine recognizability under standard Dolev-Yao
intruder model [25]. Here, we adopt this procedure to decide
guessability under Dolev-Yao model.

Although the original procedure (i.e., algorithm Solve)
is intended for deciding strong recognizability (Definition
3.3), it can be easily extended to weak recognizability, as re-
quired in Definition 5.4. At first, we extend the definition of
markup term set to a triple ⟨T, η, σ⟩, which includes a second
substitution η that account for partial solution. Then, algo-
rithm returns a new triple ⟨T ′, η′, σ′⟩ in solved form. More
formally,

Theorem 7.1. Let ⟨T, σ⟩ be a markup term set, t be a
ground term, and x be a fresh variable. Suppose that Tσ ∪

323

{t} does not contain function symbol fst, snd, or dec. If
Tσ ⊢Edy t, Solve(⟨T ∪ {x}, ϕ, σ ◦ [t/x]⟩) returns ⟨T ′, η′, σ′⟩,
and xη′ =s t, then T⃗ IEdy t.

Please refer to [38] for more details on the algorithm.

7.3 Extension to Active Guessing Attacks
To handle an active attacker, it is important to model

security protocols. As mentioned in Section 7.1, existing
formal methods for protocol modeling fall into two groups:
communication based and computation based.
For simplicity, we adopt a computational view here: we

regard the active attacker as a special passive attacker with
an oracle. More specifically, we can add equations describing
the oracle to the original equational theory. For instance in
Example 10, we just add Equation 4 to equation theory Edy

(and obtain equational theory E′
dy). This method is similar

to that of [3], which uses a set of second-order variables to
keep track of the computations. In general, a symbolic trace
[29, 8, 14] that describes the sequences of actions (receive
or send) of a given protocol role brings about n distinct
equations, where n is the number of messages sent by the
role.
By extending the original equational theory, we get a new

equational theory, say E′, to model the active attacker’s ca-
pabilities3. Therefore, the problem of detecting active guess-
ing attack boils down to deciding guessability under the new
equational theory E′.
It should be noted that deciding IE′ may be undecidable.

After all, the our approach considers an unbounded number
of sessions of the protocol [46, 11], for which protocol inse-
curity is undecidable [27]. Approximation techniques [20, 6]
are usually employed to handle unbounded verification. Due
to space limit, we do not pursue these further here.

Active guessing attack is passive guessing attack?.
Thanks to the clear distinction between passive and active

attack, we find surprisingly that in many cases the enhanced
capabilities of active attacker does not impact guessability
at all; that is to say, active attacker is no more powerful
than passive attacker in term of guessability.
For example, in the protocol given at the beginning of the

introduction, if an attacker knows {{NA}KAB , {f(NA)}KAB}
and makes explicit guess of KAB , then all actively guess-
able terms are actually passively guessable, as the following
proposition shows.

Proposition 7.2. Let T⃗ be a markup term set and t be a
ground term. Suppose that

T⃗ = ⟨{{NA}KAB , {f(NA)}KAB , x}, [KAB/x]⟩

and t does not contain function symbol g, dec, fst, or snd.

Then, T⃗ IE′
dy

t if and only if T⃗ IEdy t.

8. CONCLUSION
In this paper, we present a general framework of guessing,

which clarifies and formalizes the intuitive understanding
of “verifying a guess”. Thanks to its following innovative
features

3In fact, the original term algebra T is also extended to T ′,
which includes several new public function symbols modeling
the oracle computation.

• independence of any specific adversary model,

• support of multiple (explicit) guesses, and

• definition to measure the hardness of guessing

this framework enables us to detect passive and active guess-
ing attacks, both of which rely critically on the decision
problem �E .

Apart from the technical contributions of this paper, oth-
er messages we want to convey are that passive attacks are
as important as active attacks, especially in the study of
guessing attacks; and that both communication and com-
putational views of active attacks may offer new insight in
security protocol analysis.

There are two major limitations of this study. First, the s-
tandard Dolev-Yao model considered in Section 7.2 assumes
“perfect encryption”, that is, {m}k =Edy {m′}k′ if and only

if m =Edy m′ and k =Edy k′. Such an assumption is un-
realistic for cryptographic primitives with visible algebraic
properties such as exclusive or and homomorphic operator,
see [19] for a survey. Second, our definition of hardness is too
general to be practically useful and it is non-trivial to deter-
mine minmax(T⃗ I t). Moreover, our analysis in Example 8
and 9 assumes a uniform distribution of the guessing value
and thus there is no better way than brute force guessing.
However, in reality, weak secret (say, n bits) usually has low
entropy, making it easier to guess (< n-bit hard).

Our future work will be aimed at addressing these limita-
tions. In particular, we plan to investigate the problem of
detecting guessability under more general equational theory
and develop automatic tools to detecting guessing attack.

9. REFERENCES
[1] M. Abadi and V. Cortier. Deciding knowledge in

security protocols under equational theories. Theor.
Comput. Sci., 367(1):2–32, 2006.

[2] M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. In POPL ’01, pages
104–115. ACM, 2001.

[3] M. Baudet. Deciding security of protocols against
off-line guessing attacks. In CCS ’05, pages 16–25.
ACM, 2005.

[4] G. Birkhoff. On the structure of abstract algebras.
Mathematical Proceedings of the Cambridge
Philosophical Society, 31(04):433–454, 1935.

[5] B. Blanchet. An efficient cryptographic protocol
verifier based on prolog rules. In CSFW ’01, page 82,
2001.

[6] B. Blanchet. Automatic verification of
correspondences for security protocols. J. Comput.
Secur., 17(4):363–434, 2009.

[7] B. Blanchet, M. Abadi, and C. Fournet. Automated
verification of selected equivalences for security
protocols. Journal of Logic and Algebraic
Programming, 75(1):3 – 51, 2008.

[8] M. Boreale and M. G. Buscemi. A method for
symbolic analysis of security protocols. Theoretical
Computer Science, 338(1-3):393 – 425, 2005.

[9] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. ACM Trans. Comput. Syst.,
8(1):18–36, 1990.

324

[10] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C.
Mitchell, and A. Scedrov. A meta-notation for
protocol analysis. In CSFW ’99, page 55, 1999.

[11] Y. Chevalier and L. Vigneron. Automated unbounded
verification of security protocols. In CAV ’02, pages
324–337. Springer-Verlag, 2002.

[12] c. Ciobâcă, S. Delaune, and S. Kremer. Computing
knowledge in security protocols under convergent
equational theories. In CADE-22, pages 355–370.
Springer-Verlag, 2009.

[13] M. Cohen and M. Dam. A complete axiomatization of
knowledge and cryptography. In LICS ’07, pages
77–88, 2007.

[14] H. Comon-Lundh and V. Cortier. Computational
soundness of observational equivalence. In CCS ’08,
pages 109–118. ACM, 2008.

[15] H. Comon-Lundh and V. Shmatikov. Intruder
deductions, constraint solving and insecurity decision
in presence of exclusive or. In LICS ’03, pages
271–280, June 2003.

[16] R. Corin, J. Doumen, and S. Etalle. Analysing
password protocol security against off-line dictionary
attacks. Electron. Notes Theor. Comput. Sci.,
121:47–63, 2005.

[17] R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle.
Guess what? here is a new tool that finds some new
guessing attacks. In R. Gorrieri and R. Lucchi, editors,
IFIP WG 1.7, pages 62–71, 2003.

[18] V. Cortier and S. Delaune. Deciding knowledge in
security protocols for monoidal equational theories. In
LPAR, pages 196–210, 2007.

[19] V. Cortier, S. Delaune, and P. Lafourcade. A survey of
algebraic properties used in cryptographic protocols.
J. Comput. Secur., 14(1):1–43, 2006.

[20] C. J. Cremers. Unbounded verification, falsification,
and characterization of security protocols by pattern
refinement. In CCS ’08, pages 119–128. ACM, 2008.

[21] S. Delaune. Easy intruder deduction problems with
homomorphisms. Information Processing Letters,
97(6):213 – 218, 2006.

[22] S. Delaune and F. Jacquemard. A theory of dictionary
attacks and its complexity. In CSFW ’04, page 2, 2004.

[23] N. Dershowitz and D. A. Plaisted. Rewriting. In
Handbook of Automated Reasoning, pages 535–610.
MIT Press, 2001.

[24] Y. Ding and P. Horster. Undetectable on-line
password guessing attacks. SIGOPS Oper. Syst. Rev.,
29(4):77–86, 1995.

[25] D. Dolev and A. Yao. On the security of public key
protocols. Information Theory, IEEE Transactions on,
29(2):198–208, Mar 1983.

[26] P. H. Drielsma, S. Modersheim, and L. Vigano. A
formalization of off-line guessing for security protocol
analysis. In Logic for Programming, Artificial
Intelligence, and Reasoning, volume 3452, pages
363–379. 2005.

[27] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov.
Multiset rewriting and the complexity of bounded
security protocols. J. Comput. Secur., 12(2):247–311,
2004.

[28] F. Fabrega, J. Herzog, and J. Guttman. Strand spaces:

why is a security protocol correct? pages 160 –171,
may 1998.

[29] F. J. T. Fábrega. Strand spaces: proving security
protocols correct. J. Comput. Secur., 7(2-3):191–230,
1999.

[30] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning About Knowledge, volume 1 of MIT Press
Books. The MIT Press, December 2003.

[31] L. Gong. Optimal authentication protocols resistant to
password guessing attacks. In CSFW ’95, page 24,
1995.

[32] L. Gong, M. Lomas, R. Needham, and J. Saltzer.
Protecting poorly chosen secrets from guessing
attacks. Selected Areas in Communications, IEEE
Journal on, 11(5):648 –656, jun. 1993.

[33] B. Groza and M. Minea. A calculus to detect guessing
attacks. In ISC ’09, pages 59–67. Springer-Verlag,
2009.

[34] S. Halevi and H. Krawczyk. Public-key cryptography
and password protocols. ACM Trans. Inf. Syst. Secur.,
2(3):230–268, 1999.

[35] J. Halpern, Y. Moses, and M. Vardi. Algorithmic
knowledge. In Proc. of 5th conference on Theoretical
Aspects of Reasoning about Knowledge, pages 255–266,
1994.

[36] J. Heather, G. Lowe, and S. Schneider. How to
prevent type flaw attacks on security protocols. J.
Comput. Secur., 11(2):217–244, 2003.

[37] R. Landauer. Irreversibility and heat generation in the
computing process. IBM Journal of Research and
Development, 44(1.2):261 –269, jan. 2000.

[38] Z. Li and W. Wang. Deciding recognizability under
dolev-yao intruder model. In ISC ’10, to appear.

[39] Z. Li and W. Wang. Rethinking about type-flaw
attacks. In Global Telecommunications Conference,
2010. GLOBECOM 2010. IEEE, to appear.

[40] T. Lomas, L. Gong, J. Saltzer, and R. Needhamn.
Reducing risks from poorly chosen keys. SIGOPS
Oper. Syst. Rev., 23(5):14–18, 1989.

[41] G. Lowe. Breaking and fixing the needham-schroeder
public-key protocol using fdr. In TACAs ’96, pages
147–166, 1996.

[42] G. Lowe. Analysing protocols subject to guessing
attacks. J. Comput. Secur., 12(1):83–97, 2004.

[43] C. Meadows. A procedure for verifying security
against type confusion attacks. In CSFW 03, pages
62–72, 2003.

[44] J. Millen and V. Shmatikov. Constraint solving for
bounded-process cryptographic protocol analysis. In
CCS ’01, pages 166–175. ACM, 2001.

[45] S. Schneider. Security properties and csp. In SP ’96,
page 174, 1996.

[46] D. X. Song, S. Berezin, and A. Perrig. Athena: a novel
approach to efficient automatic security protocol
analysis. J. Comput. Secur., 9(1-2):47–74, 2001.

325

	Introduction
	Preliminaries
	Term Algebra
	Term Rewriting Systems
	Modeling Standard Adversaries

	Formalizing the Idea of Verifying a Guess
	Accounting for the Attacker's Guessing Capabilities
	Explicit Guess and Implicit Guess
	A New Knowledge Model

	A Complete Characterization of Guessing
	Weak Verifiability
	Guessability

	Hardness of Guessing
	Detecting Guessing Attacks
	A Cognitive Perspective
	Passive Guessing Attacks
	Extension to Active Guessing Attacks

	Conclusion
	References

