
Non-interactive OS Fingerprinting through
Memory De-duplication Technique in Virtual

Machines
Rodney Owens and Weichao Wang

Department of SIS and CyberDNA Center
University of North Carolina at Charlotte

Charlotte, NC 28223
Email: { rvowens@, weichaowang@ }uncc.edu

Abstract—OS fingerprinting tries to identify the type and
version of a system based on gathered information of a target
host. It is an essential step for many subsequent penetration
attempts and attacks. Traditional OS fingerprinting depends
on banner grabbing schemes or network traffic analysis
results to identify the system. These interactive procedures
can be detected by intrusion detection systems (IDS) or fooled
by fake network packets. In this paper, we propose a new
OS fingerprinting mechanism in virtual machine hypervisors
that adopt the memory de-duplication technique. Specifically,
when multiple memory pages with the same contents occupy
only one physical page, their reading and writing access
delay will demonstrate some special properties. We use the
accumulated access delay to the memory pages that are
unique to some specific OS images to derive out whether or
not our VM instance and the target VM are using the same
OS. The experiment results on VMware ESXi hypervisor
with both Windows and Ubuntu Linux OS images show the
practicability of the attack. We also discuss the mechanisms
to defend against such attacks by the hypervisors and VMs.

I. INTRODUCTION

OS fingerprinting is an essential step for many subse-
quent penetration attempts and attacks. Only after iden-
tifying the type and version of the OS of a system,
can an attacker determine the vulnerabilities to exploit.
Traditional OS fingerprinting schemes [1], [2], [3], [4],
[5] are usually interactive procedures through IP packet
analysis, service querying, or chronological exploits. Since
these mechanisms usually initiate some interaction with
the target system and use the contents and delay of the
network packets from the target OS to determine its type
and version, the target OS can monitor the network traffic
to detect such attempts. It can also disable the responses
or generate fake packets to disguise the fingerprinting
procedure.

The proliferation of cloud computing environments and
virtual machine platforms creates a new path for non-
interactive OS fingerprinting. The technique of cloud com-
puting allows end users to outsource the storage, com-

putation, development, and even the complete computing
infrastructure to third party service providers through vir-
tual machines [6]. In a VM hypervisor, multiple virtual
machines share the same hardware platform. Although
perfect isolation among VMs is required by design [7],
researchers have identified several mechanisms to break
such isolation through the schemes such as side channels
[8]. For example, researchers find that the shared cache
may become a side channel for the detection of the web
traffic access rate or even keystrokes of the co-resident VM
instances [9]. As another example, CCCV [10] is a system
that can create a covert channel using the CPU loads to
secretly transmit information among virtual machines.

In this research we seek to investigate OS fingerprint-
ing in virtual machine hypervisors with the memory de-
duplication functionalities enabled (such as VMware ESX
and ESXi [11], Extended Xen [12], [13], and KSM (Ker-
nel Samepage Merging) [14] of the Linux kernel). The
memory de-duplication technique takes advantage of the
similarity among memory pages so that only a single copy
and multiple handles need to be preserved in the physical
memory, as shown in Figure 1. Here each of the two virtual
machines V M1 and V M2 needs to use three memory
pages. Under the normal condition, six physical pages
will be occupied by the VMs. If memory de-duplication
is enabled, we need to store only one copy of multiple
identical pages. Therefore, the two VMs can be fit into four
physical pages (note that we have both inter- and intra-VM
memory de-duplication). This technique can reduce the
memory footprint size of VMs and the performance penalty
caused by memory access miss. However, it will break the
isolation among VMs and introduce new vulnerabilities of
non-interactive OS fingerprinting. The objective of this pa-
per is to exploit the vulnerability by constructing concrete
attacks on the VMware ESXi hypervisor, and investigate
the mechanisms to defend against such attacks.

The overview of our approach is as follows. When we
detect that the target VM has been launched, we will use

978-1-4673-0011-7/11/$26.00 ©2011 IEEE

the mechanisms described in [9] to initiate multiple VM
instances using different OS onto the same physical box.
Without losing generality, we call the operating system of
the target VM as St and those of the attacker’s VMs as
Sa1, Sa2, · · · , San. The objective is to determine whether
or not Sai and St are of the same type. To achieve the
goal, we will let the memory de-duplication mechanisms
identify and merge those identical pages. Once this pro-
cedure is accomplished, we will introduce reading and
writing operations to the memory pages that are unique
for each different OS type. Since the hypervisor handles
the operations differently for those de-duplicated pages and
the pages with their own copies [15], we can measure the
accumulated differences in the memory access delay to
figure out whether or not Sai and St are of the same type.
During this procedure, the attacker’s VMs do not need to
directly interact with the target VM.

Fig. 1. Memory de-duplication reduces the OS footprint size.

We design several mechanisms to defend against such
attacks by the hypervisor and the guest OS respectively. At
the virtual machine level, the guest OS can load the unique
memory pages belonging to other OS into its memory
to obfuscate the fingerprinting procedures. The hypervisor
can monitor the behaviors of different VMs and avoid the
de-duplication of any memory pages belonging to the OS
image files. More details of the defense mechanisms will
be discussed in Section IV.

Compared to existing OS detection mechanisms, the
proposed approach has the following advantages. First
and most importantly, it is a non-interactive fingerprinting
procedure since during the attack we only conduct op-
erations on our own VM instances. This non-interactive
property will prevent the target OS from detecting the
fingerprinting operations. Second, we have analyzed the
memory footprint of many different OS types and identified
the memory pages that are unique to each type. Our
preliminary results show that the number of unique pages is
large enough to generate a measurable difference in access
delay. Last but not least, our experiment results on VMware
ESXi with both Windows and Linux systems show that this
attack is practical. Since our approach does not conflict

with the interactive OS fingerprinting mechanisms, they
can work together to improve the detection accuracy.

The remainder of the paper is organized as follows. In
Section II we describe the details of the OS fingerprinting
approach. We discuss the generation of the signature files
and the procedures to measure the accumulated differences
in access delay. In Section III we present the implemen-
tation of the attacks and the experimental results when
VMware ESXi hypervisor is used. Section IV discusses
the problems such as VM co-residence detection and the
prevention of the attacks. Finally, Section V concludes the
paper.

II. THE PROPOSED APPROACH

A. System Assumptions and Background

In the investigated scenario, we assume that an attacker
can initiate VM instances in the same cloud infrastructure
as the target VM. We also assume that through the co-
residence detection mechanisms discussed in Section IV
we can determine whether or not the target system is
running as a guest on the same physical box as the
attacker’s VMs. Since the target VM could have very
sophisticated Intrusion Detection/Prevention Systems in
place, it can detect any OS fingerprinting attempts through
network interactions. Under this condition, the attacker
wants to learn what OS version the target is, without any
network scans, in order to exploit known vulnerabilities
and conduct a direct one-hit attack before the IDS/IPS can
respond.

We assume the attacker has root control over the VM
instances that it initiates. We also assume the attacker’s
VMs have large enough memory (such as 512MB) to
avoid very frequent page swapping. We do not assume the
attacker can decide how many CPU cycles it is allowed to
use, nor do we assume the attacker can decide how much
physical RAM its VMs are allowed to consume. These are
reasonable assumptions based on current industry practice.
Without losing generality, we assume that the host uses
4KB memory pages.

Since in our experiments we use VMware ESXi as
the hypervisor, below we briefly describe its memory de-
duplication operations. A comprehensive description can
be found at [16]. To avoid unnecessary delay during page
loading, whenever a new memory page is read from the
hard disk, ESXi will allocate a new physical page for it.
Later, ESXi will use idle CPU cycles to locate the identical
memory pages in physical RAM, and remove duplicates by
leaving pointers for each VM to access the same memory
block. Hash results of the memory page contents are used
as index values to locate identical pages. To avoid false
de-duplication caused by hash collisions, a byte-by-byte
comparison between the pages will be conducted. While
the reading operations to the de-duplicated pages will

access the same copy, copy-on-write is used to prevent
one VM from changing another VM’s memory pages.
Specifically, on writing operations a new page will first
be allocated and copied. This procedure will incur extra
overhead compared to writing to not-shared pages, which
will lead to a measurable delay when a large number of
shared pages are allocated and copied.

ESXi uses three system wide parameters to adjust how it
looks for de-duplicated pages. These are “ShareScanTime”,
“ShareScanGHz”, and “ShareRateMax”. ShareScanTime
specifies how much time the administrator would like
ESXi to scan an entire VM’s memory pages for dupli-
cates. ShareScanGHz specifies the maximum number of
pages to scan in physical RAM per second. ShareRateMax
specifies how quickly the pages should be scanned per-
virtual machine. VMware sets these parameters to some
default values to offer the least amount of overhead, while
still finding identical pages fairly quickly. According to
VMware, the algorithm also scans faster if it determines
that there is a high likelihood of finding duplicate pages
based on the previous scans, and vice-versa.

B. Generation of OS Signatures

The first step to turn the proposed approach into a
practical attack is to identify the memory pages that are
unique to each OS type. To accomplish this task, we load
the OS image files into a VM instance and then conduct a
memory dump. The dump files are then cut into 4KB

pages. We adopt the mechanism in [12] and use hash
results of the memory contents as indexes to locate the
identical pages. For each OS type and version, we analyze
the memory dump files from different installation sources
so that we can remove the impacts of the factors including
different hardware drivers, different product keys, and dif-
ferent product IDs. Once we have categorized the memory
pages by OS types and versions, we can find out which
memory pages are unique to each OS version, but present
in all copies of that OS version. These memory pages will
hereafter be referred to as OS signatures. Please note that
not all memory pages can be used as the signatures. For
example, the memory dump of Windows XP SP3 contains
59,238 copies of all-zero memory pages. These pages,
however, cannot be used for OS fingerprinting since they
are not unique to any specific OS type.

The OS signatures created in this fashion give us a real
world representation to what can be found in the wild. The
off-line memory dump and analysis is also much faster,
easier, and only slightly less accurate than calculating what
the similar memory pages would be based on the OS’s
documented loading behavior on essential OS files. Based
on these considerations, we believe that an attacker would
most likely build OS signatures in the same fashion as we
have for our approach.

During the signature generation procedures, we conduct
cross-comparison among only the memory pages of dif-
ferent OS types. Therefore, it is possible that some of the
signature pages will appear in the memory images of other
software applications or data files. This may affect the OS
fingerprinting accuracy since the attacker would not be able
to identify the sources of these memory pages. Fortunately,
because of the large number of diverse memory pages
(24096×8 if every bit has the same probability to be 0
or 1), the impacts on fingerprinting accuracy will be very
limited. Quantitative investigation of this problem will be
conducted in future work.

C. OS Fingerprinting Procedures

As we describe in Section I, VMware ESXi uses differ-
ent methods to handle the writing operations to the de-
duplicated pages and pages with their own copies. For
the pages with their own copies, the writing operation can
be conducted immediately. For the de-duplicated pages, a
new copy must be created first. This memory allocation
and copy procedure will introduce extra processing delay.
Our OS fingerprinting procedure, therefore, is to detect the
accumulated difference in access delay caused by the de-
duplication between our OS signatures and the target VM.
To achieve the goal, we propose to adopt the following
schemes.

Fig. 2. The proposed OS fingerprinting procedure.

First, the extra processing delay is caused by the writing
operations. Since many OS files are read-only, we plan to
construct a different signature file for each OS type by
chaining its unique memory pages together. Therefore, by
loading the corresponding signature file into memory and
writing to it, we can force the hypervisor to create a new
copy for any de-duplicated pages belonging to that OS.

Second, since the pages that have not been accessed
recently will be swapped out by the hypervisor, we need
to distinguish the delay of hard disk reading from that of
copy-on-write. To accomplish this task, we plan to conduct
a reading operation to the OS signature file right before

the writing operation. If a page is in the memory, this
reading operation can be accomplished immediately and
it will not change the de-duplication status of the page.
However, if a page has been swapped out, this reading
operation will force the hypervisor to execute a hard disk
access. Since VMware ESXi will allocate a new memory
page for the newly read contents, the next step of writing
can be accomplished immediately and will not provide us
useful information about OS fingerprinting. In this way,
we can distinguish between the two types of access delay.

With these basic components established, our OS fin-
gerprinting procedure is illustrated in Figure 2. Although
here we use the narrative description “short” and “long”,
the experiments in Section III will help us to determine
quantitative thresholds for OS fingerprinting in real sys-
tems.

When we confirm that our VM instance and the target
VM are located on the same physical box through co-
residence detection, we will read the OS signature files
into memory. These files will then be left alone for a
period of time to allow memory de-duplication algorithms
to locate and merge the identical pages. Once the de-
duplication procedure is accomplished, we will conduct
a reading operation on the signature files. The purpose
of this operation is to determine whether or not the files
have been swapped out to hard disk. If the reading access
delay matches the hard disk loading time, we will abort
the fingerprinting procedure since the newly loaded pages
all have their own copies. Otherwise, we will conduct a
writing operation to the signature files. Since we already
know that these pages are in memory, based on the delay
of the writing operation, we can determine whether or not
they experience the copy-on-write procedures. If so, we
know that a VM instance matching this signature file exists
in the physical box.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Although the basic idea of the proposed approach is
straightforward, many issues need to be solved before we
can turn the idea into a practical attack. For example, we
need to examine the size of the OS signature files to make
sure that the accumulated delay is actually measurable.
At the same time, we need to examine the timekeeping
schemes in hypervisors so that we can measure the delay
accurately. In this Section, we present the details of our
implementation of the attack and the experiment results.

A. Experiment Environment Setup

Our VMware ESXi server is running on a PC with a
dual core 2.4GHz Xeon CPU, 4GB RAM, and SATA hard
drives. To simplify the experiment setup and examine the
practicability of the attack, during each trial there are only
the target VM and our attacking VM instance running on

ESXi. OS fingerprinting in more complicated scenarios
will be studied in future work.

In order to build the OS signatures, we have generated
and examined the memory dump files of different operating
systems to find memory pages that would be unique for a
specific OS version. We sampled four types of Linux/Unix
and eleven types of Windows to cross examine their
memory pages. The number of unique pages of each OS
type/version is summarized in Table I. From the table, we
find that the size of the signature files ranges from several
thousands to tens of thousands of pages. The experiment
results presented later will show that the accumulated
difference in access delay to these pages can be easily
detected.

Another issue that we are facing is the accuracy of
time measurement. Traditionally a computer provides three
schemes to measure the length of a time duration: time
of the day, CPU cycle counter, and APIC (advanced
programmable interrupt controller) timer. The first method
provides the measurement granularity of seconds which
is too coarse for our application. The second method
will be a good candidate for time measurement if the
attacker’s OS completely owns the hardware platform. In a
VM-based system, however, it cannot accurately measure
the time duration. For example, if a page fault happens
during our reading operation, the hypervisor may pause
the CPU cycle counter while it fetches the memory page.
Therefore, the delay caused by hard disk reading will not
be measured. Based on these observations, we choose to
use the timestamp service provided by masm32 in:

\masm32\lib\winmm.lib

to access the APIC timer. Specifically, we use the timeGet-
Time directive because it provides a 1 millisecond resolu-
tion [17]. According to [18], VMware has fully emulated
the local APIC timer to provide accurate time readings,
so the page fault handler built into ESXi to handle de-
duplication will not pause the virtual local APIC timer.

Newer operating systems include a technique known as
Address Space Layout Randomization, or ASLR. In this
technique, operating systems try to prevent code injections
from being successful by changing the memory locations
of executables. For Windows Vista, this technique was
explored in detail by Symantec in [19]. According to
Symantec,

When executing a program whose image has
been marked for ASLR, the memory layout of
the process is further randomized by placing the
thread stack and the process heaps randomly. The
stack address is selected first. The stack region
is selected from a range of 32 possible locations,
each separated by 64 KB or 256 KB...

This technique, as implemented by Microsoft, does not

TABLE I
SIZE OF OS SIGNATURE FILES IN 4KB PAGES

OS Type
Fedora Ubuntu Windows

7 8 10 11 2000 XP XP XP 2003 Vista Vista Win 7 Win 7 2008
SP1 SP2 SP3 32 bit 64 bit 32 bit 64 bit 32 bit

of unique pages 4572 5274 8179 5547 4239 4090 3325 3582 3695 5503 20053 9753 23977 5638

randomize within memory page boundaries. Memory pages
will be randomized in their physical locations, but the
contents within each page will remain the same. Because
our technique does not depend on the physical location
of memory pages, only that they exist with their full,
undisturbed contents, this technique has no effect on the
fingerprinting results. In our experiments we do not turn
off the ASLR switch in guest operating systems. The
experiment results confirm the discovery by Symantec.

Three reasons make us choose Windows 95 as the OS
of the attacker’s VM instance. First, we want an operating
system with a very small memory footprint size so that
its contents will not pollute the de-duplication results.
Since Windows 95 can easily run on a platform with
only 64MB RAM, it achieves a good balance between
the size and the supported functions. Second, there are
not many systems still running Windows 95 so there is a
very low probability that our VM instance and the target
VM are running the same OS. Last but not least, we
have extended experiences in working with the portable
executable (PE) file format and Windows 95 is one of the
earliest systems supporting this format. To further reduce
extra delay caused by high level programming languages,
we implemented the memory access and time measurement
functions in assembly language.

As illustrated in Figure 2, we have divided the OS
fingerprinting procedure into four groups of operations.
Operation group one will read the first 32 bits of every
memory page of the OS signature file and store each
result into the EAX register. Our program then sleeps
the processor for a duration of several hours to allow de-
duplication to occur. After that, it will perform operation
groups two through four immediately after each other.
Group two does the same operation as group one. Group
three writes junk data into the first 32 bits of every memory
page for each OS signature. Finally, group four reads back
the memory pages to confirm the changes.

B. Experiment Results

We conduct six groups of experiments to evaluate the
OS fingerprinting capability of the proposed approach
under different levels of computation and memory access
workload. The target OS that we try to identify includes
Windows 2008 Server 32 bit, Windows 7 32 bit, and
Ubuntu 10. In the attacker’s VM instance, we load the OS
signature files of Windows 2008 Server 32 bit, Windows
2003 Server, Windows XP Service Pack 3, Windows 7 32

bit, Ubuntu 10, and Ubuntu 11. We choose these signatures
since they are the favorites of IT staff in our day-to-day
lives and would have a high probability of a hit in the
real world. The idle periods for memory de-duplication
are usually four hours. Our results are shown in Figures 3
through 7. Since the delays span across multiple degrees
of magnitude, we use log-scale Y-axis. Since the signature
files of different OS types have different sizes, we illustrate
the average reading and writing time per memory page in
the figures. For a signature file that contains thousands
of memory pages, the accumulated difference in access
delay will be several to tens of milliseconds, which can be
easily measured by the proposed approach. Each node in
the figures is the average value of five experiments with
the same configuration. All time delays are measured in
milliseconds. To help readers to better understand the ex-
periment results, the average access delay to the signature
file of the target OS will always be represented by “x”.

(a) when Windows 2008 is the target OS

(b) when Ubuntu 10 is the target OS

Fig. 3. OS fingerprinting results with low CPU and memory demands.

In the first experiment, we set up a baseline test case.
Here one instance of Windows 2008 is initiated in the host

as the target OS. To reduce the impacts of page swapping
on the approach and accelerate the de-duplication calcu-
lation procedure, the target VM instance does not activate
any other applications. The attacker’s VM runs Windows
95 and loads the signature files of Windows 2008, 2003,
XP SP3, Windows 7 32bit, Ubuntu 10, and Ubuntu 11 into
its memory. As shown in Figure 3.(a), the delay of the first
reading operations is relatively long since the pages have
to be read from the hard disk. After that, the target VM
instance and the attacker’s VM are left idle for four hours
to give the de-duplication algorithms enough time to scan
the memory. Since each VM has enough memory to hold
the OS files, we do not expect a lot of page swapping to
happen. This is confirmed by the very short access delay
of the second group of reading operations. The access
delay of the writing operations, however, demonstrates
the difference among the signature files. Here the access
delay to the signature file of Windows 2008 is about three
times longer than those of other OS types because of the
copy-on-write operations. Our approach can successfully
identify the type of the target OS in this baseline setup.
The second experiment has the same configuration except
that the target VM is running Ubuntu 10. As the results
shown in Figure 3.(b), the long delay will allow us to easily
identify the target OS.

Fig. 4. OS fingerprinting under medium computation workload.

Fig. 5. OS fingerprinting under medium level memory demand.

In the third experiment, we want to investigate the
impacts of computation workload in the target VM on

the fingerprinting accuracy. Here the basic setup is the
same as the first experiment. The only difference is that
we use Windows 7 32bit as the target OS. To introduce
medium-level computation workload on the target VM, we
run DES encryption and RSA encryption algorithms on the
VM. The results are shown in Figure 4. Here the second
group of reading operations become slower. This could
be caused by context switch between the VMs since the
target VM is running some applications. The writing delay
to the signature files of the target OS is still much longer
than those of other OS types (4 to 8 times longer). From
this figure, we find that our OS fingerprinting approach
will work properly when the computation workload on the
target VM is not too heavy.

Fig. 6. OS fingerprinting under medium level computation workload
and memory demand.

Fig. 7. OS fingerprinting under extremely heavy computation workload
and memory demand.

In the fourth experiment, we want to investigate the
impacts of memory demands on the target VM on the
fingerprinting accuracy. Again we choose Windows 2008
as the OS of the target VM. We run a memory testing
software “QA+Win32” [20] to introduce medium-level
memory demand on the target VM. The results are shown
in Figure 5. Here the second group of reading operations
become even slower because of the page swapping. The
write delay to the signature files of the target OS is still 2
to 3 times longer than those of other OS types. This figure
shows that our approach can work properly under medium

level memory demand on the target VM.
In the fifth experiment, we have medium-level computa-

tion workload and memory demand on the target VM. The
results are shown in Figure 6. The OS type of the target
VM can still be identified based on the slow speed of the
writing operations.

In the last group of experiments, we want to investigate
the OS fingerprinting accuracy of our approach under very
heavy computation workload and memory demand. We
use Windows 2008 as the OS of the target VM. The
target VM is running Prime95 [21], a CPU and RAM
stress test software package. Very frequent memory page
swapping is expected. The results are shown in Figure 7.
We can see that the writing delay to the signature files of
different OS types cannot be distinguished from each other.
This experiment shows that memory de-duplication based
OS fingerprinting will not work properly under extremely
heavy computation workload and memory demand. This is
reasonable since under this condition, the hypervisor would
not have enough computation power or a relatively stable
memory image to identify and maintain the de-duplicated
pages.

IV. DISCUSSION

A. The problem of VM instance co-residence detection
Although the experimental results in Section III are very

encouraging, one problem is left unsolved: how can we put
our VM instances onto the same physical box as the target
and determine their co-residence. We plan to experiment
with two adversarial strategies to place attacker’s VM onto
the same physical box as the target. The first strategy is
brute-forcing placement. In this mechanism, we will launch
numerous instances over a period of time and conduct
co-residence test discussed below. Previous research [9]
shows that this simple approach has about 10% probability
to successfully put at least one VM of the attacker onto
the same physical box as the target. In the second attack
strategy, we plan to explore the strong sequential and
parallel placement locality of VM instances that has been
shown in third party clouds such as Amazon EC2 [9]. With
this property, if attackers launch VM instances relatively
soon after the launch of the target, they have a better
chance to achieve co-existence.

We understand that different VM management systems
have different mapping policies among the virtual ma-
chines and physical boxes. For example, some systems
use static mapping between the two groups. Under this
condition, we can use the information such as the Dom0
IP addresses and internal IP addresses in the cloud to
determine whether or not two instances are on the same
physical box. Such management policy will also allow us
to launch a new instance immediately after the termination
of our previous instance so that the new one will take the
slot of the terminated one.

The dynamic mapping between the VMs and physical
boxes may even help attackers on their fingerprinting
procedures. For example, to maximize the benefits of
memory de-duplication, the hypervisors may move all
instances with the same OS type onto a single physical
box. Under this condition, the attacker only needs to use
the co-residence detection schemes to determine whether
or not its VM is on the same physical box as the target.

We plan to use two groups of mechanisms to verify co-
residence of attacker’s VM and the target. In the first group
we will examine the similarity of their Dom0 IP addresses
and internal IP addresses in the cloud since many third
party cloud management systems use static mapping be-
tween the addresses of VMs and the physical boxes. In the
second group we will investigate load-based co-residence
detection schemes through side-channels [9], [22]. The
basic idea is to induce different levels of computation and
data access loads onto the target and measure the operation
delay of attacker’s VM instance. If the two sequences of
events match very well, the two VMs have a good chance
to be located on the same physical box.

B. Porting the attack to other hypervisors

Although we implement and evaluate the proposed at-
tack using only the VMware ESXi hypervisor, the tech-
nique can be easily ported to other hypervisors that support
memory de-duplication. For example, researchers [15] have
examined information leakage caused by memory de-
duplication in Linux KSM (Kernel Samepage Merging). In
their experiments, attackers construct memory pages that
have the same contents as some specific applications. They
will then measure the write access time to these pages
to determine whether or not the applications are initiated
in the target VM. In [12], memory harvesting using de-
duplication is implemented in Xen. Therefore, the similar
attack can be conducted in this environment with minor
changes.

C. Prevention of de-duplication based OS fingerprinting

Special mechanisms can be designed to defend against
the de-duplication based OS fingerprinting attacks at both
the hypervisor and the target VM. As the analysis in
Section II shows, the differences in access delay will allow
attackers to detect only the existence of specific pages in
the main memory. However, they cannot identify to which
applications or data files these pages belong. Therefore, a
VM can obfuscate the attack by intentionally loading the
signature files of other OS types into its memory. Since
most signature files contain only a few thousand unique
memory pages, we can easily fit multiple signatures into
the main memory of a VM. The hypervisor could also
intentionally load multiple VMs with different guest OS
onto the same physical box. This scheme, however, will
reduce the benefits brought by memory de-duplication.

Two mechanisms can be adopted by the hypervisor to
defend against the studied attacks. First, the hypervisor
can label the memory pages so that the de-duplication
operations can be conducted on only the pages of data files
but not OS images. The disadvantages of this mechanism
include the required modification to existing hypervisors
and the reduced memory usage efficiency. In the second
mechanism, physical isolation among the VMs will be en-
forced so that only mutually trusted VMs will be positioned
in the same physical box. For example, Amazon introduces
a new service with physically isolated, tenant-specific
hardware so that NASA will join its cloud infrastructure
[23]. In [24], researchers have designed a scheme to help
end users to verify the physical isolation among VMs.

V. CONCLUSION

In this paper we propose a new OS fingerprinting mech-
anism for VM instances on hypervisors that enable the
memory de-duplication functionality. The analysis shows
that the reading and writing delay of the memory pages
will demonstrate a measurable difference when they do
not have their own copies in the memory. Experimental
results on multiple OS types show that each of these OS
contains a large number of unique pages that can be used
as its signature. We can use the co-residence detection
schemes to launch VM instances onto the same physical
box as the target and determine its OS type. Different from
previous approaches that need interaction with the target,
our approach is more difficult to detect by IDS or network
traffic monitor.

Immediate extensions to our approach consist of the
following aspects. First, we plan to experiment with more
complicated scenarios to determine whether or not such
attack can be used for OS fingerprinting in them. We will
also experiment with other hypervisors such as extended
Xen and Linux KSM to generalize the attacks. Second,
we want to extensively study the prevention mechanisms.
We plan to implement the mitigation mechanisms at both
the VM level and the hypervisor level. We will also
evaluate their effectiveness and overhead. The research
will provide new information to determine the tradeoff
between memory management strategies and security in
hypervisors.

ACKNOWLEDGMENT

This research is supported in part by NSF CNS award
1143602.

REFERENCES

[1] P. Auffret, “Sinfp, unification of active and passive operating system
fingerprinting,” Jour. Comp. Virology, vol. 6, no. 3, pp. 197–205,
2010.

[2] Fyodor, “Remote os detection via tcp/ip stack fingerprinting,” http
://www.insecure.org/nmap/nmap-fingerprinting-article.html, 1999.

[3] L. G. Greenwald and T. J. Thomas, “Toward undetected operating
system fingerprinting,” in Proceedings of the first USENIX workshop
on Offensive Technologies, 2007, pp. 6:1–6:10.

[4] D. Richardson, S. Gribble, and T. Kohno, “The limits of automatic
os fingerprint generation,” in ACM workshop on Artificial intelli-
gence and security (AISec), 2010, pp. 24–34.

[5] G. Taleck, “Ambiguity resolution via passive os fingerprinting,” in
International Symposium on Recent Advances in Intrusion Detection
(RAID), 2003, pp. 192–206.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” Commun. ACM, vol. 53, pp. 50–58,
April 2010.

[7] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic place-
ment of hpc applications,” in Proceedings of the annual interna-
tional conference on Supercomputing, 2008, pp. 175–184.

[8] A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determinating timing
channels in compute clouds,” in Proceedings of ACM workshop on
Cloud computing security workshop, 2010, pp. 103–108.

[9] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,
get off of my cloud: exploring information leakage in third-party
compute clouds,” in Proc. of ACM Conference on Computer and
Communications Security (CCS), 2009.

[10] K. Okamura and Y. Oyama, “Load-based covert channels between
xen virtual machines,” in Proceedings of the ACM Symposium on
Applied Computing, 2010, pp. 173–180.

[11] VMWare, “Esxi configuration guide,” VMware vSphere 4.1 Docu-
mentation, 2010.

[12] D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren, G. Varghese,
G. Voelker, and A. Vahdat, “Difference engine: harnessing memory
redundancy in virtual machines,” Commun. ACM, vol. 53, no. 10,
pp. 85–93, 2010.

[13] X. Zhang, Z. Huo, J. Ma, and D. Meng, “Exploiting data dedu-
plication to accelerate live virtual machine migration,” in IEEE
International Conference on Cluster Computing, 2010, pp. 88–96.

[14] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density
by using ksm,” in Linux Symposium, 2009, pp. 19–28.

[15] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory deduplication
as a threat to the guest os,” in Proceedings of the Fourth European
Workshop on System Security, 2011, pp. 1:1–1:6.

[16] VMWare, “Understanding memory resource management in
vmware esx 4.1,” VMware vSphere 4.1 Documentation, 2010.

[17] Microsoft Developer Network, “timegettime,” http://msdn.microsoft
.com/en-us/library/ms713418(VS.85).aspx, 2010.

[18] VMWare, “Timekeeping in vmware virtual machines,” http://www.
vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf, 2010.

[19] Symantec, “An analysis of address space layout randomization on
windows vista,” http://www.symantec.com/avcenter/reference/ Ad-
dress Space Layout Randomization.pdf, Tech. Rep., 2007.

[20] Eurosoft, “Qa+win32-diagnostic software,” http://www.eurosoft-uk
.com/qawin32.html, 2010.

[21] G. Woltman, “Prime95,” a component of Great Internet Mersenne
Prime Search (GIMPS), http://www.mersenne.org/, 2009.

[22] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource man-
agement for isolation enhanced cloud services,” in ACM Cloud
Computing Security Workshop, 2009, pp. 77–84.

[23] B. Stone and A. Vance, “Companies slowly join cloud computing,”
New York Times, 18 April, 2010.

[24] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “Homealone:
Co-residency detection in the cloud via side-channel analysis,”
in Proceedings of the IEEE Symposium on Security and Privacy
(Oakland), 2011, pp. 313–328.

