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Abstract— We present a robust intrusion detection approach for wireless networks based on a new multi-matrix visualization method
with a set of pattern generation, evaluation, organization, and interaction functions. Our approach concentrates on assisting users to
analyze statistical network topology patterns that could expose significant attack features. Specifically, we investigate Sybil attacks
that have severe impacts on the fundamental operations of wireless networks. We have analyzed the features of network topologies
under various Sybil attacks and, consequently, designed several matrix reordering algorithms to generate statistical patterns. These
topology patterns are automatically evaluated and classified through the measured structural similarities to the signature attack
patterns. We have also designed a new time-series analysis method to identify attack durations with a time histogram generation
and an automatic segmentation method. To handle complex Sybil attacks, we have integrated our pattern generation, evaluation,
and organization methods to construct a prototype detection system, in which specialized interaction functions are provided to assist
the analysis and comparison of network data. Simulation results show that this approach can effectively locate Sybil attacks under
different combinations of network parameters. Our multi-matrix visualization method provides a flexible framework to handle the
intricacies and implications from building a complex visual analytics system, which can be extended to defend against a wide range
of attacks.
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1 INTRODUCTION

With the wide adoption of wireless networks in real-life applicationgositions. However, these automatic algorithms often make certain
enforcing security in these environments has become a top priori@gsumptions about the environments and are not capable of detecting
Both automated attack mitigation and interactive visualization agomplex variations of Sybil attacks. We believe that visualization of
proaches have been developed for intrusion detection. Howeven duglobal topology is one promising direction and it is essential for the de-
the diversity and complexity of malicious attacks, automated attack déglopment of effective and robust analysis and monitoring appesach
tection algorithms are often built upon some strong assumptions wHilt can assist users to detect such attacks.
interactive visualization methods can overly rely on user intervention, In this paper, we present a new approach to detect Sybil attacks
which will restrict their applications to real-life problems. Thereforethrough exploring statistical patterns of global network topology based
the suitable combination of these two types of approaches in orderoi® attack features. We have designed a series of pattern generation,
reveal feature patterns effectively and efficiently is crucial to the devaluation, organization, and interaction methods that allow users to
velopment a practical detection mechanism. This paper presentse@plore and analyze topology data efficiently. Our approach canlrevea
approach that can automatically suggest interesting data patterns gigfificant patterns through both matrix reordering and time-series
assist users in identifying malicious nodes with just a small amount ghalysis. The designs of multi-matrix visualization and supporting
interaction. analysis functions allow us to overcome the limits of automatic al-
In all the intrusion detection mechanisms, several methods hayerithms with the advantages of interactive visualization techniques.
been developed to visualize topologies using graph drawing or matfgr complex attack scenarios, as long as one of our generated topol-
representation [2, 17], since topology data is commonly collected @gy patterns shows inconspicuous traces, even if they are fuzzy and
network applications and is extremely important for routing. A globahcomplete, our interactive exploration process can help users utilize
network topology records the neighbor relationships among wireleir visual cues, combined with their expertise to identify malicious
nodes and includes many traces that can be used to detect attaddes. This visualization assisted approach provides a practical and
on authentication and node identities. Since these traces are usuallyust detection tool by exposing special patterns hidden in the time-
deeply hidden in the topology information, it is very difficult for a usewarying topology information.

to identify malicious nodes with existing general topology visualiza- \ye have summarized several features of Sybil attacks and used
tion methods. Therefore, we need to develop more effective inteeactipem to explore similar patterns hidden in the global topology ma-
visualization and analysis approaches to accomplish these challengiig,s  New patterns are generated by reordering topology matrices
tasks. - o ) ) ) according to different aspects of attack features. We have also de-
_Specifically, in this paper we investige8ghil attack [10] that ma- signed methods for time histogram generation and automatic segmen-
nipulates node identities under various attack scenarios in wireleggon in order to capture attack periods, thus revealing more signif-
networks. In such attacks, a single malicious node plays the rolggnt patterns. All the topology patterns are automatically evaluated
of multiple legitimate members of the network by impersonating theiind categorized to provide detection reports and suggestions to users.
identities or claiming fake IDs. More details about the behaviors ang organize and analyze these relevant topology patterns effectively,
impacts of Sybil attacks are provided in Section 2.1. Since in these gle provide several specialized analysis tools in our integrated system.
tacks the malicious nodes can change the number of fake identities @it experimental results show that this method can effectively detect
their connection relationships freely, the effectiveness of previous igyhil attacks according to hundreds of simulation datasets.
trusion detection systems may be drastically weakened [10]. Noticing he main contribution of this paper is to provide a robust intrusion

the serious harm that Sybil attacks can cause, researchers have B5sction and network monitorina anproach which focuses on Svbil
posed several approaches to defend against such attacks [528].10 ks. Since we integrate attagk fggtures with expert knowled )(/e in
Existing approaches usually concentrate on verifying whether or ?}%ageféction process gur method can detect complgx attack con?bina—
a pair of nodes have distinct resources, distinct knowledge, or disti s, which are difficult to identify by previous methods. We have de-
signed a series of matrix visualization methods to analyze information
using multiple relevant topology patterns based on attack features. We
have also provided an integrated method to analyze time-series topol-
ogy data through designing special time histogram and segmentation




methods. Compared to previous security methods, our approachniteractive approaches have also been used to analyze matrix informa
solely based on neighbor relationships among wireless nodes; thdi@na [14, 25].

fore it can be applied to highly dynamic environments such as mobile Our method in this paper also reorders matrices to reveal important
ad hoc networks and can be extended to detect other attacks. Sincepaitiierns in the network topology. Different from previous approaches
system can effectively visualize and organize multiple matrix patternge design automatic reordering and evaluation algorithms according
we believe that this approach can be extended to serve as integrateattack features and use resulting patterns to detect malicious nodes.
analysis and interaction solutions to general network monitoring and

attack detection tasks. 3 CHALLENGES OF SYBIL ATTACKS

The remainder of the paper is organized as follows. We first re- . . . . .
view previous work on detecting Sybil attacks in networks with bot ow, we briefly describe the behaviors of Sybil attacks and their po-

security and visualization assisted approaches in Section 2. Sec %W'.al harm.t(.) a wireless network. As the nhame of .S.yb" attacks
3 presents the behaviors of Sybil attacks and our assumptions. Sag2lies, malicious nodes play the roles of multiple legitimate mem-
tion 4 describes our network pattern generation algorithms based s na network by impersonating their identities or claiming fake

attack features. Section 5 describes an approach to analyzing ti oy These fake nodes do not have real physical devices like legiti-

series topology data with a new time histogram design and an autaate nodes and they often claim to have direct or indirect connections

matic time segmentation method. Section 6 provides our visual ev\ég;;t(h the malicious nodes that generate them. Here, we borrow the

uation approaches to efficiently categorizing topology patterns gen xonomy defined in [24] and classify the attacks based on the con-

ated from the previous two sections. Section 7 presents our integragf&t'ons among Sybil and legitimate nodes. If the Sybil nodes can

visualization system for attack detection and exploration. We pres éectly communicate with other legitimate nodes, it is a direct Sybil

experimental results and discussions in Section 8. Finally, Sectior@la?rg; toBtXas/znttrzgsté {ﬂsﬁg Lr;(il(r:ﬁcé Sb);lb:wlozgéicgb zllmrr?gglsoausegi\g\sg to
concludes the paper and discusses future extensions. P Y 9

go through it. While Sybil attacks seem to be simple, they can affect
2 RELATED WORK network pcsirft(_)rm?r?ce at clitifferfelnt d:a_grt;es ?nd cal:js? severe shatl;h |
. o as manipulating the results of localized voting or data aggregation. In

2.1 Sybil Attack Detection in Networks the Worsr; case, Sybil attacks can enable ma?icious nodge% to take over
A Sybil attack is one particularly harmful attack on distributed systemie control of the whole network [10] and defeat the replication mech-
[6] and wireless networks [10]. This attack has been demonstratedaigisms in distributed systems.
be detrimental to many important network functions. For example, the The main difficulties in detecting Sybil attacks come from various
Sybil attack is discussed in an architecture for secure resource geedBmbinations of individual attacks. While it is difficult to link together
in an Internet-scale computing infrastructure [13]. Newsome et ahultiple fake identities that appear in different periods of a network’s
[24] have also pointed out that combinations of different types of Syhifetime and detect non-simultaneous attacks, their impacts on network
attacks may cause severe impacts on wireless sensor networks, whigurity are also limited. For example, a Sybil node that is not a mem-
are very difficult to recover. ber of a network cannot cast a vote during the leader election proce-

Existing detection methods can be divided into two categoriegure. Therefore, in this paper, we focus on the simultaneous Sybil
identity-based or location-based approaches. The first categofy geflacks. To evaluate our proposed mechanism in a more realistic en-
erally mitigates Sybil attacks by limiting the generation of valid nodgironment, we assume that both direct and indirect attacks exist in the
information, such as the approach of pre-distributed secret keys [2detwork and a malicious node can dynamically switch between the
The second category utilizes the fact that each node can only be at g types. We also assume that multiple malicious physical devices
position at any moment, such as the SeRLoc approach that determigg®xist in the network and a Sybil node can switch among them.
node locations passively under known attacks [21]. The challenge also increases exponentially with the number of ma-

Since previous approaches rely on the interactions among netw@gfous nodes. Since malicious nodes may freely change the number
nodes within a localized area, they lose the global view, which may Sybil nodes and their connection relationships, the effectiveness of
be utilized by attackers to present the same fake identities at differ(%vious intrusion detection systems can be drastically weakened. We
places in a network or conduct complex attacks. Our approach studig$ieve that an interactive visualization method under the user guid-

accumulated global network topologies and detects Sybils by locatiggce is necessary for detecting various complicated attack scenarios.
anomalies in neighbor relationships and movement patterns of wire-

less nodes. With the tight integration of interactive visualization angl NeTwoRKk TOPOLOGY PATTERN GENERATION
security algorithms, our approach can be used to detect Sybil attacks

under more sophisticated scenarios. Our detection approach is achieved through a series of pattern gener-
ation, evaluation, organization, and interaction methods. This section
2.2 Visualization of Network Topology presents our pattern generation methods based on attack features. We

With the ever increasing data size and complexity, many visualizatiffSt describe how we collect network topology information from wire-
approaches have been developed to improve the processing of a | gé nodes. Then, we present the topology patterns that can be used as
amount of network data including traffic patterns, network flows arfgdications of Sybil attack existence. These patterns serve as the "sig-
logs [4, 23, 30]. Because of the importance of the network topolod&,ﬁt“re of Syhbil attacks and are used to guide our interactive analysis

it has been used to help enforce Internet and wireless network secu rtgc_ess. According to these patterns, we design several automatic gen
in multiple network visualization mechanisms [3, 15, 29]. For exan®’ tion algorithms from each attack feature. The results of this section

ple, topologies have been visualized using graph drawing or paralPéPVide effective visual information to further assist users in the detec

coordinates [1, 2] to show interesting patterns of malicious attacks. 10" Process.

In this paper, we reorder the time-variant network topology and ex-
tract spec?ialppatterns of Sybil attacks for their detectiopr)ls. \%/e beliegel Global Network Topology Patterns
that the proposed techniques to model patterns of attacks can beSipee Sybil attacks do not demonstrate anomalies in neighbor rela-
plied to the detection of a broader range of malicious activities. tionships at individual time steps, we need to collect the connectivity

. . information among wireless nodes for a time period to detect Sybil

2.3 Matrix Reordering nodes. Assume there axenodes in the network and the time range is
While matrix-based representations have been used in a wide raf@&]. At each sampled time step, the connectivity relationship can be
of applications, automatic reordering of matrices is a very challengepresented as & x N topology matrixT, with T (i, j)=1 indicating
ing problem [9]. Many researchers have proposed to use mathemdie connection between nodand nodse. In this way, the information
cal or heuristics [27] approaches, such as objective functionsafid] of network topology across a time period can be represented as a 3D
minimum linear arrangement [20], to automatically reorder a matrifl x N x R connectivity matrix. We can use central controllers that are
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Fig. 1. (a,b) General 2D statistical topology matrices do not reveal any suspicious patterns; (c) Signature pattern for indirect Sybil attacks; (d)
Signature pattern for direct Sybil attacks; (e) A 2 by 2 grid structure in the patterns, with index (1, 1) at the left bottom corner.

special nodes in a wireless network to collect network topology infofeund to be effective in detecting our signature patterns.
mation. We summarize the 3D connectivity matrix into a 2D global
topology table, which records the number of time steps that each p&i2.1 Method 1 - Anchor Connection

of nodes are connected during the time period under study. We chogpse

to concentrate on analyzing 2D global topology patterns, since th glr _first method is desi_gned for indirect _a_ttacks according to the con-
are convenient for users to visualize ’ nection feature of Sybil nodes and legitimate nodes. As shown in

. - the signature pattern of indirect attacks in Figure 1 (c), there are two
The signature patterns of Sybil attacks are found to be 2 by 2 gy ﬁgcks that are almost empty: regions 1 and 4. This statistical fea-

structures, as shown in Figure 1. Generally, a topology pattern acrIv¥ is a result of the lack of direct connectivity between Sybil and
any time period appears to be random without special arrangeme g

; ggtimate nodes and long-time connections among the Sybil nodes.
(Figure 1 (‘."‘) and (.b))' When we reorder the node sequence, we rresponding to the attack definition, indirect Sybil nodes can com-
see some interesting 2 by 2 grid structure patterns, as shown in

ure 1 (c) and (d). These two special patterns are closely related to E@énlcate with legitimate nodes only through a small number of ma-

o ; e ious ‘anchor’ nodes. Although this may not be obvious at a single
attack pro_cedures_and indicate the e of maI|C|ous_ nodes. Sﬂmfe step, it becomes more and more visible in the statistical matrix
ply speaking, Sybil attacks can be summarized as a malicious devi !

presenting multiple identities to the network. There are two types ﬁf?h the increasing length of the monitored time duration. Our first

Sybil attacks: direct attacks, in which malicious nodes use multip eethOd is designed to reorder the global topology matrix to form such

fake identities to directly communicate with other nodes; and indireei”lttemS through the following procedure:

attacks, in which a malicious device claims to have the paths to reach ] o ]

the Sybil nodes and all messages have to go through it. Because of the FOr each row, measure its connectivity degree by accumulating

time and location constraints, similar signature patterns are exposed the square of data values;

when malicious nodes and legitimate nodes are separated in the 2B gort rows in decreasing order of connectivity degrees;

statistical matrix. According to the pattern features, we have devel-

oped several automatic arrangement methods to expose patterns that Apply the row sequence to the column.

are similar to the signature patterns. These new patterns will be used

to detect attacks later. To illustrate our pattern generation algorithms,Since the initial global topology matrix is symmetric, we can apply

we divide topology patterns into 2 by 2 grid structures, as shown ihe row sequence to the column directly to sort the connectivity de-

Figure 1 (e). grees. As shown in the row titled ‘Method 1’ in Figure 2, this method
successfully captures this feature of indirect attacks.

4.2 Pattern Generation

We design automatic algorithms to expose the patterns hidden in thé-2 Method 2 - High Connectivity

global topology matrix that are similar to the signature patterns efur second method is designed for both types of Sybil attacks accord-
Sybil attacks. Our approach is to generate new patterns by reordgg to the high connectivity feature among fake identities. As shown
ing node sequences along the two dimensions of the global topolqg¥=igure 1 (c) and (d), the left bottom corner (region 3) of our signa-
matrix. Since the 2D topology matrix of a network withnodes may  tyre patterns accumulates a block of bright pixels. This indicates the
generateN! x N! different patterns, it is obviously too time consumingexistence of a group of highly connected nodes in the network. Cor-
for users, such as network administrators, to manually adjust node g&ponding to the nature of these attacks, since multiple Sybil nodes
quences. Therefore, we need to automatically arrange node seguegge fabricated by the same physical device, their locations are usually
during the decision making process, especially for complex attack sgfyse to each other. These malicious nodes often have to claim that
narios and large scale networks. . . they are connected to avoid being detected by location-based methods.
We use the features of Sybil attacks to guide our automatic patteffe design this method to form a large value block at the left bottom

generation processes. We have analyzed these attacks from muligilger in a global topology matrix through the following procedure:
aspects and designed matrix reordering algorithms according to each

attack feature. These patterns are then automatically evaluated and o-
ganized for users to detect attacks interactively. Generally, we can de-"
clare the existence of attacks as long as one of the reordered segjuence
shows a suspicious pattern. This approach allows us to analyze th2. Scan the top rightix mregion and select one item (i, j) with the
2D global topology matrix from multiple independent or correlated  largest value;

aspects. We show in our results that this method is convenient an
robust for detecting various Sybil attack combinations. The following
describes four automatic pattern generation methods that have beeh Switch colummN —m+ 1 and columri;

Repeat the steps 2-4 from= N to m = 2 to reorder the whole
pattern.

%. Switch rowN — m+ 1 and rowj;
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Fig. 2. Examples of our pattern generation results. The first row shows four 2D statistical topology matrices and the second to fifth rows show
their corresponding reordered patterns from methods 1 to 4. These four datasets contain one group of indirect attack nodes, two groups of indirect
attack nodes, one group of direct attack nodes, and two groups of direct attack nodes respectively. Most reordered topology matrices demonstrate
more obvious attack patterns than their initial matrices.



This feature is especially useful in detecting direct attacks since ttelegitimate nodes. In indirect attacks, although malicious nodes can
fake identities communicate directly with legitimate nodes, who willnanipulate their neighbor lists by removing some fake identities, their
report all the connections honestly. Even if attackers increase the nwheices are restricted by the total number of neighbors. We design the
ber of Sybil nodes to reduce their average connection number, they stillowing procedure to reorder a global topology matrix according to
need to keep high adjacency values for the attack effectiveness. Theinformation of neighbor similarities.
row titled ‘Method 2’ in Figure 2 shows that this method is useful for
the detection of both direct and indirect attacks. Although these patl. Calculate the similarity matrig(i, j) by summarizing the num-
terns may not be as obvious as our signature patterns, they are clear ber of common neighbors of every node pair in a time duration:
enough for users to capture this feature. S(,§) =3¢ SN 4 (T(i,k)-T(j,k))

423 Method 3 - Close Locations 2. Sele'ct an |ter§(|, i) Wlth the largest similarity value; . .
If neither row i nor j has been reordered, place the rows i and j

Our third method is designed for both types of Sybil attacks according3' after previously placed nodes starting from row 1;

to the moving feature of Sybil nodes. As shown in the signature pat- o ) . i
tern of direct attacks in Figure 1 (d), regions 1 and 4 demonstrate cleaf Otherwise if row i or row j has been reordered, insert the other
horizontal and vertical band patterns. Actually, the empty regions 1 oW right after the previously reordered row;

and 4 of indirect attacks in Figure 1 (c) can also be viewed as a specidh. Repeat steps 2-4 until all rows have been reordered.

case of these band patterns. Corresponding to the attacks, this feg: Apply the same sequence to the column.

ture indicates similar movement patterns of Sybil node groups, while

legitimate nodes rarely share the same moving trace for a long time duas shown in the row titled ‘Method 4’ in Figure 2, this method

ration. This is inevitable due to the fact that Sybil nodes are attachﬁgnerates obvious patterns for both Sybil attack types.
to the same physical device. At a single time step, we can input the

topology matrix to a multi-dimensional scaling (MDS) method [28] t®6 TIME-SERIES ANALYSIS
reconstruct the physical distances among the wireless nodes in a jig

e : o & often critical to analyze the changes of a network over time for
work. Similarly, the reconstructed locations from a statistical glob

; X mtrusion detection. We are interested in detecting the durations of at-
topology matrix can be used to measure average node distances {3 s especially the starting and ending time steps, that play important
time duration. With the similar moving patterns of Sybil nodes, Wg|eq i revealing hidden topology patterns. Our approach is to design
can use the distribution of reconstructed locations to separaté malisme histogram, which can guide users in analyzing time sections
cious nodes from legitimate ones. Figure 3 shows two examples fough exposing certain data features. For this new time histogram,
malicious nodes separated from the Ieg[tlmate nodes. We deggn Ealso provide an interaction function for users to select attack dura-
method to group the nodes based on their reconstructed locations figRs a5 well as an automatic segmentation algorithm based on attack

the statistical matrix: features. This integrated approach has been shown to be robust in de-
tecting complex Sybil attacks.

- ° The time-series analysis is especially important for attacks that can-
® . ° = 13 0 not be detected based on the information of a single time step. For
“ % ‘5;5%%&5 such attacks, we need to analyze the network information from a cer-
b oy g T s> © ° oo tain time duration. Due to the diversity and complexity of Sybil attack

o @ 2 098 combinations, it is very challenging to identify their accurate starting

0 “ and ending times. Simply using all the collected time steps or dividing
% §o time sections equally will not work well. If a time section is much

122 ° - ° longer than the contained attack duration, the generated patterns may

e — be masked by normal activities of legitimate nodes; otherwise if a time
section is too short, we may not have enough information to generate
Fig. 3. MDS reconstructed node locations can be used to detect Sybil | ;gefyl patterns. Therefore, we need a robust approach to spfecta
attacks, since malicious nodes tend to move in groups during a time priate time ranges for revealing attack patterns.
period. Legitimate nodes are cqlored blue and two malicious groups are The motivation of using time histogram is to provide users a mech-
colored red and purple, respectively. anism to find suitable time segmentation by revealing attack features
in the 2D node-time space. As shown in the widely adopted histogram
(data value and gradient magnitude) for volume visualization [19], the
1. Calculate a dis-connectivity matrix by reversing the global topokistogram is a very powerful tool to convert data from any dimension
ogy matrix:D(i, j) =1-T(i,|); to a 2D space, in which it is convenient for observation and interac-
2. Reconstruct 2D statistical node locations using MDS method; tion. In security visualization, the closest research is the IDGraphs
3. Calculate the center position of all the nodes; by Ren et al. [26] that vn_suallzes t_he space comp_osed by the number
) o of unsuccessful connections vs. time. All these histograms are much
4. Reorder the sequence of nodes according to their distances toffife intuitive for users to study than those raw datasets. Different
center position in a decreasing order; from previous approaches, we generate the time histogram with a spe-
5. Apply the sequence to both row and column. cially designed algorithm based on attack features. To the best of our
knowledge, no other work has addressed histograms to this degree.
The row titled ‘Method 3’ in Figure 2 shows that this method is ) ) . .
useful for both direct and indirect attacks. We expect that clusterifgl Time Histogram Design and Interaction
algorithms can be applied to improve this algorithm. We design a 2D histogram to reflect data properties along the time axis
o . based on attack features. This time histogram can also assist users to
4.2.4 Method 4 - Similarity of Neighbors analyze attack durations. Since fake identities in both types of Sybil
The fourth method is designed for both types of Sybil attacks accorattacks usually appear and move in groups during a certain time pe-
ing to the neighbor similarities of a malicious node group. This featured, they share a large portion of neighbors for multiple time steps.
is also represented by the band patterns in regions 1 and 4 in F@yr histogram collects this grouping information and produces obvi-
ure 1 (c) and (d). Since only the nodes within a limited range can heaus patterns along the time axis.
each other in a wireless network, malicious nodes often share commorOur time histogram is a grey scale image in the space of node in-
neighbors for a long duration. This method is especially effective oex and time step. For every node at each time step, we measure its
detecting direct attacks, since fake identities can directly communicasignificance” value corresponding to the attack features, and geenera
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a histogram by linearly mapping all the significance values onto gregore for a time window as

colors. The significance values are calculated by the following pro-

cedure. At each time step, we group nodes together if they share the GroupsScore(t) = z TSi][j] ()]

same set of neighbors. With this method, each node belongs to only kK 1,]€0

one group at each time step. The significance value of a node is set

as the size of its group divided by the largest group size at this tinftere gk are node groups in windoty andi and j are nodes irg.

step. We paint larger significance values with brighter colors. THsuming TA and TB are two adjacent time windows, we adopt the

time histogram is generated by traversing all the time steps. following method to determine whether or not we should merge or
Figure 4 shows an example of our time histogram. Since Sylsigparate them. According to the group scenarios, there are three case

nodes move in groups for a duration that is long enough to harm the

network, they form obvious line strips in the histogram. Even when 1. When neither TA nor TB has groups, we merge TA and TB.

these malicious nodes try to hide themselves through appearing on ansl \wpen only one window has groups, we merge TA and TB if the
off, patterns similar to isolated line strips can still be detected by hu- GroupsScore of this window is smaller thewesl which is a

man eyes. On th_e contrary, normal nodes move randomly and will not user-assigned parameter; otherwise we separate them.
generate the stripe patterns. When several normal nodes do move in

groups, their patterns in the histogram cannot be distinguished from3: When both TA and TB have such groups,
malicious nodes. We need to introduce expert knowledge through hu-

man interaction to detect this and other complex combinations of Sybil (&) Ifboth GroupsScores are smaller tharesl, merge;
attacks. (b) Else if only one GroupsScore is smaller thiaresl, sepa-
We also implement a simple drawing function that allows users to rate them;

specify time transfer functions. As shown in Figure 4, normal time
steps are covered with a blue mask and suspicious time steps are cov-
ered with a brown mask. Users can drag the mouse to specify the
normal/suspicious time durations and their starting and ending time
steps repeatedly. After selection, users can choose to generate topol-
ogy patterns for all the suspicious time periods for further analysis.

(c) Else we calculate the intersection of the groups
of TA and TB. Then, if (GroupsScore(TANTB) /
GroupsScore(TA) > thres2) and(GroupsScore(TA( TB)

/ GroupsScore(TB) > thres2), merge; otherwise separate
them.

5.2 Automatic Segmentation Algorithm We use 1.0 and 0.5 as the threshold vatiessl andthres2 respec-
etive_ly. As shown in Figure 4, the transfer function is generated with
mél?r automatic segmentation result, which captures the attack duration.
experts; instead, it is to suggest suspicious activities, reduce intergﬂ]Ce the segmentation is calculated be}sed_upon time sections, it may
perts, ’ 99 P ’ A6t reflect the accurate starting and ending time steps of the attack. We

tlorlwdbuzldens, and ;et-examlnetd?]ectlor_l rﬁzsul_ts. i ; h can decrease the length of time sections for more accurate results at the
eally, we want {o separate theé neighboring ime steps when Oéﬁpense of heavier computation overhead. The histogram is generated
H

We also design an automatic segmentation method to detect the
tence of Sybil nodes. This method is not to replace the role of hu

of the three events happens: start of an attack, end of an attack, ghin 5 minute and the segmentation process takes 5 to 8 minutes for
changes of attacks. These three events cannot be detected sir

based on the similarities between adjacent time steps. We de&gg ¥ with 10000 time steps. This method has been shown to be robust
o . npughtor I i I rns in our later riments.
method that uses the statistical results from the entire time period an(?ug to reveal obvious topology patterns in our later experiments

the grouping features of Sybil attacks. Specifically, during the process AUTOMATIC PATTERN EVALUATION AND ORGANIZATION
of an attack, if adjacent time steps contain similar suspicious node

groups, we merge them. When there are no suspicious node grodigshandle multiple topology patterns efficiently, we have developed
we always merge these time steps. When suspicious node grogpgtmatic pattern evaluation and organization methods. All the topol-
change, such as the addition of new groups or the disappearanc@€®f patterns generated from the previous two sections are automat-
existing groups, we separate the time steps. The following describd§ally evaluated and organized in our system, so that users can effi-
score table that captures the degree of suspiciousness of wireless n6i¢ntly analyze and acquire useful information. This can also signif-
and our segmentation method based on the grouping feature. icantly accelerate the detection process by reducing unnecessary user
We first calculate a score table for each node faii][j] to mea- interaction. We describe the evaluation and organization methods in
sure their suspicious degrees using information from the entire mdhis section and our integrated detection system in the next section.
itored duration. To filter out small noises (when two nodes happen Since topology patterns in real life may appear in various formats,
to move together), we choose a small time window ranging from 2be most effective way to evaluate topology patterns is to assess their
to 100 time steps to divide monitored duration equally. The topologjructure similarities to the signature attack patterns. We need to com-
matrix of a time window is the average of all the contained topologgare the structures of patterns to the features of two signature patterns,
matrices. Since this reduces the number of time steps for the segmefitace both data values and region sizes may vary under attacks. We
tion process, it also significantly improves the computation efficiendjave designed automatic evaluation methods for both types of Sybil
For each time window starting from the first, we modify the score tabgitacks that return scores between 0 and 1 for each pattern. Since the
by the following equation: signature patterns indicate existence of attacks, the patterns with large
scores have a high probability to be under attack.
L n ) . o To assess the structure similarity between an arbitrary pattern and
TSi][j] = ['] (14 weight « groupsize(i, j)) (1) a signature pattern, we build our automatic evaluation methods with
k=1 two steps. The first step tries to construct a 2 by 2 grid structure as our
Heregroupsize(i, j) = 0if i, j are notin the same group in window Signature patterns and the second step measures the consistency of data
k; otherwise, it is the number of nodes in the group. In this paper, \,q,gstnb_utlons according to signature pattern fe_atures. _The foIIow_lng
useweight = 0.001. In this way, the score of suspicious node pairgesc_nbgs the pattern features and our evaluation algorithms for direct
increases exponentially to stand out from legitimate nodes. After @ indirect attacks respectively.
traverse all the time windows, we normalize the score values to the . . .
range of [0, 1] for further analysis. 6.1 Pattern Evaluation for Indirect Sybil Attacks
Second, we segment the entire time duration by deciding whetherAs shown in Figure 1 (c), the signature pattern of an indirect attack
not we should merge or separate adjacent time windows. Starting frpwssesses a 2 by 2 grid structure, with large values in region 3, small
the first two time windows, for every adjacent pair, we calculate thealues in region 2, and two almost empty areas in regions 1 and 4. Our
intersection of their node groups. We also measure the accumulapadtern matching procedure is designed as follows:
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Fig. 4. An example of time histogram. The background is a grey scale time histogram with brighter colors suggesting more suspicious nodes and
time steps. The line strips in the middle indicate possible attacks and can be used to identify attack durations. The blue/brown masks are time
transfer functions generated by our automatic segmentation method. Users can also design new or modify existing time transfer functions with the
system interface.

1. Detecta 2 by 2 grid structure in the pattern. Assume our dividing2. Calculate the average values of regions 2 and 3 as average2 and
lines are rowr and columrc, which divide arN x N image into average3 respectively;
4 regions: region 1dx (N —r)), region 2 (N —c) x (N —r)),
region 3 € xr), and region 4(N —c) x r). We start the divid-
ing lines from the left bottom corner with row 1 and column 1, Score2y = (adjacent column similarity of region 1 + adjacent row
and calculate the average values of regions 1, 3, and 4 respec- similarity of region 4) / 2:
tively. The dividing line is moved from columato (c+ 1) if '

this change leads to a higher ratio%%gi. Similarly, the di- 5. Scoreg = Wy * SCOrely + Wy * SCore2y.
viding line is moved from row to (r + 1) if this leads to a higher

ratio of 28893 Eingjly, the dividing lines are located at the two  We use 0.2 fow; and 0.8 forw, to emphasize the similarities in

X averagel' ) . 1 d4
locations with the largest area ratios. regions 1 and 4.

2. Calculate the average values of regions 2 and 3 as average2 and

3. Scorely = (1 + average3 - average?2) / 2;

average3 respectively; 6.3 Automatic Pattern Organization
3. Scorelig = (1 + average3 - average2) / 2; To automatically organize all the topology patterns, we use both evalu-
4. Scorezig = (number of zeros in regionl and region4) / (area ddtion methods to assess all the four patterns of a time period, resulting
regionl and region4); in eight scores. Since each pattern generation method represents one
5. Scorey = Wy * Scoreljq + Wy * score;q. attack feature, as long as one of the eight scores is larger than a user-
defined threshold, we report the existence of attacks in the network.
In our implementation, we use 0.3 fag and 0.7 forw, since fea-  Table 1 shows our evaluation results for the sample patterns in Fig-

tures of regions 1 and 4 are more difficult to hide by malicious nodegre 2. The results demonstrate that multiple patterns of the same
. . . dataset may receive high scores, which indicates that Sybil attacks can
6.2 Pattern Evaluation for Direct Sybil Attacks be success¥u|ly detectgd from multiple aspects. y

Similar to the signature pattern of indirect attacks, the signature pat-we further use the evaluation scores to classify each pattern into
tern of direct attacks can also be divided into a 2 by 2 grid structurgne of the following categories: indirect attacks, direct attacks, and
with large values in region 3 and small values in region 2. The maj@hcertain/safe. Since empty regions in indirect attack patterns can be
difference is that region 1 demonstrates similar column patterns afiéwed as special cases of similar rows or columns, the datasets un-
region 4 demonstrates similar row patterns, as shown in Figure 1 (dgr indirect attacks also receive high scores from the method fott direc
This results from the close positions of Sybil nodes attaching to thgacks. When we try to distinguish between direct and indirect at-
same physical device. We modify our evaluation method for indiregdcks, a pattern that receives a high score from the evaluation method
attacks to accommodate the signature pattern differences. for direct attacks and a low score from the method for indirect attacks

. . . will be labeled with high risks of direct attacks; while a pattern that

1. Detect a 2 by 2 grid structure in the pattern. Assume our d""ﬁ\%ceives high scores from both methods will be labeled with high risks

mg_lmes are row _and columnc, which divide apattern into 4 ot jhgirect attacks. This classification provides some analysis results
regions as for indirect attacks. We start the dividing lines from, help users make final decisions.

the left bottom corner with row 1 and column 1. We calculate the
average values of regions 1, 3, 4 and adjacent column similarit

in region 1, and adjacent row similarity in region 4. The dividing/ NTEGRATED DETECTION SYSTEM
line is moved &flrgr: e(;olumrm to (c+1) if this change leads {0 @ e integrate all the methods from the previous sections with several
higher ratio of2=83 or preserves a high similarity value of theinteraction schemes to construct a detection system that can assist

averaged t _ - / .
new region 4. Similarly, the dividing line is moved from raw users in exploring unknown Sybil attacks and adjust detection strate-

to (r 4 1) if this leads to a higher ratio cﬁ% or preserves a 9dies accordingly. The system also serves as a monitoring and sum-
high similarity value of the new region 1 nge repeat this proce arization tool that can report the existence of attacks and provide
for all the rows and columns: ' etailed information of suspicious nodes.
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corner. We regenerate all the topology patterns by applying pattern
generation methods to the rest of the nodes and update the system
with the new patterns. This interaction tool is especially useful to as-

Table 1. Evaluation results of sample patterns in Figure 2. Large scores
represent high risks under Sybil attacks.

Scores for : e
indirect attacks| indirect1 | indirect2 | direct1 direct 2 zlfséeulzcz{isoazlocate all the malicious nodes through only a few rounds
method 1 0.972745| 0.924494 0.0 0.0 '

Third, our system allows users to analyze multiple topology pat-
method 2 0.923721] 0.808646| 0.432958| 0.584031| orng \yith sorting and moving tools. We provide several automatic
method 3 0.898569| 0.931796| 0.464852| 0.495726 sorting tools to change the pattern order. We can sort patterns accord-
method 4 0.915566| 0.930933| 0.543349| 0.596565 ing to the increasing or decreasing order of their evaluation scores. If

Scores for a user selects a particular pattern, we can sort patterns based on their
direct attacks | indirect1 | indirect2 | direct1 direct 2 similarities to the selected one. If a user selects a malicious node,
method 1 0.97185 | 0.843884 0.0 0.0 we can sort patterns by listing those patterns that detect this malicious

method 2 0.835537| 0.635931| 0.767646| 0.855556| node first. These sorting and moving interactions help users group
method 3 0.834491| 0.854223| 0.987547| 0.820318| relevant patterns together and identify suspicious nodes.

method 4 0.854756| 0.853441| 0.987547| 0.965267 Fourth, we have developed several analysis tools to assist with the
indirect 1| indirect 2 | direct 1 direct 2 interactive detection process. Our system allows users to adjust the
NMaximum 0.972745] 09317961 09875471 0965267 alarm thresholds of evaluation scores to reorganize topology patterns
under the three categories and regenerate the list of suspicious nodes.
We also allow users to select their interested time ranges by specifying

] the starting and ending time steps. The parameters to form time ses-
7.1 System Design sions can also be adjusted to change the time segmentation algorithm.
We have developed an integrated system to detect Sybil attadi¥ese settings are important to the detection process and users can use
through visualizing and analyzing multiple reordered topology pathese tools to adjust the detection algorithm.

terns. Since visual patterns are often easy to understand, they provide
a powerful interaction domain for monitoring and detection tasks. EXPERIMENTAL RESULTS
shown in Figure 5, our interface is composed of two regions: the t@&1 Simulation Setup

pattern window and the bottom interaction and information windowye yse simulation to evaluate the proposed mechanism and its capa-
The pattern window is used to visualize topology patterns under thiggiies to process and analyze time-dependent topology information
categories (direct attack, indirect attack, and uncertain/no attacksjjiected from a wireless network. We assume that one hundred nodes
Users can specify their desired pattern order for each category Wémcluding Sybils) are deployed in a 1480« 1400m area. We adopt
provided sorting methods. The.default order is set as the decreag‘,ﬂﬁ‘@weighted random waypoint model [16] to generate the independent
order of evaluation scores to direct users’ attention to the most digyvement patterns of wireless nodes. We assume that a special node
tinguishable patterns. Since the window space can display only S@yists in the network, which is called the “controller”. It can integrate,
eral images for each category, we provide browsing buttons on eaghcess, and visualize network topology data and analyze information
side. Users can double click an image in the pattern browsing Wikt is collected from the wireless nodes and the Sybils. We assume
dow, and the system will highlight it with red boundaries and enlargg; the controller has the storage and computation resources that are
it for bet;e_r observatlo_n. Users can also identify or suggest Iegltlmqﬁgeded for the proposed mechanism. In our studies, we use a PC with
and malicious nodes in the enlarged pattern. The middle suggest9fcHz CPU as the controller, which can process the information of
panel provides a list of suspicious nodes and their suspicious degrggsstwork containing several hundred nodes in real time. We assume
calculated from relevant topology patterns. The right interaction panght each wireless node has established a pair-wise key with the con-
groups contain important interaction functions to regenerate topologyjjer. This task can be accomplished during the network initiation
patterns, reorder images, divide time sessions, handle data directorﬁa@cedure or based on some pre-distributed information [7, 11212, 2
etc. We assume that there are multiple malicious physical devices in
the network. A malicious physical device can generate up to five Sybil
nodes through direct or indirect attacks. A Sybil node can dynamically
We have developed several interaction tools to assist users to dessdgtch among malicious physical devices during the network lifetime.
Sybil attacks through analyzing topology patterns. Here we concefe establish a comparison standard, we also apply our mechanism to a
trate on the interaction tools that are important to the detection proaereless network that does not contain any Sybil nodes.
dures. We assume that two nodes are neighbors when the distance between
First, our system provides a list of suspicious nodes. If there atfeem is shorter than, wherer is defined as the radio range. Connec-
patterns having evaluation scores larger than the user-defined thrdiin links among wireless nodes are bidirectional. Two communica-
olds, our system will automatically extract a list of suspicious nodd®n ranges with the values of 260and 300n are adopted in our sim-
from these topology patterns. We collect information from all the patdation. We experiment with different highest moving speeds ranging
terns under the two attack categories (these patterns have attack eviatum 5m/sto 20m/s, which cover the speed from human jogging to
ation scores larger than the corresponding evaluation thresholds). felnicle riding in country field. Different combinations of radio ranges
each pattern, we use the corresponding evaluation method of the jgaud highest moving speeds are investigated through simulation.
tern category to identify the malicious nodes on the left bottom corner. . )
Since the patterns may be asymmetric, we collect information alofl?  Simulation Results
both dimensions. The number of patterns that detect the same sugyg-experiment with 24 different combinations of network parameters:
cious node is also recorded to suggest its suspicious degree. BothZheadio ranges, 3 highest moving speeds, and 4 switching frequencies
list of suspicious nodes and their suspicious degrees are shown indh&ybil nodes. For each combination, multiple attack scenarios are
suggestion panel of our system. generated, including no attacks, one or two groups of direct Sybil at-
Second, we provide an interaction tool to allow users to incorptacks, and one or two groups of indirect Sybil attacks. For each case,
rate their knowledge and assumptions. Users can identify or suggigt independent moving patterns are generated. In total, we evalu-
legitimate and malicious nodes in the enlarged image window. Thase our detection method with 510 datasets. Figure 6 plots the false
selection can be made on both dimensions and the selection respiisitive and false negative rates of our detection method in the sim-
are highlighted as red lines for malicious nodes and green lines for ldations when the evaluation threshold changes from® 10. It is
gitimate nodes. We incorporate user selections by moving malicioclgar that when the threshold i€0Ino attack can be detected, thus the
nodes to the left bottom corner and legitimate nodes to the right tglse positive rate is 0 and the false negative rate is 100%. Similarly,

7.2 Interaction Tools
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Fig. 5. Our system interface. The top left portion visualizes multiple topology patterns, which are generated using our four pattern reordering
methods for each time period. They are organized automatically into three categories (direct attack, indirect attack and no attack) with two pattern
evaluation methods. Users can browse, change pattern sequences, and switch pattern categories to group several related patterns together for
analysis. The top right is an enlarged image window with detailed information on the right for observing and identifying network nodes. This panel
allows users to identify malicious/legitimate nodes as red/green lines. The bottom portion contains our time analysis window and the bottom right
portion, a suggestion window showing a list of suspicious nodes and their suspicious degrees, and a group of interaction panels to assist the two

panels on the top for generating and analyzing topology patterns.

when the threshold is very low, the false negative is 0 and the fal88 Case Studies

positive is close to 100%. When the threshold is selected appropri- ) o

ately, both false alarm rates can be low. As shown in Figure 6, oGPr simple attack scenarios, such as the example shown in Figure 5,
method achieves very low false negative and false positive rates wifahi method can detect Sybil attacks fast and accurately. With the pro-
the evaluation threshold is betweer7 @nd 092. This shows that our Vided time histogram, users can quickly locate the attack period and

proposed detection method has a high detection accuracy.
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Fig. 6. False positive and false negative curves. Our method achieves
very low false negative and false positive rates when the evaluation

threshold is between 0.7 and 0.92.

specify it by drawing on the time window. Our system then runs the
pattern generation methods for the time period, calculates evaluation
scores, and arranges topology patterns with high suspicious degrees
under the categories of attacks. Users can search for signatur@patter
visually, especially from the patterns which appear first under the at-
tack categories. They can study a particular pattern in the enlarged
window, select innocent or suspicious nodes by clicking on the image,
and reorder topology patterns with this information. As shown in Fig-
ure 5, the time histogram contains obvious strip patterns in the middle,
which indicate the attack duration. The pattern under the first cate-
gory is also similar to the signature pattern for indirect Sybil attacks,
and we can label all the nodes on the left bottom corner as suspicious.
According to these two clues, malicious nodes can be detected imme-
diately.

We also evaluate the interactive detection process for cases that are
difficult to solve by automatic detection algorithms. More user inter-
actions are often involved to provide expert opinions and detect vari-
ations of attacks. For example, users may manually adjust suspicious



time durations and select suspicious or legitimate nodes accordingdas and column sequences as the orders of two axes in parallel co-
the traces in the topology patterns. A few rounds of interaction maydinates to show highlighted band patterns among malicious nodes.
be needed before patterns that are similar to the signature patternsfshown in Figure 7, we use the same scheme to color the matrices
found. During this process, our pattern generation algorithms incand parallel coordinates for comparison. Since we visualize statistical
porate inputs from users to reorder topology patterns automaticaligpology matrices, the node connections are dense, which are more
Therefore, users only need to compare generated patterns with sigrtellenging for parallel coordinates because of the line overlapping
ture patterns, and make hypothesis or conclusions based on the cisgge. On the left column, both visualizations do not show obvious
in the topology patterns and time histogram. It is worth mentioningatterns; while on the right column, both visualizations represent the
that as long as one suspicious pattern is found, our approach canhighlighted region well, but parallel coordinates do not have the band
cate all the related attacks immediately by revealing similar signatws&uctures in the matrix visualization. Also, since topology data is rep-
patterns. This result elicits the detection of attacks or simplificatimesented as matrices, matrix visualization is more intuitive for users,
of the attack scenarios. For example, the attacks on the fourth columino are likely familiar with the matrix representation of topologies,

in Figure 2 are more difficult to detect than those on the first columtg understand; thereby easier for them to identify malicious nodes.
since they are less similar to the signature patterns. We can still Sdeerefore, we believe that matrix visualization is more appropriate for
some bright blockish regions which may be reordered to form signénis application.

ture patterns. We then label nodes from these regions as suspiciouh this method, it is crucial to divide time steps reasonably; other-
and regenerate all the patterns. A few rounds of labeling and patt&vize the detection accuracy of our method will be affected. As shown
regeneration lead us to locate the first attack group. We may remanehe previous discussion, our method does not require accurate sep-
them or put them on the left bottom corner, thereby simplifying theration of attack and normal periods. As long as malicious activities
attack scenario to only one attack group, which can be detected by egeupy majority duration of a suspicious time period, our generated
automatic algorithms immediately. This example demonstrates thapology patterns can assist users to capture their subtle traces. How-
our interactive detection process is more capable of handling complexer, when an attack only occupies a small portion of a time period, the

Sybil attacks than automated approaches. attack patterns can be hidden in the normal patterns. This is possible
) ) under complicated attacks which involve the combination of multiple
8.4 Discussions attack groups. For such cases, we expect that users may spead mor

The design of multi-matrix visualizations plays the major role in erfime on adjusting suspicious time periods.

abling the capability of detecting complex Sybil attacks. Since ma- Compared to automated security algorithms, our approach does not
licious nodes can always alter their attack strategies according to tiey on extra physical devices or any assumptions about the application
detection algorithms, it is extremely difficult to generate an automaticenarios. We generate network patterns purely based on features fr
algorithm with fixed, uniform detection procedures. We have comaformation of accumulated network topologies. Also, with a small
sidered two aspects to address this problem. One is to detect hiddemunt of user interaction, we can achieve a robust solution to detect-
patterns in the essential global network topologies; and the other isrig complicated Sybil attacks. Due to privacy issues, it is very hard
utilize the exploration and analysis functions of interactive visualizde attain real networking data. Simulations are often used in the secu-
tion. Matrix visualization allows users to detect subtle patterns usimify community for evaluating automated approaches as documented
visual cues and user expertise. Our pattern evaluation and organipaelated work [6, 10, 13, 24, 21].

tion methods further enhance its capability to reveal hidden patterns

from different aspects of pattern features. This integrated approa®:.% Quantitative Results

overcomes the limits of algorithmic methods and provides an effici

e N . .
detection solution. ‘?ﬁe running times of pattern generation and evaluation methods are

very short, ranging from 00007 to 005006 seconds on average for
1000 time steps on a computer with 3.0GHz CPU and 2 GB RAM.
Most of the interaction tools are in real time, so that users can interac-
tively detect Sybil attacks.

9 CONCLUSIONS AND FUTURE WORK

This paper presents a robust approach to detect Sybil attacks in wire-
less networks through analyzing statistical topology patterns. We char-
acterize the attack features and detect malicious nodes with automatic
pattern generation, evaluation, and interaction methods. Since we con-
sider multiple relevant topology patterns, our method is robust to the
detection of various complex attacks according to different aspects of
attack features. Because of its flexibility, this design can be extended
to provide a generalized detection solution. We have simulated real-
life scenarios with different combinations of network parameters to
test our approach and the results demonstrate that we can effectively
identify various Sybil attacks. Since our approach explores hidden pat-
terns in the network topology that will be impacted by many attacks
on wireless networks, our approach has the potential to be applied to
detecting other attacks.

The presented approach is composed of several closely related com-
ponents. First, our pattern generation approaches can be viewed as
matrix-based visualization methods, which have been used in a wide
range of applications. Since we design automatic reordering algo-
rithms according to attack features, they are more effective in expos-
ing hidden matrix patterns than general heuristic algorithms. Second,
we present automatic pattern evaluation methods by comparing matrix

While it is natural to use a matrix visualization approach to viswstructures instead of data values, which is a new addition to matrix-
alize topology information, other information visualization methodd)ased visualization methods. Third, a new time histogram and an
such as parallel coordinates, can be used as well. We can useah®matic time segmentation method have been designed to provide

Fig. 7. Comparison of matrix visualization and parallel coordinates.
Each column visualizes a topology matrix with the same color scheme.
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useful visual cues for users to analyze time-series network data efft9] G. Kindimann and J. W. Durkin. Semi-automatic generatibtransfer
tively. Fourth, we significantly simplify user interactions during mul-
tiple pattern visualizations through developing convenient interaction
and analysis tools, thus the amount of user interaction in this approde®
is very limited.
We are interested in performing the following tasks to extend the

capabilities of our integrated detection approach. First, we plan to
sign and perform user studies to evaluate how our system can be
by network administrators. Second, we plan to explore other me
ods to visualize our topology patterns based on their evaluation sco

Jeil
2

and human interaction. Third, we plan to develop efficient detection
mechanisms for other attacks through extracting and identifying thgig;
topology pattern features. Our long term goal is to develop practi-
cal security systems that can perform multiple detection, analysis, gpa)
monitoring tasks for large scale networks in real life applications.
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