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Abstract—Auction based participant selection has been widely
used for mobile crowd sensing (MCS) to achieve user incentive
and assignment optimization. However, mobile crowd sensing
problems solved with auction-based approaches usually involve
participants’ privacy concerns because a participant’s bids may
contain her private information (such as location visiting pat-
terns), and disclosure participants’ bids may disclose their private
information as well. In this paper, we study how to protect such
bid privacy in a temporally and spatially dynamic MCS system.
We assume that both sensing tasks and mobile participants
have dynamic characteristics over spatial and temporal domains.
Following the classical VCG auction, we carefully design a
scalable grouping based privacy-preserving participant selection
scheme, which leverages Lagrange polynomial interpolation to
perturb participants’ bids within groups. The proposed solution
does not affect the operation of current MCS platform. Both
theoretical analysis and real-life tracing data simulations verify
the efficiency and security of the proposed solution.

I. INTRODUCTION

The proliferation of mobile devices equipped with built-in
sensors enables a new sensing paradigm, mobile crowd sensing
(MCS), which has been widely used in numerous applications
[1]. Compared with traditional static sensing, MCS leverages
existing sensing and mobile communication infrastructures to
provide unprecedented spatiotemporal coverage. Meanwhile, it
brings many new challenges in the system design. Participant
selection is one of them, where appropriate participants are
selected to perform certain sensing tasks [2]–[11].

Auction based participant selection is a common solution,
where participants submit their bids (reflecting their sensing
costs) over different sensing tasks to the MCS system and
the platform selects the winners (usually with the lowest bids)
among all the bidders to perform the tasks. Fig. 1 illustrates
the architecture of such a MCS system. Here we assume that
various sensing tasks may request sensing data at different
locations and time. Further, different mobile participants may
have their own mobility patterns, as a result, they perform these
sensing tasks at various costs. The optimal goal is to pick
the appropriate participants who can perform the tasks with
the minimum cost. In addition, to guarantee the truthfulness
of participants on their bids, a Vickrey-Clarke-Groves(VCG)-
based auction [12] or other game theoretical approaches [8],
[9] can be applied.

Existing auction-based solutions solved the participant se-
lection and incentive issues, but we observed that there exists
user privacy concerns on the other hand. In most cases, bids
are related to participants’ contexts (e.g., location), and such

Fig. 1. MCS System: the platform distributes sensing tasks to participants,
collects their bids, decides the winning bids (i.e., selecting participants for
each task), collects sensing data, and makes payment to the participants.

information may leads to privacy breach (e.g., a participant
with a higher bid in certain MCS problems indicate closer
proximity of his/her location to the place where crowdsensing
is performed). Recently, various privacy-preserving schemes
[13]–[21] have been proposed for the protection of the par-
ticipants’ privacy, however none of them consider the privacy
leakage from the bid values. In this paper, we would like to
complement existing works by protecting the bid values in
order to achieve better anonymity and privacy protection.

Notice that the platform in an auction-based MCS system
(Fig. 1) has the bid information and can easily conjecture
the bid patterns of each participant through a long time
learning process because the bids are temporally and spatially
correlated in MCS auctions. For a more concrete example,
the platform may know particular participant route if that
participant often bids on some particular location and time.
Furthermore, the bidding value (i.e., the private sensing cost
value) may also reflect certain level of privacy information,
such as the likeness of visiting that place or the distance to
the task location. Therefore, exposing the bid information to
the platform brings privacy concerns of users and may hurt
the users’ enthusiasm to participate. Further, this may result in
insufficient participants for the completeness of sensing tasks.
Therefore, it is a critical issue for the MCS system. In this
paper, we focus on a new solution to protect the bid privacy
of participants while still guarantee the truthfulness property
of auction and the efficient operation of the MCS system. For
potential participants, bid privacy is preserved unless they win
the competition and perform the assigned sensing tasks.

Achieving the bid privacy in MCS problems involves mul-
tiple challenges. First, we focus on a temporally and spatially
dynamic MCS system, where both sensing tasks and mobile
participants have dynamic characteristics in both spatial and



temporal domains. This makes bids in the auctions temporally
and spatially correlated, making it hard to protect end-to-end
bid privacy over the long time. Second, the users in the bidding
system are dynamic. Mobile devices can join and leave, thus
the bidder pool keeps changing over different tasks. This
makes most of the existing privacy-preserving data aggregation
schemes ( [22]–[24]) unfitting since one suite of keys need to
be distributed to one specific group of users. Third, we aim to
achieve accurate sensing results. This is a critical issue as noisy
bid information may lead to unnecessary overpayment and/or
even the failure in completing the sensing task. As a result,
traditional perturbation-based approaches such as Laplacian
mechanism with differential privacy [25] is hardly applicable.
Fourth, we target at protecting bid privacy without a trusted
third party (TTP) participating in every round of auctions,
considering that such a party capable of coordinating every
single auction hardly exists. Finally, we hope that the proposed
solution is built on the existing MCS system and does not affect
the operation of current platform.

We assumes that both the participants and the platform
are semi-honest (i.e., they follow the protocol but try to
infer sensitive information). Further, we introduce one or
multiple semi-honest third parties (TPs) to perform grouping of
participants (Section III). By leveraging Lagrange polynomial
interpolation (LPI) and key values generated by a key generator
(KG), bid information is protected during the group bidding
and the final platform bidding (Section IV). Here, KG is only
in charge of key generation and does not participate in the
auction and crowd sensing process, and its participation is
minimized. Notably, our theoretical analysis (Section V) shows
that no statistical information about bids is disclosed from the
ciphers generated by our solution (semantic security), implying
that even the temporally and spatially correlated bids can be
protected by our approach. Experiments with two real-life
datasets (Section VI) also confirm that the method is efficient
compared with other existing methods.

II. RELATED WORK

Participant Selection in Mobile Crowdsensing: Due
to the large number of participants and the diverse sensing
tasks in mobile crowdsensing, the selection of participants for
different tasks (i.e. task assignment) becomes a challenging
task. On one hand, assigning more participants for certain task
can lead to better quality of the sensed data. On the other
hand, MCS have to pay more rewards to the participants to
cover their sensing cost. Recently, there are several studies on
participant selection in MCS with various optimization goals
such as coverage maximization [2]–[4], energy efficiency [5]–
[7], user incentive and truthfulness [8], [9]. In this paper, we
also consider the participant selection problem, but focus on
a different aspect: bidding privacy. We only consider a simple
bidding scenario where the MCS platform aims to minimize
the payment by choosing the lowest bid among all bids.

Privacy Protection in Mobile Crowdsensing: To protect
the participants’ privacy in mobile crowd sensing or partici-
patory sensing, several privacy preserving schema have been
proposed using different techniques, such as data transform
language [13], data aggregation [14] , location obfuscation
[15], cloaking [16], k-anonymity [17], pseudonym [18] and
adding noise [19]. These solutions usually introduce additional
entities (registration authority / trusted third part) [13], [17],

[18] or an aggregation server [14], [15] to achieve the pro-
tection of the sensing data privacy, participants’ anonymity or
their location privacy. Note that TTP-free method in [18] uses
pseudonym and bling signature to protect user privacy, but its
encryption operations may bring a burden of cost. Recently,
Jin et al. [26] also jointly consider both participants’ privacy
from aggregated data and incentive mechanisms in MCS. In
contrast to all of these existing solutions, this paper focuses
on protecting the participants’ bid privacy during the bidding
process for participant selection. The only similar work is [27],
where bid privacy is considered in an aggregated MCS system.
However, it defines the bid privacy with differential privacy
over the aggregated sensing data (labels) and all sensing tasks
are binary classification (labelling) tasks. Instead, we consider
a more general and direct model where sensing tasks have
sensing requests on both temporal and spacial domains and
the privacy is defined on the bids from participants.

Secure VCG Auction: In our work, Vickrey-Clarke-
Groves(VCG) auction [12] is leveraged as a building block,
and we propose a novel privacy-preserving design of VCG
auction in order to protect users’ bid privacy. Related research
exists in the literature, who targets at protecting bid privacy
in the VCG auction as this paper does. However, existing
works have common limitations due to the building blocks
they employed to realize secure VCG auctions, and this made
them less attractive than our approaches when implemented
and deployed in the real-life applications.

Naor et al. [28] proposed how to design general auc-
tions with mechanism design without revealing private bid
information by leveraging the secure multi-party computation
(MPC) with garbled circuits [29]. However, it is shown that
auction mechanisms based on secure multi-party computation
is inefficient because the complexity inherently increases ex-
ponentially with the number of goods to be auctioned and the
bit-length of the bid, and the actual overhead is large as well
as due to the large constant factors [30]. Besides, an auction
issuer, who is a party that is assumed not to collude with the
auctioneer, needs to engage every time an auction is run.

Huang et al. [31] and Lipmaa et al. [32] proposed ap-
proaches that are both based on homomorphic encryption , but
they require a third party at every auctioning as well. Larson et
al. [33] proposed to use the homomorphism in homomorphic
encryption to enable secure VCG auction without revealing
individual bids. However, they introduce a group key among
the group of users in extra, and this limits the application in
real world where users may come and go because group key
sharing must occur for every new group, and this will not be
practical in many cases as users cannot communicate with each
other during the auction.

A series of works have been proposed by different re-
searchers to realize privacy-preserving VCG auctions [34]–
[39]. All of these works are based on the homomorphic
encryption, and they do not require a third party engagement
as in our approach. However, they achieved this by generating
one cipher per possible bid value. That is, if the bid length
is b bits and the size of bid space is 2b, the computa-
tion/communication/storage complexities are inherently expo-
nential to the input size.

Unlike all aforementioned existing works, our solution does
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Fig. 2. Spatiotemporal Matrixes: (a) private cost matrix Ci of participant
ui; (b) binary task matrix S; and (c) bidding matrix Bi generated from ui,
in which the bid value may not be equal to the real cost value.

not require third-party1 engagement in every auction running,
and our solution scales well with the number of goods, number
of bidders, and the bit-length of the bid values.

III. PROBLEM DEFINITION AND SECURITY MODELS

A. Participation Selection Problem and VCG Mechanism

In general, a MCS system includes three main components,
as shown in Fig. 1: a large number of mobile participants who
can perform sensing tasks and contribute sensing data, a set
of task owners who generate various sensing tasks and are
willing to pay for sensing data (acting as data consumers),
and the platform who plays a vital role in the MCS system
and acts as the MCS marketplace to connect the mobile
participants with the task owners. The participation selection
aims to select a set of participants who could complete the
sensing tasks but with the minimum payment. This could be a
challenging task because of large number of participants and
various requirements of the tasks.

In our model, there are n mobile participants U =
{u1, u2, · · · , un}. Each participant ui keeps a dynamic spa-
tiotemporal matrix about her real sensing cost Ci = {ci(t, l)}
privately, as shown in Fig. 2(a), where ci(t, l) is the real
sensing cost for ui to obtain sensing value at location l at
time t. The real sensing cost information is sensitive since it
may reveal the visiting pattern of this participant. We assume
that we have finite number of l and t, i.e., t ∈ {t1, t2, · · · , tT }
and l ∈ {l1, l2, · · · , lL}.

Suppose there are m sensing tasks S = {s1, s2, · · · , sm}
and each of them has a strict spatiotemporal coverage require-
ment, s.t., task sj could be described as a binary spatiotemporal
matrix Sj = {sj(t, l)}, where sj(t, l) = 1 represents that sj
request data at location l during time slot t and s(t, l) = 0
otherwise. Since we assume that each requested cell within the
binary spatiotemporal matrix can be fulfilled by one selected
participant within the same requested cell, we take a union
of all sensing tasks into a single binary spatiotemporal matrix
S = {s(t, l) = ⊕mj=1sj(t, l)}, as shown in Fig. 2(b), where
s(t, l) = 1 represents that there is at least one task requesting
the data from l at t. Then, the task assignment can be treated
as assigning a single participant to each cell with s(t, l) = 1.

Each participant ui, if interested, can submit a bidding
matrix Bi = {bi(t, l)}, as shown in Fig. 2(c), to the platform
based on her real cost. Note that bi(t, l) may be different from
ci(t, l). After receiving bids from all participants, the platform

1Note that the third party (TP) we defined in next section is the auctioneer
in the group auction. It is called third party since it is a new entity added
between the platform and the participants.

will make a decision about winning bids for tasks at s(t, l) = 1
based on certain strategy and pay the corresponding rewards
p(t, l) to the winners of these tasks. We assume that the mobile
participants can finish the tasks assigned to them as long as
they participate and win the bid competition. In other words,
the completeness of tasks is guaranteed if enough bidding
participants can cover the task spatiotemporal matrix.

Based on bidding matrices {Bi} provided by participants
U for task set S, the mission of the platform is to efficiently
find the optimal set of participants for tasks such that the total
payment (i.e., P =

∑
t,l p(t, l)) is minimum. At the same time,

the platform wants the selection mechanism to be truthful,
i.e., the participant bids at its real sensing cost for each cell.
To achieve this goal, we adopt the classical Vickrey-Clarke-
Groves (V CG) auction [40]–[42] in our participation selection
problem. Each participant has no knowledge about others’ bids
during the auction since the bid matrix is private. The lowest
bidder wins but the payment is equal to the second lowest bid,
which gives the participants an incentive to bid at their true cost
value in this optimal strategy. The whole VCG auction process
includes the winning bid decision and the critical payment
calculation.

Definition 1: Winning Bid and Critical Payment. The
winning bid is the lowest bid among all bids submitted by
participants within U for each cell s(t, l) = 1, which could be
defined as follows:

b(t, l) = min
ui∈U(t,l)

bi(t, l) and w(t, l) = arg min
ui∈U(t,l)

bi(t, l),

where w(t, l) is the single winner for this requested cell (if
there is a tie, an arbitrary one can be selected as the winner)
and U(t,l) are the set of participants who submit their bids for
task cell (t, l). The payment p(t, l) for winner w(t, l) is defined
as the lowest bid among all the bids except the winner’s bid.
i.e.,

p(t, l) = min
ui 6=w(t,l)

bi(t, l)

By applying the VCG mechanism, it is easy to prove the bid
truthfulness, i.e., the participant will maximize its utility when
it bids truthfully at its real sensing cost (i.e., bi(t, l) = ci(t, l)).
In addition, the VCG mechanism minimizes the total payment
for the participant selection. Both the winning bid and critical
payment can be decided very efficiently with a simple sorting.
Notice that it is possible for a task cell, there are bid ties. This
will not affect the effectiveness of VCG mechanism.

B. Adversary Model and Assumptions

Recall that we aim to design a MCS system with grouping
and security techniques to protect the bid privacy of partici-
pants while still guarantee the truthfulness property of auction
and the operation of MCS system. We assume that task owners,
the platform, and the participants in the system may all become
semi-honest adversaries. A semi-honest adversary follows the
protocol specification, however she may try to infer sensitive
information from the communication strings generated by the
protocol. More specifically, the task owners as well as the
platform may try to infer true bids of the participants, and
the participants may try to infer other participants’ true bids
as well as owing to the bidding competition. Further, in order



to bootstrap the mobile crowdsensing, we introduce a semi-
honest third party (TP) and the only single trusted party in our
system – key generator (KG). TP is used for grouping bids,
while KG is in charge of key generation only and it does not
participate in the auction and crowd sensing process.

Notably, we assume that the adversaries may have certain
background knowledge about the participants’ true bids, and
we also assume that they are capable of the cryptanalysis. Such
adversaries are quite powerful in the attack, and therefore the
protection scheme must be strong enough such that no side
information is leaked from the communication strings.

C. Security Model

The security of our system is defined by following standard
security game between the adversary and the challenger.

Secure Bidding Game:

• Setup: two disjoint time domains are chosen: T1 for
phase 1, Tc for challenge phase, and T2 for phase 2.

• Init: The adversary declares that one role in the MCS
system will be under his control (i.e., the platform or
a participant). The challenger controls the remaining
entities in the MCS system. Subsequently, both of them
engage themselves in the exchange of public/private pa-
rameters according to the protocol specification.

• Phase 1 in T1: The adversary receives all the communi-
cation strings generated during multiple auctions in T1.
The only constraint is that the auctions occur in the time
domain T1.

• Challenge in Tc: The adversary declares any victim par-
ticipant, and he declares two distinct challenge bids b0, b1.
The challenger then flips a fair binary coin µ = {0, 1}
and generates the disguised bid of bµ.

• Phase 2 in T2: Phase 1 is repeated adaptively, but the
time window should be chosen from T2.

• Guess: The adversary gives a guess µ′ on µ.

The advantage of an adversary A in this game is defined as
advMCS
A =

∣∣Pr[µ′ = µ]− 1
2

∣∣.
Definition 2: An MCS protocol is indistinguishable against

chosen-plaintext attack (IND-CPA) if all polynomial time
adversaries’ advantages in the above game are of a negligible
function w.r.t. of the security parameter λ when T1, Tc, T2 are
all pair-wise disjoint.

Intuitively, our security definition indicates that the follow-
ings hold in a MCS protocol with IND-CPA.

• Even if adversaries have some knowledge on the distri-
bution of victims’ bids, they are still not able to infer
any information about the bids from the communication
strings.

• Even if temporal or spatial correlation exists in victims’
bids, adversaries are not able to link disguised bids whose
true bids are correlated to each other.

• Adversaries are not able to learn any information about
the victim’s private key if they do not know the exact
value of the victim’s bid.

In other words, the bid disguising is semantically secure
against polynomially bounded adversaries and therefore no
statistical information about the bids is disclosed.

Fig. 3. Privacy-preserving participant selection: each new participant
receives her ID, public parameterH(t) and retrieves a set of polynomial values
for all requested cells in spatiotemporal matrix S with her ID; task owners
give out the tasks and rewards to platform; TP is in charge of grouping and
privacy-preserving auction; the platform selects final participants to complete
the tasks and make the payments.

IV. PRIVACY-PRESERVING PARTICIPATION SELECTION

In this section, we present our design of privacy-preserving
participation selection, which leverages combinatorial group
strategy to find the minimum bid for each task cell in the group
while the bid information of every participant is unknown by
anyone else except for the participant himself. To preserve
privacy, two additional parts, key generator (KG) and third
party (TP), are added to the original MCS framework, as
shown in Fig. 3. The Key generator randomly generates and
distributes a series of polynomials outcomes and IDs for all
enrolled participants. The third party is the data aggregator,
and it calculates the minimum bid among all the participants
without the knowledge of each individual bid value. The
introducing of KG and TP does not affect the operation of
MCS platform. In the view of the platform, TP and KG
together are agents of virtual participants (groups).

A. Preliminaries

We use the following theories to obtain the minimum bid
and the critical payment (second lowest bid) without leaking
the bid privacy of participants to any of the other parts,
including TP. Further, the calculation could be verified by using
fixed point representation.

• Minimum Approximation: For a large integer number R
and the upper bound Υ, known by the whole system,
the approximation of the minimum number among all the
xi, i ∈ [1, I] could be obtained by:

Υ− R

√∑
(Υ− xi)R ≈ min (x1 . . . xi . . . xI).

• Lagrange Polynomial Interpolation (LPI): Given a
polynomial Qj(x) with a highest degree j no more than
W − 1 (i.e., j ≤ (W − 1)) who passes through the W
points (x1, q

j(x1)), (x2, q
j(x2)), . . . (xW , q

j(xW )), any
other point (x, qj(x)) can be given by

qj(x) =

W∑
w=1

qj(xw)

W∏
v=1
v 6=w

x− xv
xw − xv

 .

If Qj(x) is a polynomial where qj(0) = 0, then the right



part of equation is equal to 0, which is

W∑
w=1

qj(xw)

W∏
v=1
v 6=w

0− xv
xw − xv

 = 0.

• Fixed Point Representation: We can transfer one type of
fixed point data type with scaling factor A to another data
type with scaling factor B by multiplying A and dividing
B. We could use the fixed point representation to repre-
sent real numbers so that the key in our proposed strategy
could be trivially verified as shown in Section IV-D.

B. Sketch of Basic Idea

Our basic idea is inspired by [43]. We let participants
form groups first and then the privacy preserving auction is
performed within each group. Then the winning bids within
each group will be disguised as the virtual participants and
submitted to the platform for the final participation selection.
VCG auction is performed during both the group bid session
and the final participation selection process. The challenges
are: (1) how to perform privacy preserving auction within the
groups to prevent from leaking the participants’ bid informa-
tion to any party, including TP, and (2) how to make these
operations efficient without causing much overhead. Fig. 3
shows the structure of our design.

After participants receive the requirements of the sensing
task, they will form several groups (with their own group size
requirements, which reflects their privacy level). The groups
can be formed by either the participants themselves or by TP.
Further, the groups may have different sizes, and a larger group
size usually leads to better privacy. For simplicity, hereafter,
we consider the group is formulated by TP and the size is a
standard system parameter. Each participant in a group uses
her group member ID and her related polynomial value to
disguise the original bid information. With the feature of LPI
pass through origin and the minimum approximation, TP could
obtain the minimum bid within each group. The second lowest
bid in the group could also be obtained in the same way
after excluding the winner. These two bids in each group
will be reported to the platform as virtual bids from regular
participants. Then the platform uses the VCG method to select
the winner and calculates her payment.

Except for the bid winner, all the bid information could be
well-protected by our strategy with light overhead and efficient
computation. Also, the bid truthfulness could be protected by
VCG. Note that this method does not affect the operation
of current VCG-based MCS platform. The virtual bids from
groups can be treated as regular participants of the platform.
Our method can support hybrid participants (both virtual and
regular participants) at the platform and also multiple TPs (as
different agents) for grouping. In the next section, we will
describe the design details of the proposed system.

C. Detailed Design of Privacy-Preserving Group Bidding

For the simplicity, we omit all the modulo operations,
however all numbers appearing in our mechanisms are within a
finite field Z/pZ where p is a safe prime number of bit length
λ, and λ is also denoted as the security parameter. We also
focus on the a single requested cell (t, l) where s(t, l) = 1.

Initialization: KG generates a set of polynomials Q =
{Q(t, l)}, where Q(t, l) = {q2(t,l)(x) . . . qκ(t,l)(x) . . . qK−1(t,l) (x)},
for the requested cell (t, l) in the spatiotemporal matrix
securely, in which all constants are equal to 0. Here K is
the upper bound of the group size. The polynomials with
same degree κ are distinct from each requested cell. For
the consideration of security, the polynomials need to be
updated once they are used in a group, whose overhead will
be analyzed in Section V-B. Every participant ui retrieves her
polynomial values Qi for the whole spatiotemporal matrix
with each degree using her IDi from KG. In requested cell
(t, l), each participant ui holds the polynomial set Qi(t, l) =
{q2(t,l)(IDi) . . . qκ(t,l)(IDi) . . . qK−1(t,l) (IDi)}. The qκ−1(t,l) (IDi) for
tasks s(t, l) = 1 should be used when the group size is κ.
The participants only know the values of polynomials on their
spatiotemporal matrix with their IDi but not the polynomial
themselves. Also, KG assigns a public parameter V to each
participants, which will be used for breaking bid tie later. Note
that KG does not participant in the actual auction processes.

Group and disguised bid formulation: Platform broadcasts
the tasks S and the bid upper bound Υ. For these tasks,
at current time τ , TP randomly allocate the κ participants
(uj1, u

j
2, · · · , ujκ) into a group set Uj (with U = ∩j=1,··· ,bnκ cUj)

and asks for the bid information from these participants. The
true bid from participant uji in a group Uj is denoted as bji (t, l).
Participant uji in group Uj can calculate her disguised bid using
the group members’ IDs and report her bid to TP:

f(IDi, b
j
i (t, l)) =

qκ−1(t,l) (IDi)

κ∏
o=1
o6=i

0− IDo

IDi − IDo
·H(τ) + (Υ− bji (t, l))

R,

where H(), a hash function, is a public secret among the
participants.

Winning bid decision within groups: First, TP aggregates
all the participants’ disguised bids together,

κ∑
i=1

f(IDi, b
j
i (t, l)) =

κ∑
i=1

(Υ− bji (t, l))
R,

and then uses the Minimum Approximate to find the minimum
bid in the current group.

bj(t, l) = Υ− R

√√√√ κ∑
i=1

(Υ− bji (t, l))R = Υ− R

√√√√ κ∑
i=1

f(IDi, b
j
i (t, l)).

Note that all κ,Υ, and R are the public system parameters.
After calculating the minimum bid, TP broadcasts it among
all the group members.

Next, TP needs to find the winner, find the second lowest
bid and break bid ties in each group. To select a single
winner and break bid ties, we use the following procedure
(also illustrated in Fig. 4). The participants whose bids are
larger than the winning bid report the pre-assigned value V
to TP and assume that the number of values received is F . If
F < κ−1, TP knows that there is a tie and the second lowest
bid in current group is the same as the winning bid. In this
case, TP could randomly select one from the participants who
did not provide the V value in this step as the group winner



Fig. 4. Breaking ties within a group: TP selects a single winner and obtains
the second lowest bid after knowing bj(t, l). Note that the green exchanges
are only needed when there is no tie (i.e. F = κ− 1).

since ID is a public parameter. Further, TP can consider other
parameters such as credit or worker ability [44] to select the
winner when there is a tie. Otherwise, if F = κ−1, TP will set
the winner’s bid to the bid upper bound and repeat the process
again to get the second lowest bid in the current group. After
this procedure, TP obtains the winner wj(t, l), its winning bid
bj(t, l), and the second lowest bid pj(t, l) in this group Uj .

Winning bid decision at platform: For each group Uj , TP
will presents two virtual participants (with virtual bids at the
winning bid bj(t, l) and the second lowest bid pj(t, l)) to the
platform. The platform receives 2G virtual participants’ bids
for sensing tasks cell (t, l), where G is the number of groups.
Then, the platform will make the virtual participants selection
and obtain the lowest bid b(t, l) and the critical payment
p(t, l) over all participants. The group selection is the same
as optimizing participant selection in general case without the
third party. The lowest bid (winner) and the critical payment
calculated by platform is described as below:

b(t, l) =
G

min
j=1

bj(t, l), w(t, l) =
G

arg min
j=1

bj(t, l)

p(t, l) = min
j∈[1,G],bj(t,l)6=b(t,l)

{bj(t, l), pj(t, l)}

After the selection decision, platform broadcasts the winning
bid (and the winning group) the payment information to the TP.
Then TP notifies winner, who then perform the corresponding
task. Note that our proposed solution do not affect the selection
algorithm (VCG auction) at the platform. The platform can
also accept bids from real participants.

D. Some Critical Issues

H(τ) and IDs. Note that H(τ) is the common secret which
is known by all participants but not by the third party. H(τ)
could let the whole system be securer since it changes each
time when TP aggregates bids from each group. This requires
the synchronization among all participants. The participants’
IDs are also public in our system so that they could be directly
used in the calculation.

Verification for qX(t,l)(IDi). Each participant could only
receive the value of polynomials with her own IDi. Although
KG is assumed to be a trusted party, it is possible that an
erroneous value is delivered to the participants due to unknown
errors. However, since the polynomial is the master secret
which is kept hidden to anyone except KG, the participants
are not able to verify the correctness the received values.

To solve this problem, we extend the zero-knowledge proof
(ZKP) [45] and introduce a simple verification protocol below.
The protocol allows the participants to verify that the value
is indeed calculated from the polynomial owned by KG, but
the entire protocol keeps the polynomial itself hidden to the
participants.

Key generator publishes the generator g of a multiplicative
cyclic group G where the DDH assumption holds (e.g., a
Schnorr group). Then, a series of gcx ’s, where each cx is
the coefficient for IDxi , are published. Each participant can
calculate the following formula:∏

(gcx)ID
x
i = gc1·ID

1
i+···+cx·ID

x
i +···+cX ·ID

X
i .

If this value is equal to gq
X
(t,l)(IDi), where qX(t,l)(IDi) is the

received value from KG before, the participant verifies that
the received value is correctly calculated. Because the DDH
assumption holds in the group G, no statistical information
about cx is leaked from gcx , therefore this verification does
not tamper the IND-CPA guaranteed by our MCS protocol.

ID Updates. From the formula of the disguised bid, we
know that the polynomial value is the only secret except the
true bids. As the ranges of polynomial value is much larger
than bids, the attackers could estimate the bid value in several
rounds with the same polynomial value applied. As a result,
we need to update the used IDi and the related qκ(t,l)(IDi). In
our current system, each participant has multiple unduplicated
IDs. For each participation selection round, the bidders need
to mark the polynomial value they used. When the selection
with same group size is performed in the same requested cell,
the participants should request to renew the polynomial values.
We will analyze the involvement of KG in Section V-B.

V. THEORETIC ANALYSIS

A. Security Proof

Theorem 1: Our bid disguising is semantically secure.

Proof: A bidder’s (with ID IDi) bid bi(t, l) for the auction
occurring at the (t, l) of the spatiotemporal matrix is disguised
as the following format:

f(IDi, bi(t, l)) =

qκ−1(t,l) (IDi)

κ∏
o=1
o6=i

0− IDo

IDi − IDo
·H(τ) + (Υ− bi(t, l))R,

when κ bidders participate in the auction. The IDs of the
bidders, the current time slot τ as well as the hash function
H(·) are public parameters. The only two unknown secrets are
qκ−1(t,l) (IDi) and (Υ− bi(t, l))R. Therefore, multiple disguised
bids with distinct polynomial values cannot be used to infer
the true bids because there are more unknown variables than
the equations.

In reality, there are three cases. First, the disguised bids are
received from different auctions occurring at different cells
in the spatiotemporal matrix. Second, the auctions occur at
the same cell in the spatiotemporal matrix and the number
of bidders are different in the auctions. In these situations,
different polynomials are used to disguise the bids, therefore
the adversaries do not benefit. Third, multiple auctions with



the same number of bidders occur at the same cell in the
spatiotemporal matrix. Note that every time an auction occurs
at a cell at which another auction with the same number
of bidders has occurred before, our mechanism ensures that
the participants’ IDs are refreshed, and all participants will
receive new polynomial values corresponding to the new IDs.
Therefore, even in this case, the disguised bids from multiple
auctions are based on different polynomials. In summary,
no matter how auctions are performed, combining multiple
disguised bids does not help to infer the true bids.

In the sequel, we further prove that our mechanism guar-
antees semantic security by disguising the true bids . For any
single disguised bid f(IDi, bi(t, l)), let us simplify the terms
first. Let f(IDi, bi(t, l)) be simplified as

f(IDi, bi(t, l)) = q ·Π ·H + b

where q,Π, H , and b represent qκ−1(t,l) (IDi),
∏ 0−IDo

IDi−IDo , H(τ),
and (Υ − bi(t, l))

R respectively. Then, for any b and its
disguised bid f(IDi, bi(t, l)), there must exist b′ 6= b, q′ 6= q
such that

q ·Π ·H + b = q′ ·Π ·H + b′

Such b′, q′ exist because of the following reason. Recall that
all operations are closed under the finite field Z/pZ with a
safe prime p. Then, ΠH and p must be coprime, and therefore
the inverse (ΠH)−1 mod p must exist, which implies q′ =
(qΠH + b − b′)(ΠH)−1 will make the above equation hold.
In other words, for any b′ ∈ Z/pZ, the disguised bid created
with q′ = (qΠH + b− b′)(ΠH)−1 will be exactly the same as
b’s disguised bid f(IDi, bi(t, l)).

Recall that the coefficients of the polynomials are chosen
from Z/pZ uniform randomly. Then, a given disguised bid can
be the disguised bid of any valid bid with equal likelihood,
which indicates that the disguised bid does not disclose any
statistical information about the true bid.

Theorem 2: Our MCS protocol guarantees ciphertext in-
distinguishability against chosen-plaintext attack (IND-CPA).

Proof: In the aforementioned Secure Bidding Game,
although the adversary can adaptively query communication
strings corresponding to any input bid he submits, the semantic
security of our bid disguising guarantees that he does not gain
any statistical information about the bid or the polynomial
value. This implies that, even if the adversary submits two
challenge bids and receive their disguised bids in Phase 1 or
Phase 2, they are not able to statistically correlate them to
the disguised bid of bµ he receives in the Challenge phase.
Therefore, his advantage will be a negligible function of the
security parameter λ.

B. Involvement of Key Generator

As we illustrated in IV-C, a participant may need to refresh
her ID and polynomial value from the key generator for privacy
protection. Note that KG only needs to refresh the parameters
for the participant who wants to respond to a task request.
The request occurs in the same cell (t, l) of the spatiotemporal
matrix S as a previous task that she participated in, and the
participant wants to require the same group size κ for both
tasks. In the worst case, assume that each participant is willing
to bid for tasks falling in each cell of S. Thus, when the

participant encounters the same group size at the same cell,
she has to contact the key generator to renew her parameters.
Therefore, the involvement of KG is influenced by the task
distribution over the spatiotemporal matrix (T×L choices) and
participant’s required group size κ (K − 2 choices from 3 to
K). We now analyze the average frequency of KG involvement
using amortized analysis.

For each cell (t, l) in the T ×L spatiotemporal matrix the
possible group size κ varies from 3 to K. Each combination
(t, l, κ) can be represented by a box. A task (which the partic-
ipant want to bid) belongs to a box if it has the corresponding
values of t, l, κ. Clearly, there are D = TL(K − 2) boxes.

Now assume that we have m tasks randomly distributed
to the D boxes. Let N(t, l, κ) be the number of tasks in
box (t, l, κ) and let p(t, l, κ) be the probability that a task is
located in box (t, l, κ). Note that N(t, l, κ) ∼ B(m, p(t, l, κ)),
where B(m, p(t, l, κ)) represents the binomial distribution
with parameters m and p(t, l, κ). We have∑

t,l,κ

p(t, l, κ) = 1 and
∑
t,l,κ

N(t, l, κ) = m.

Assuming that each participant participates in each task,
then the number of KG involvements corresponds to∑

t,l,κ

(N(t, l, κ)− 1)1[N(t,l,κ)≥2],

where 1[··· ] is the indicator function. We have

E(frequency of KG involvement)

=E[
∑
t,l,κ

(N(t, l, κ)− 1)1[N(t,l,κ)≥2]]

=m−D − E[
∑
t,l,κ

(N(t, l, κ)− 1)1[N(t,l,κ)≤1]]

=m−D −
∑
t,l,κ

E[(N(t, l, κ)− 1)1[(N(t,l,κ)≤1]]

=m−D −
∑
t,l,κ

(−1)P (N(t, l, κ) = 0)

=m−D +
∑
t,l,κ

(1− p(t, l, κ))m.

In the case of a uniform distribution, where p(t, l, κ) = 1/D
we have

E(frequency of KG involvement) = m−D +
(D − 1)m

Dm−1 .

Similarly, the probability that a task type at (t, l) with group
size requested at κ requests x KG involvement is

P (x KG involvements in box(t, l, κ)) = P (N(t, l, κ) = x+ 1)

= Cx+1
m

(
1

D

)x+1(
1− 1

D

)m−x−1
,

where Cym refers to y choose m.



TABLE I. PARAMETERS USED IN D4D-BASED SIMULATIONS

Parameter Value or Range
Unit of time/Task duration 1 day
Number of locations (towers) 18
Number of tasks M 60, 80, 100, 120, 140
Number of candidate participants N 2000, 4000, 6000, 8000, 10000
Group size K 20, 40, 60, 80, 100
Length of whole sensing cycle one week (7 days)
Number of data records 46613
Total period of traces used Dec 5, 2011 to Jan 8, 2012

TABLE II. PARAMETERS USED IN SFC-BASED SIMULATIONS

Parameter Value or Range
Unit of time/Task duration 10, 20, 30, 40, 50, 60 Minutes
Number of tasks M 60, 80, 100, 120, 140
Number of candidate participants N 504
Group size K 10, 20, 30, 40, 50
Length of whole sensing cycle one day
Number of data records 508979
Total period of traces used May 17, 2008 to June 10, 2008

VI. SIMULATIONS

A. Datasets and Configuration

1) D4D Dataset: D4D dataset is a mobile phone call
tracking data, from the Orange for the Data for Development
(D4D) challenge [46]. The data is anonymized call detailed
records of phone calls between 50, 000 Orange mobile users
in Ivory Coast between December 1, 2011 and April 28, 2012.
We use a dataset of individual mobile phone call tracking trace
with high spatial resolution (SET2 in D4D datasets), which
contains the access records of antenna (cellular tower) of each
mobile user in every two weeks. Since the density of phone
call is very sparse, we merge records from multiple weeks into
a single week and use one week (7 days) as the whole sensing
cycle T . There are 46, 613 records for the user showing up in
all cellular towers without duplication, and the number of such
users is 10, 704. We assign the location of each task randomly
from the locations of 18 cellular towers, which are with the
highest call records. Most of these towers are located in the
downtown region of Abidjan. We treat the distance between
a participant (her current tower) and the task (its location at
one of the 18 towers) as the bid value2 for each participant
to that task. In other words, when a participant is far away
from a task location, her cost to perform the sensing task is
high. Since the records of mobile phone call (tower location)
is not the exact position of participants, in our simulations,
we add an additional random distance with range [0, 1] to the
estimated distance as the original bid value. The parameters
for tasks and participants are listed in Table I.

2) SFC Dataset: Although D4D dataset provides a real-life
large scale traces for human mobility, it does not have high
spatial resolution (still at cellular tower level). Therefore, we
also use the San Francisco Cab (SFC) Dataset [47] for simu-
lations, which includes the GPS traces (total 11, 200, 335 data
records) from 536 cabs in total 25 days from May17, 2008 to
June10, 2008. We believe that SFC can provide complemental
scenarios for our simulations. Here, we use a subset of all
traces (tailored both on temporal and spacial domains), which
has 504 participants with 508, 979 data records. Since the
GPS records are accurate locations, we randomly generate the
locations of sensing tasks and use the distance between the

2Note that the bid value can be others, e.g., users’ ability to perform the
task. Here we just use the distance as an example, which is easy to obtain
from both datasets.

participant and the task as the true bid. Table II summarizes
the parameter settings.

B. Compared Methods and Metrics

In all the experiments, we compare our proposed method
with three alternative mechanisms: PRIDE [48], the group
mechanism with trusted third party (TTP) and the location ob-
fuscation method (Noise). PRIDE [48] is a privacy-preserving
and strategy-proof spectrum auction in cognitive radio net-
works, which leverages complex cryptographic techniques
(such as secure multiparty computation, order-preserving en-
cryption, and oblivious transfer) to obtain the lowest bid and
preserve bid privacy. We have adopt it to our scenario and
use RSA with modulus of 1024 bits for encryption/decryption.
In TTP, we introduced a completely trusted third party to
perform group bidding. All information about participants such
as bid, ID and spatiotemporal matrix, are transparent to TTP. It
could absolutely protect the participants’ privacy from platform
but rely on TTP entirely. Noise applies a standard privacy
preserving technique, adding certain noise (range from 0 to
10) in the bids (i.e. the distance between the participant and
the task) from each participants.

We test all these methods under different settings (with
various number of participants, number of tasks, group size,
and task period), and evaluate them with the following metrics.
Running time: the time between the tasks is broadcast and all
participants have been selected. Here we assume that the par-
ticipant selection algorithm is the same for all method, picking
the participant with the smallest bid as the winner. Commu-
nication cost: the communication costs in all steps, including
task broadcast, group formation, winner decision and second
bid calculation in each group, and winner decision for tasks.
It is measured as the average round of message exchanges
from each participant per task. Overpayment/Accuracy: since
b(t, l) acts as the bid of winner w(t, l) and p(t, l) as the related
payment to her for this task, the overpayment for this task is
defined as p(t, l)− b(t, l). Then the total average overpayment
is an average over all tasks.

C. Simulation Results

We first test the performance of all methods using both
D4D and SFC datasets in terms of communication cost and
running time. Simulation results are shown in Fig. 5 and Fig. 6,
respectively. For communication cost, we consider the average
number of message exchanges per task per participant with
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Fig. 5. D4D Simulation: with 6, 000 participants (a) average communication
cost per task per participant with different group size over 100 tasks. (b) total
running time with different number of tasks when group size is fixed at 60.



group size
10 15 20 25 30 35 40 45 50

c
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

2

3

4

5

6

7

8

Our Method
Noise
PRIDE
TTP

10 20 30 40 50

7.82

7.84

7.86

7.88

7.9

7.92

7.94

10 20 30 40 50
1.55

1.6

1.65

1.7

60 70 80 90 100 110 120 130 140

# of tasks

0

500

1000

1500

2000

2500

3000

ru
n
n
in

g
 t
im

e
 (

s
)

Our Method

Noise

PRIDE

TTP

60 80 100 120 140

10

15

20

25

30

35

(a) communication cost (b) running time

Fig. 6. SFC Simulation: with 504 participants (a) average communication
cost per task per participant with different group size over 100 tasks. (b) total
running time with different number of tasks when group size is fixed at 30.

2000 3000 4000 5000 6000 7000 8000 9000 10000

# of participants

209.4

209.45

209.5

209.55

209.6

209.65

209.7

209.75

209.8

209.85

209.9

a
v
e

ra
g

e
 p

a
y
m

e
n

t/
c
o

s
t

Cost

Our Method

Noise

PRIDE

TTP
2000 4000 6000 8000 10000

0

0.1

0.2

0.3

0.4

a
v
g
 o

v
e
rp

a
y
m

e
n
t 
ra

ti
o

Our Method

Noise

10 15 20 25 30 35 40 45 50

task duration

120

122

124

126

128

130

132

134

a
v
e
ra

g
e
 p

a
y
m

e
n
t/
c
o
s
t

Cost

Our Method

Noise

PRIDE

TTP

10 20 30 40 50
0

1

2

3

4

5

a
v
g

 o
v
e

rp
a

y
m

e
n

t 
ra

ti
o

Our Method

Noise

(a) D4D (b) SFC

Fig. 7. Average cost and payment for all the tasks by different methods
in (a) D4D simulations and (b) SFC simulations. Smaller plots show the
overpayment ratios of our method and Noise.

different group sizes, as shown in Fig. 5(a) and Fig. 6(a). First,
the communication costs of Noise and PRIDE do not change
with group size, while those of TTP and our method decrease
with the growth of group size as the virtual participants on
behalf of each group decease with the larger group size. Com-
pared with TTP or PRIDE, our method needs more message
exchanges to achieve privacy preserving. However, for running
time (Fig. 5(b) and Fig. 6(b)), PRIDE takes significantly more
time than other methods because its encryption process is
time consuming. TTP and our method use similar time, which
is slightly longer than Noise (mainly for group creation and
group bidding). In addition, with increasing number of tasks,
more time is needed for all methods. Overall, our method can
achieve privacy-preserving with similar running time but larger
communication cost compared with TTP. The communication
overhead is the price for privacy-protection.

We also measure the payments of different methods and
compare them with the true cost. Results are shown in Fig. 7.
First, both cost and payment decrease with the increase
of number of participants (Fig. 7(a)) and the task duration
(Fig. 7(b)). With more participants, the platform/group can
choose lower minimum bid and pay less rewards to the
winners. With longer task duration, participants have more
chances to bid less. Further, our method, TTP and PRIDE
pay the same amount, and Noise pays the most. This can be
clearly seen in the smaller plots within the figures, which show
the overpayment of our method and Noise. Obviously, Noise
sacrifice the overpayment to protect the privacy. Note that the
difference of overpayments between Noise and our method
is not significant in SFC simulations. This may be because
the range of added random noises is much smaller than the
distances (true bids) in SFC dataset.
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Fig. 8. D4D simulation: KG involvement and communication cost with
different number of tasks.
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Fig. 9. SFC simulation: KG involvement and communication cost with
various DT value and the number of tasks.

Last, we consider the involvement of KG. Recall that
when a participant wants to bid a task which has the same
spatiotemporal requirement and desired group size with a
previous task she bided, the participant needs to refresh her ID
and polynomial values from KG. In the following experiments,
we fix the group size and consider the effect of the number of
tasks. Fig. 8 and Fig. 9 clearly show that, more involvements
of KG (also extra communication cost) are needed when there
are more tasks. This confirms the theoretical analysis we had
in Section V-B. Here, the baseline is the method without any
refreshing of IDs and values. Since we do not have tower
location as the task location for SFC dataset, we consider
the distance among tasks instead for refreshing decision. We
assume that a participant needs to refresh her ID and values
from KG when the distance between the current task she wants
to bid and any of her former tasks is less than the predefined
distance threshold (DT). As shown in Fig. 9, with larger
distance threshold, both KG involvement and communication
cost become larger. This is reasonable, since the current task
will interfere with more tasks in the larger range, which
then results in more involvements of KG and more message
exchanges.

VII. CONCLUSION

In this paper, we propose a new privacy-preserving par-
ticipant selection mechanism for protecting bid privacy of
participants in a dynamic auction-based MCS system. By
grouping mobile participants into groups with semi-trusted
TPs and carefully disguising their bids within the groups,
we can achieve scalable selection and guarantee the overall
truthfulness and security while protect the individual bids from
participants. Both theoretical analysis and real-life tracing data
simulations confirm the efficiency and security of our proposed
mechanism.
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