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Abstract—In the past few years mobile healthcare has
attracted a lot of attention from both industry and academia.
Medical sensors are usually attached to or implanted inside
patient body. Since sensing results of BAN can directly impact
the control of medical equipment, the authenticity and integrity
of sensing data is essential for safety of patients. Existing
research focuses on differentiating on-body sensors from off-
the-body impersonators with the help from a control unit.

In this paper, we propose to exploit wireless channel char-
acteristics to detect on-body impersonators in BAN networks.
Depending on whether or not the sensors have line-of-sight
connections with the off-the-body control unit, their commu-
nication channels demonstrate different properties. For an
attacker who demonstrates similar channel characteristics as
the victim, a user-configurable challenge-response mechanism
is designed to expose the conflicting information submitted by
the two nodes. Our simulation results show that with a small
increase in communication and computation overhead, we can
effectively detect the on-body impersonators.

Keywords-body area network; node impersonation attack;
communication channel property

I. INTRODUCTION

Among many application scenarios of Cyber-Physical

Systems (CPS), intelligent healthcare is a very promising

research direction. Deployment of smart sensors and treat-

ment equipment on patient body will allow both healthcare

providers and patients to better monitor the body status and

respond more promptly to any changes. Such applications

evolve into body area networks (BAN) [1]. A BAN is usually

a wireless network formed by lightweight, small-size, ultra-

low-power, and intelligent wearable devices. These sensors

can be strategically placed on the body surface, around body,

or implanted inside body. To reduce physical constraint

on patients, the sensors transmit collected information to a

control unit (CU), which is usually deployed outside of yet

close to the patient.

Since intelligent sensors in BAN monitor vital signs

of patients and could suggest or even directly perform

medical treatment, the authenticity and integrity of collected

information is essential for safety of patients [2], [3]. Un-

fortunately, restricted by the size of and available power to

BAN sensors, it is hard to adopt the cryptography based

security mechanisms in BAN. Therefore, researchers refer to

physical layer mechanisms to enforce security. For example,

in [4], the authors design a mechanism to identify an off-the-

body attacker who tries to impersonate an on-body sensor.

They observe that there exist distinct received signal strength

(RSS) variation patterns between on-body sensors and off-

the-body nodes. The CU stays relatively static to the on-

body sensor since they move together with the patient. On

the contrary, the distance between off-the-body impersonator

and the CU will change constantly.

In this paper, we investigate a more challenging problem.

Specifically, we want to study whether or not physical chan-

nel characteristics can be used to detect node impersonation

attacks that are conducted by on-body sensors. Below we

describe a scenario. Let us assume that a patient has multiple

BAN sensors deployed on her body, as shown in Figure 1.

Since the information they monitor and collect has differ-

ent levels of sensitivity, the nodes adopt different security

measures for protection. Therefore, the difficulty levels to

compromise them are also different. For example, a wireless

thermometer measures body temperature of the patient and

sends it to control unit. Since human body temperature is not

sensitive data, the thermometer does not adopt very strong

protection. At the same time, a BAN sensor monitors the

glucose level of the patient and transmits collected data to

control unit. The control unit will then adjust the speed

of an insulin pump based on the information. Since over

injection of insulin could directly threaten the life of the

patient, the glucose monitor adopts strong protection and

is very hard to compromise. Now assume that an attacker

compromises the thermometer and uses it to impersonate

the glucose sensor. Since both devices are deployed on the

patient body, the mechanisms that are designed to detect

off-the-body impersonators will not work effectively. A new

mechanism must be designed to defend against such attacks.

To solve this problem, we propose a lightweight detection

mechanism. The basic idea is as follows. Based on the

measurement results in [5], the wireless channel between

an on-body sensor in BAN and the off-the-body control unit

exhibits different variations depending on whether or not

they have line-of-sight (LOS) communication paths. If there

exists a LOS path between them, they experience relatively



Figure 1. Top: An example BAN setup: CU and 5 sensors.
Bottom: Difference between LOS and NLOS channels between
BAN sensors and CU.

stable RSS (Received Signal Strength) values with small

fluctuations. On the contrary, a non-line-of-sight (NLOS)

path will lead to larger variances. Therefore, using the

average RSS variations (ARVs), we can classify the channels

into two groups: LOS and NLOS. The control unit can

measure its channel with a BAN sensor and derive out

whether or not there exists a LOS path between them. When

a compromised sensor tries to impersonate another node in

BAN by sending out false data, the CU will compare the

signal pattern of the channel to the expected value. If they

do not match, the impersonation attack is detected and the

sensed data will be discarded. For two sensors that stay close

to each other and demonstrate similar channel patterns to the

CU, we propose to adopt a challenge-response procedure for

sensing data to cause collisions between the real sensor and

the impersonator so that the attack can be detected.

An example is illustrated in Figure 1. The patient carries

5 BAN medical sensors S1 to S5 on her. Here S1, S2, and

S3 are deployed on the front side of her body, while S4 and

S5 are on the back side. We assume that the patient carries

a control unit which maintains a relatively stable position

to the BAN sensors. In this way, the LOS/NLOS patterns

between the CU and the sensors do not change. We use

Simulink [6] to simulate the BAN setup described above.

Figure 1.Bottom shows the LOS channel between S1 and

the control unit, and the NLOS channel between S4 and CU.

If sensor S4 tries to impersonate S1, the CU can measure

the channel ARVs. It can then compare the expected channel

pattern to the measured value to detect anomaly.

While the basic idea is straightforward, several issues

must be carefully resolved before the approach can be

implemented. For example, Figure 1 illustrates only the case

when the impersonator has a different channel pattern from

that of the victim. What if the victim and the attacker are

physically close to each other? For example, sensors S4 and

S5 in Figure 1 are both located in the backside of the patient.

As another question, how much overhead will this approach

introduce into the system? We will answer these questions

in later parts of the paper.

The contributions of the paper are as follows. First,

existing channel characteristic based authentication mecha-

nisms for BAN networks focus on differentiating off-the-

body impersonators from on-body sensors. Our approach

can effectively detect on-body impersonators. Second, this

approach does not require the deployment of any additional

hardware in the BAN environment. Third, our proposed ap-

proach introduces a limited amount of overhead to the BAN

sensors. Properties two and three are essential for potential

deployment of our approach in resource-constrained BAN

networks. Last but not least, we choose a type of abnormal

heartbeat, supraventricular ectopic beat (SVEB), as the target

of the impersonation attacks. We investigate the detection

accuracy and overhead of our approach through simulation.

Related Work:

Since sensor nodes in BAN networks are highly resource

constrained, investigators have referred to physical channel

properties to achieve security goals. In [7], Ali et al. observe

that the channel between an on-body sensor and an off-the-

body node displays both slow and fast fading components.

This property is used to assist key generation between the

nodes. In [4], the authors use differences in the average RSS

variation between an on-body channel and an off-the-body

one to identify BAN sensor and control unit impersonators.

The group then push the research one step forward by

achieving both device authentication and fast key extraction

with the same group of operations in BAN [5].

The remainder of the paper is organized as follows. In

Section II we present the details of our approach. Depend-

ing on the difference between the average RSS variations

(ARVs) of the received signals and expected values, we

design two mechanisms to identify the impersonators. In

Section III we use fake abnormal heartbeat information to

test the detection capability and overhead of our approach.

Finally, Section IV concludes the paper.

II. THE PROPOSED APPROACH

A. System Assumptions

Our BAN network contains n sensors and one control

unit (CU). The sensors and the CU use wireless technique

to communicate with each other. The sensors are carried on

a patient’s body so that they can continuously measure her

physiological data. When the patient moves, the sensors on

her body will also move. Although under some special cases

the distances among the sensors may change, we assume



that their positions will not change drastically. There is no

out-of-band communication channel among the nodes. The

sensors are placed at least half wavelength away from each

other to avoid correlated wireless channels.

The control unit (CU) is in charge of information collec-

tion and aggregation of the BAN. Based on the information

processing results, CU could transmit the data to physicians

or caregivers. It could also upload the data to some cloud

servers so that different persons in need could access it.

Similar to [4], we assume that the CU and the sensors stay

relatively static during patient movement. We assume that

the CU has more resources for protection. Therefore, the

CU could not be compromised.

We assume that an attacker will be able to compromise

some on-body sensors remotely. Once compromised, the

sensor will be under the attacker’s control. The attacker will

get access to all data/secret keys stored in the sensor. More

importantly, the attacker could fully control the wireless

communication component of the compromised sensor and

send out packets in other nodes’ names. This leads to node

impersonation attacks. The attacker will not be able to

change the physical configuration or position of the node.

B. The Proposed Approach

• Characteristic Difference between LOS and NLOS

Channels

In order to reduce extra overhead on the resource con-

strained nodes in BAN, in this paper we propose to use the

characteristics of wireless communication channels to detect

impersonators. Previous research shows that although an

off-the-body control unit can receive signals from different

BAN sensors, depending on whether or not there exists a

line-of-sight channel (LOS) between them, the signals could

demonstrate different properties. Specifically, experiments in

[4], [5] show that for channels between BAN sensors and

an off-the-body unit, LOS channels tend to be much more

stable than NLOS channels.

This observation can be explained as follows. The propa-

gation procedures of wireless signals are affected by many

factors such as direct path loss, multipath, and shadowing.

When there exists a LOS path between a sender and a

receiver, the direct path becomes the dominant factor. Since

the signals received from other paths contribute only a

small portion to the overall RSS, the value stays relatively

stable. On the contrary, for the NLOS channels, RSS values

will experience large fluctuations when we consider the

impacts of human tissues and device placement. Figure 1

illustrates the difference between a LOS and an NLOS

channel. This figure shows that it is feasible to detect an on-

body impersonator through the physical channel properties.

• System Bootstrap

When a BAN network first boots up, the on-body sensors

will try to establish connections with the control unit. Since

an attacker could not predict at what time the BAN will boot

up, we assume that for a short period of time after system

bootstrap the sensors are secure. Using this period of time,

the control unit could collect the channel properties to the

sensors. Please note that similar assumptions can be made

when we add some new sensors into a BAN. Through this

procedure, the CU can determine whether or not it has a

LOS channel to a sensor.

• Detection of Impersonator Who Has Different Channel

Signatures from the Victim

If an attacker tries to impersonate another BAN sensor that

has different channel properties with the control unit, the CU

can easily detect the anomaly. As an example, assuming that

sensor S3 in Figure 1 has been compromised and tries to

impersonate sensor S4. Since S3 is on the front side of the

patient while S4 is on her back, their channel properties

with the control unit will be quite different. When the CU

detects that the RSS variations of the packet do not match to

the expected values of the claimed node ID, it will discard

the packet and raise the alarm of an impersonation attack.

• Detection of Impersonator Who Has Similar Channel

Signatures with the Victim

Under some conditions, the compromised BAN sensor

may be physically close to the victim. Therefore, their

channel signatures to the control unit are similar. For this

type of attack, we need a new detection mechanism.

Before presenting the details of our detection mechanism,

let us re-consider the attack scenario. Here the impersonator

tries to provide contaminated data to control unit in a stealth

way. Therefore, our goal is to detect the existence of such

attacks, not necessarily to identify the compromised nodes.

If we detect that some impersonator sends out false data

in the victim’s name, subsequent operations such as remote

software based attestation [8] could be adopted to verify

system integrity and identify attackers.

With this observation, we propose the following proba-

bility based detection mechanism. Our mechanism is built

upon the advances in wake-up receivers (WUR) in BAN

networks with ultra low power consumption. A low power

wake-up receiver (WUR) module monitors a given channel

continuously. When the CU wishes to communicate with

a BAN sensor, it first sends out a wake-up call. After

successful reception of the wake-up call, the WUR unit

uses a signal to fire up its primary radio to engage in high-

speed communication with the CU. After the transmission,

the sensor reactivates its WUR unit and goes back to sleep.

Below we design an impersonator detection mechanism

based on this technique. When the control unit receives a

data packet from a BAN sensor, it will first examine the

channel signature and data content of the packet. If it feels

that additional verification is needed, the following steps

can be adopted. It will send out a wake-up signal with a

random number rM to the WUR unit associated with the



BAN sensor that we try to verify. There are two possible

results of this operation. If the data packet was sent by the

real sensor, it should be still awaken. On the contrary, if

the packet is actually sent by the impersonator, this signal

will wake up the victim. The control unit will then ask the

sensor to calculate a keyed hash result hash(rM , msg, rM )

based on the random number rM and the data packet msg

that it just sends out. If the packet is really from the sensor,

it can successfully accomplish the task. On the contrary, if

the packet is from the impersonator, the sensor will send

out a different hash result based on its previous packet, or

report an error stating that it has not sent out any packet

recently. Either way, this report will trigger the alarm of a

node impersonation attack.

Combining the mechanisms described above, we can see

that if the attacker and the victim have different channel

signatures, the control unit can directly detect the attack.

If the two channels are very similar, the control unit can

adopt a probability based challenge-response mechanism to

detect false data. The relationship between the percentage

of packets that are challenged and the attack detection

probability will be studied in subsequent sections.

• Increases in Power Consumption

The proposed mechanism will incur extra computation

and communication overhead on the BAN sensor. Therefore,

we must carefully assess the tradeoff between detection

capability and increases in overhead. The increased power

consumption comes from the following aspects. First, the

WUR unit needs to be active almost all the time. Fortunately,

based on [9], the WUR has µA operating current versus mA

for traditional radios. Therefore, the impacts of this increase

can be ignored.

Another increase comes from the reception, computation,

and reply of the challenge. Here we compare the proposed

approach to two mechanisms. The base line mechanism

adopts no security measures. Therefore, an impersonator can

supply any data to the control unit. Using the measurement

results in [10], [11], we can estimate that the sensor will

consume about 82 µJ energy to transmit a 64-byte packet to

the CU. This is the base line power consumption.

In the second mechanism to which we plan to compare,

we assume that the CU shares a different secret key with

each BAN sensor. Under this condition, a Message Authen-

tication Code (MAC) that is calculated based on the data

contents and the shared key is attached to every packet. In

this way, data integrity is protected and node impersonation

attack becomes impossible. However, the cost is a sharp

increase in power consumption. If a 16-byte MAC code is

attached to every data packet sent by the BAN sensor, the

power consumption will increase about 90% (156 µJ).

Using the proposed approach, if a round of challenge-

response is triggered for a data packet, the total power

consumption will be about 223 µJ, which is about 2.7 times

of the base line. Fortunately, several schemes can help to

reduce the probability that the extra round of communication

is executed. First, if the channel signatures of the victim and

the impersonator are different, the attack can be detected

without any extra overhead. Second, for the cases in which

the channel signature demonstrates no anomaly, end users

can define some pre-conditions to activate the challenge-

response interactions. Several example scenarios may in-

clude: (1) the reported data from the sensor deviates from its

normal value range, or the change is large enough to cause

new operations at the medical equipment; or (2) the channel

signature from the sensor has changed drastically compared

to its previous value. In this way, we can effectively reduce

the frequency of the execution of challenge-response. Our

simulation in Section III will show that our approach will

cause a small increase in power consumption in an attack-

free environment while maintaining a high detection rate

when impersonators show up.

• Security of the Approach

Since the proposed approach tries to detect node imper-

sonation attacks on BAN, the safety of it must be carefully

studied. An attacker may try several schemes to avoid

detection by this mechanism or to abuse it. Below we discuss

two cases. First, immediately after a real sensor sends out a

packet, the impersonator can send out a false packet. Under

this condition, the CU will receive two (possibly conflicting)

data packets. However, unless the impersonator rebroadcasts

the packet from the sensor, the keyed hash values of the

two packets will be different, thus revealing the attack. The

second attack that a compromised node can conduct is to

abuse the challenge-response verification. It will not send

out false data packets. On the contrary, if a packet from the

real sensor is challenged by the control unit, the attacker

will reply with a wrong hash result. Since the control unit

will receive two different hash values, it will assume that an

impersonation attack is ongoing and discard the original data

packet. In this way, a DoS attack is conducted upon the real

sensor. However, this type of abuse cannot be repeatedly

used. The false hash result exposes that some sensor has

been compromised and stopped to follow the protocol. A

detection procedure could then be triggered to identify the

compromised node.

III. SIMULATION AND RESULTS

A. Simulation Setup

In the simulation study, we choose the classification of

heartbeat of patients as the application. According to the As-

sociation for the Advancement of Medical Instrumentation,

an arrhythmia is any abnormality in the rate, regularity, site

of origin, or activation sequence of the electrical impulses

of the heart. In this study, we focus on supra ventricular

ectopic beat (SVEB). SVEB originates from the atria or from

the atrioventricular node. It could be caused by premature



activation of the atrium prior to a normal heartbeat, which

may indicate heart failure and atrial fibrillation. Figure 2

shows the ECG of a ventricular ectopic beat.

Figure 2. Top: ECG of a ventricular ectopic beat. Bottom:
Histograms of normal beats (left) and SVEB RR interval ratios
(right). Courtesy of Biomedical Engineering Online Journal and
New Human Physiology.

In [12], the authors find out that the ratio of the actual

RR interval (the interval between successive R wave fiducial

points) to the mean RR interval is a good indicator of SVEB.

Please refer to Figure 2.Bottom for the RR interval ratios of

a normal heartbeat and a SVEB. In their detection algorithm,

if the ratio is smaller than a predetermined threshold (0.8 in

their paper), an alarm of SVEB is issued.

Our simulation setup is as follows. A patient has eight

BAN sensors attached to her. An electrocardiogram (ECG)

is attached to her chest to measure and record the electrical

activities of the heart. Other than the ECG, four sensors are

attached to her front chest, and three are on her back. An

attacker will randomly pick one sensor to compromise so

that he can use it to impersonate the ECG. If the compro-

mised sensor is on the back of the patient, our approach will

detect the channel anomaly and discard the packet. On the

contrary, if the compromised sensor is attached to the front

side of the patient, the channel characteristic based scheme

will not work. The control unit will examine the data from

the sensor. If it detects that a SVEB might be happening now,

it will execute the challenge-response based mechanism to

double verify the authenticity of the information.

Here we assume that the data reported by the real ECG

sensor follows the distribution shown in the left side of

bottom of Figure 2. We observe from the figure that with a

certain probability, a normal heartbeat may have an RR inter-

val ratio smaller than the threshold value, which will trigger

the challenge-response procedure. The attacker’s purpose is

to inject false SVEB alarms into the system. Therefore, the

data it reports follows the distribution shown in the right

side of Figure 2.

B. Simulation Results

We are especially interested in two properties of the pro-

posed approach: detection accuracy and increased overhead.

Since a real BAN sensor can always pass the challenge-

response procedure, the proposed approach will not gen-

erate false positives. A false negative may occur when a

compromised sensor that is located on the front side of the

patient sends out a data entry larger than the pre-determined

threshold value. In our simulation, such a data entry will not

trigger a SVEB alarm. Therefore, this data entry would be

accepted by the control unit.

Figure 3. Power consumption at the ECG when there is no attacker
in the system.

We conduct two groups of simulation to assess our

approach. In the first group of experiment, we setup a base

line case. In this experiment, there is no attacker in the

system. The CU will monitor the reported RR interval ratios.

If the ratio is smaller than the threshold value, it will execute

the challenge-response procedure to verify data authenticity.

Since in [12] the authors use 0.8 as the threshold value

to label a SVEB, in our simulation we experiment with

different threshold values ranging from 0.8 to 0.9 to active

the verification. We assume that the real ECG sensor sends

a data packet with the size of 64 Bytes to the CU. Both

the challenge and response during verification have the size

of 16 Bytes. The power consumption models of the BAN

sensors on data transmission and calculation of the hash

function are based on the measurements in [10], [11].

Figure 3 shows the power consumption increase caused

by the proposed approach when there is no attacker in the

network. The dotted line shows the base line when there is

no security mechanism activated. We can see that depending

on the selected threshold, the increase in power consumption

ranges from 5% to 13%. This is much more efficient than

the mechanism to attach a MAC code to every data packet,

which will cause an increase of 90%.

In the second group of simulation, we assume that an

attacker will randomly choose one BAN sensor attached to

the front side of the patient to compromise. He will then use

the compromised sensor to impersonate the ECG and send

out false data packets. The false data is generated based on

the distribution of the SVEB RR interval ratio shown in the

right side of bottom of Figure 2. The compromised sensor

will keep sending false data with an interval in time until



it is detected by the proposed approach. Once detected, the

attacker will choose another BAN sensor on the front side

of the patient and repeat the malicious activities.

Table I
THE PROBABILITY THAT A FALSE DATA PACKET ACTIVATES THE

CHALLENGE-RESPONSE VERIFICATION.

Threshold value 0.80 0.82 0.84 0.86 0.88 0.90

Probability to trig-
ger verification (%)

80 82.7 85.1 87.3 89.6 91.3

Based on the histogram of SVEB RR interval ratios in

Figure 2, the probability that a false data entry is smaller

than the chosen threshold value is shown in Table I. Figure

4 shows the relationship between the number of false data

packets an impersonator can send out and the probability

that it is detected. We can see that with the chosen threshold

values, almost all impersonators will be caught within three

packets.

Figure 4. Relationship between the number of false data packets
an impersonator sends out and the probability that it is detected.

From the simulation results, we can see that end users

can adjust the values of selected parameters to control the

tradeoff between detection capability and increases in power

consumption. With less than 10% increase in overhead,

our approach can capture a fake SVEB message with the

probability of 90%. Almost all attackers can be detected

within three packets.

IV. CONCLUSION

In this paper we propose an approach that integrates wire-

less channel characteristics with threshold based challenge-

response to detect BAN sensor impersonators that are also

attached to the patient body. For an impersonator that

demonstrates different channel properties from the victim,

its false data will be discarded. For those impersonators

that cannot be detected based on this property, a challenge-

response verification procedure will force the real sensor

and the impersonator to send out conflicting information.

The simulation results show that our mechanism can effec-

tively defend against such attacks with a small increase in

overhead.

Immediate extensions to our approach consist of the

following aspects. First, we plan to implement the proposed

approach on real personal medical devices and evaluate

its performance in different scenarios. Second, we will

continue to investigate the special properties of wireless

communication channels in BAN networks and explore other

attacks that can be detected based on these properties.
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