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Abstract—With the rapid increasing of smart phones and
their embedded sensing technologies, mobile crowd sensing (MCS)
becomes an emerging sensing paradigm for performing large-
scale sensing tasks. One of the key challenges of large-scale mobile
crowd sensing systems is how to effectively select the minimum set
of participants from the huge user pool to perform the tasks and
achieve certain level of coverage. In this paper, we introduce a
new MCS architecture which leverages the cached sensing data to
fulfill partial sensing tasks in order to reduce the size of selected
participant set. We present a newly designed participant selection
algorithm with caching and evaluate it via extensive simulations
with a real-world mobile dataset.

I. INTRODUCTION

The widespread availability of smart phones equipped with
built-in sensors has enabled a new sensing paradigm, mobile
crowd sensing (MCS) [1], where tremendous data can be
obtained and collected by the large group of selected mobile
participants. It has been widely used in many applications,
such as public safety [2], traffic planning [3]–[6], environment
monitoring [7], [8], and urban dynamic mining [9], [10]. Com-
pared with traditional static sensor networks, MCS does not
require new infrastructures thus with low cost, while provides
enriched spatio-temporal coverages and integrated human in-
telligences by leveraging the power of crowd. However, such
large-scale sensing system also brings new challenges into the
system design. Participant selection is one of them.

While the advantage of possible huge number participants
enables massive mobile data sensing, how to effectively se-
lect a subset of participants to perform the desired sensing
tasks become very challenging. Selecting larger number of
participants can lead to better coverage of sensing tasks and
better sensing quality, but also increases the cost of the overall
sensing operation since performing sensing task is not free
(costs energy of the smart phone). Therefore, how to pick
the right amount and set of participants for certain tasks to
minimize the sensing cost while guarantee certain coverage of
tasks becomes the key issue.

Recently, there are several studies [11]–[16] beginning to
address this important issue in MCS. Most of these methods
formulate the participant selection problem as an optimization
problem with certain constraints, and play tradeoffs among
sensing cost, task coverage, energy efficiency, user privacy,
and incentive. In this paper, we consider a dynamic participant
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Fig. 1. The architecture of MCS system with caching.

selection problem with heterogeneous sensing tasks in a large-
scale piggyback MCS system. Here, a piggyback MCS system
[11], [12] allows the mobile user to upload the collected
sensing data during its smartphone usage opportunities to save
energy consumption for data transmission. Like the problem
defined in [16], we assume that heterogeneous sensing tasks
can arrive at any time and may have various temporal/spacial
requirements. The goal of the participant selection problem is
using minimum number of selected participants to perform
the sensing tasks while still can guarantee certain level of
probabilistic coverage.

One of the uniquenesses of this study is that we introduce
a data storage component into the MCS system (as shown in
Fig. 1) such that the sensing data can be cached to fulfill future
incoming tasks. Hereafter, we also call this data storage the
cache in our system. Caching mechanism has been widely used
in many networking systems [17]–[19]. However, we believe
that this is the first study of MCS with caching. With the
newly introduced caching mechanism in MCS, the participant
selection problem become more complex but with great poten-
tial to performance improvements. We then carefully design
the new participant selection algorithms and corresponding
caching strategies for such a system. In our design, we not only
consider the knowledge obtained via historical call/location
traces of mobile users but also the distribution of possible
future tasks so that we can predict the future incoming tasks
and estimate the contribution of particular participant to certain
task set. Note that since we cannot foreknow when and where



a participant will visit a place and make a phone call during the
real crowding sensing period, our proposed online method try
to estimate the coverage of current selected participants using
the historical knowledge and dynamically adjust the selections.

We have conduct extensive simulations over a real-life
mobile dataset (D4D data set [20]) to evaluate the proposed
algorithm against existing solutions in different MCS settings.
Our results show the proposed participant selection algorithm
with caching can achieve stable task coverages while use much
less number of participants against other solutions.

The rest of this paper is organized as follows. We first
introduce our MCS system model and the participant selection
problem in Section II. Then we present the detailed design
of proposed participant selection algorithms with caches in
Section III. Section IV presents our simulation results over
a real-life mobile tracing dataset. Section V briefly reviews
recent related works on participant selection in MCS. Finally,
Section VI concludes this paper.

II. SYSTEM MODEL AND PARTICIPANT SELECTION

A. System Model and Assumptions

As shown in Fig. 1, there are four main components
in our mobile crowd sensing system: a large number of
mobile participants, a set of crowd sensing applications, a
participant selection mechanism, and a sensing data storage.
The mobile participants are mobile users of smart devices
who are willing to participant the sensing tasks. The crowd
sensing applications are sensing information requesters which
generate various sensing tasks continuously. The participant
selection mechanism is the key of success of MCS system, in
which sensing tasks from the MCS applications are assigned
to particular sets of mobile participants. This has been the
major focus of previous research in MCS. The data storage
can temporarily caches sensing data collected and uploaded
by selected participants, which later can be used to fulfill
other sensing tasks. Note both participant selection and data
storage components are established and operated by the mobile
crowd sensing platform (they could be implemented in either
centralized or distributed places).

The overall information flow in the system is as follows.
Sensing tasks are generated by the applications and then
sent to the participant selection mechanism. The selection
of participants are made based on estimated coverages of
participants to these tasks (based on historical user traces),
and then the selected participants are assigned to perform these
tasks. If the selected participants do occur at certain place and
time, they will collect the sensing data and send it to the data
storage and the corresponding applications. The data storage
is responsible to keep or drop the collected data based on its
caching strategy and size limit.

In this paper, we focus on the participant selection with the
caches (data storage). We have the following assumptions.

1) Tasks: There is a set of m various mobile sensing
tasks S = {s1, · · · , sm} generated by the crowd sensing
applications within a particular time period T . Each task

sk can arrive at the system at any time, and the arriv-
ing time is defined as tarrive(sk). The arriving time of
incoming tasks subjects to certain probability distribution
P in T (in the simulations, we use a Poisson distribution
with a parameter λ). Each task sk specifics a quadruple
< tbegin(sk), tend(sk), l(sk), freq(sk) > as its target infor-
mation in both temporal and spacial domains. The first two
items define the beginning time and ending time of sensing
task. l(sk) is the interested location of this task, and here we
assume that there are r different sensing locations, denoted as
L = {l1, · · · , lr}. freq(sk) is the number of needed samples
of this task at this location during the required time period.
Note that here we assume that each sensing task only has one
interested point in both temporal and spacial domains, but it is
easy to relax such an assumption to handle complex sensing
tasks with multiple interested points.

We further define two types of tasks. If tarrive(sk) ≤
tbegin(sk), we call sk a Type I task. This task acquires the
sensing information in the future of its arriving. For such a
task, we could assign participants to it after its arriving at the
system. If tarrive(sk) > tbegin(sk), we call sk a Type II task,
which acquires the information in the past. For this type of
tasks, we have to make assignments before the tasks arrive
by prediction so that the collected information could meet the
requirements of the tasks. For this type of tasks, the caching
mechanism proposed in this paper becomes crucial.

2) Participants: There is a set of n mobile participants P =
{p1, · · · , pn}. Each participant pi has his own visiting pattern
or call pattern over both temporal and spacial domains. In
this paper, we assume that the sensing tasks can be sent to
the selected participants at any time by cellular service and
the sensed data from the selected participants can only be
updated to the system through piggyback [11], [12] during a
phone call. Therefore, we are interested in the call patterns
than the visiting patterns1. Each participant pi has his own
predicted probability p(pi, lj , t) of making at least one phone
call at time t and location lj . This probability is a critical and
necessary knowledge for participant selection. Since we cannot
foreknow when and where a participant will place a phone call
during the real crowding sensing period T (e.g., one week), we
have to leverage knowledge from the historical traces. Here,
we assume that for each user we have multiple rounds of call
traces (e.g., K weeks), and each round of data denoted as Di,
i = 1, · · · ,K . Let ck(pi, lj , t) indicate whether pi made one
or more phone call at lj and t in Di (1 if it made, 0 otherwise).
Then we simply estimate the call probability as follow,

p(pi, lj , t) =

∑K
k=1 ck(pi, lj , t)

K
.

Instead of this simple model, we can also consider more
complex models, such as Bayesian/Markov model [15] or
Poisson process [11], [12].

Based on this predicted information, the participant select
mechanism can select a subset of participants to perform the

1In addition, the data set we used does not provide location information of
each mobile phone user.



sensing task. Here we use an indicator x(pi, t) to represent
whether user pi is selected to participant for the task set.
x(pi, t) = 1 if user pi is selected to participate at beginning
time t, otherwise x(pi, t) = 0. Here we assume a fixed
sensing period τ for each selection. In other word, whenever a
participant is selected to perform sensing tasks at a particular
beginning time t, he will be active for a fixed time period
τ . That means that this participant will perform sensing and
upload data to data storage whenever he makes a phone call
in the time period of [t, t+ τ ]. Therefore, we have to restrict
the selection of the same participant within τ as follows:

t+τ∑
t′=t

x(pi, t
′) ≤ 1 for any t ∈ [1, T ] and i ∈ [1, n]. (1)

Note that a single selected participant can perform the sensing
task for multiple tasks and can also be selected multiple times
at different time. The rewards to participant pi are based on
the number of his selections, i.e,

∑
t∈[1,T ] x(pi, t).

3) Data Storage: The data storage is a data storage space
with the total size of D, which can temporarily stores the
sensing data uploaded by selected participants. The sensing
data is formed by sensing data records. Each sensing data
record ri includes the time ri(t), location ri(l) and interested
sensing information ri(d). Here, we assume that every single
sensing data record has the same length, which means every of
them needs the same size of storage space. Whenever selected
participants place a phone call at the desired location and
time, the sensing data is uploaded to the data storage. The
data storage has the access to the full knowledge of tasks and
assignments, and it can make decision on which sensed data
should be cached based on certain caching strategy.

Based on participant selection for two types of tasks, there
are also two types of collected sensing data uploaded to the
data storage. For the first type, the sensing data could be
utilized immediately by current tasks (Type I). Therefore, it
will be forwarded directly to corresponding applications. In the
same time, the storage will make its decision whether caches
it for possible later tasks. For the second one, the sensing data
are obtained based on prediction of future tasks (Type II). It
will be cached in the storage for future usage and will not be
forwarded to applications at current time.

Since the participant rewards are based on the number of
their selections, a perfect situation is that the system stores
all the data uploaded from selected participants for current or
future utilization so that the number of selected participants
can be reduced. However, such strategy will waste large
number of storage space since most of the cached data may
not be used for fulfill later tasks. Therefore, a smart caching
strategy should be designed to determine whether to keep or
drop data at any particular time.

B. Participant Selection Problem

Similar to [16], given the pool of candidates P and the
crowd sensing tasks S, the participant selection problem aims
to minimize total sensing cost while still satisfying certain
level of probabilistic coverage of the tasks. The output of

participant recruitment is a set of selected participants with
selected time within the time cycle T , which showed by
the indicator x(pi, t) (hereafter, we use x(pi, t) to represent
the whole indicator set of all users and time). The overall
optimization problem can be defined as:

min
x

∑
i∈[1,n]

∑
t∈[1,T ]

x(pi, t)

s.t. C(x(pi, t)) ≥ γ and

Equation (1) on x(pi, t).

Here, the cost of sensing tasks is defined as the summation of
all selections of participants

∑
i∈[1,n]

∑
t∈[1,T ] x(pi, t). Once

again that we assume a fix cost per selected participant for
τ , such as energy cost of being active for τ . C(x(pi, t)) and
γ are the overall expected coverage ratio of all tasks and the
probabilistic coverage requirement, respectively.

For a particular task sj , every time a single sensing data
record rk includes location rk(l) = l(sj) and time rk(t) within
time period [tbegin(sj), tend(sj)] is updated to the system,
we consider that this task sj is covered and accomplished
by this record once. The accomplish frequency of each task
could be accumulated by the number of different data records
which could cover this task. Note that these sensing data
records could be uploaded by single or multiple participants.
Moreover, one particular participant could provide coverage
to single or multiple tasks. Since the real coverage of tasks
are based on the users actual calls, we can only use the call
probability to estimate the expected probabilistic coverage of
tasks. Let C(pi, sj , t) equals to the number of the times that
task sj covered by user pi who is selected starting from t.
Then the coverage of task sj can be defined as follows:

C(x(pi, t), sj) = min(
∑

t∈[1,T ]

∑
i∈[1,n]

C(pi, sj , t)x(i, t), freq(sj)).

Note here if multiple selected users cover the same task,
the coverage frequency cannot exceed freq(sj), i.e., fully
covered. We can then define the overall coverage ratio of all
tasks as follows:

C(x(pi, t)) =

∑m
j=1 C(x(pi, t), sj)∑m

j=1 freq(sj)
.

The overall coverage constraint is not a full coverage require-
ment, instead a probabilistic coverage requirement (i.e., total
task coverage is equal to or larger than a predefined coverage
threshold γ).

Hereafter, we assume that the number of participant can-
didates are large enough so that if all of them are selected
to participant then the sensing tasks can all be fulfilled. In
other words, there always exists a feasible solution for this
optimization problem. Such an assumption is reasonable for
large-scale crowd sensing system. This participant selection
problem can be proved NP-hard, by a simple reduction from
minimum set cover problem (as proved in [16] for a simpler
version of this problem). Therefore, in this paper, we are
looking for efficient heuristics to solve it with the proposed



caching storage. Though the participant selection problem
defined so far is a static one, we actually want to solve it
in an online version. In other words, the proposed participant
selection algorithm is running with new tasks coming.

III. PARTICIPANT SELECTION WITH CACHING

In this section, we introduce our proposed participant selec-
tion algorithms and caching strategies. We first show how we
predict the task coverage ratio C(pi, sj , t) for any task based
on the call probability obtained from historical data and also
how we predict the future tasks.

A. Estimation of Coverage Ratio

To design our participant selection algorithm base on prob-
ability prediction, we need have an accurate estimation of the
coverage ratio of each task by certain participants. Since each
selected participant has independent probability to accomplish
a task and each task is independent but may need multiple
participants to accomplish, we need to estimate the coverage
ratio C(B, sj , t) of task sj by certain set of participant B at
time t based on the call probability obtained from historical
data. By doing so, we can have a simple greedy criteria in
each round to select an individual user adding in the current
selected participant set to maximize the increment of overall
task coverage for all tasks. We can define the incremented task
coverage for task sj by adding pi to current set of selected
participants B as follows,

∆(B, pi, sj , t) = C(B + pi, sj , t)− C(B, sj , t). (2)

Then, the overall task coverage for all tasks by pi in this round
is

∆(B, pi, t) =

m∑
j=1

∆(B, pi, sj , t). (3)

To calculate C(B, sj , t), we need to estimate the probability
that participants in B can fulfill task sj , i.e., at least freq(sj)
calls happened in the location of l(sj) and within the time
period [tbegin(sj), tbegin(sj) + τ ] from users in B. We first
define the probability that x calls happened to fulfill task sj
as Cx(B, sj , t). Then

C(B, sj , t) = 1−
freq(sj)−1∑

x=0

Cx(B, sj , t). (4)

Note that if a selected user contributes to sj , he will make
a call at l(sj) at time t and t ∈ [tbegin(sj), tbegin(sj) + τ ]
and a corresponding data sensing record r is updated. We call
this event that the record r hits the task sj . We have a call
probability of such event p(r) = p(pi, l(sj), t). For a particular
task sj , let Rj be all of the potential record hits sj . To fulfill
task sj , we need at least freq(sj) records from Rj . To obtain
Cx(B, sj , t), we can use the following formulation:∑
∀<r1,··· ,rx>∈Rx

j

∏
ri∈{r1,··· ,rx}

p(ri)
∏

ri∈Rj−{r1,··· ,rx}

(1− p(ri)).

Here, < r1, · · · , rx >∈ Rxj is any x records can hit task
sj . Note that the maximal size of Rj is nτ , while in re-
ality it is much smaller. In addition, to further reduce the
calculation cost, a dynamic programming can be used to
obtain Cx(B, sj , t) from Cx−1(B, sj , t), which can be done
in polynomial time.

When freq(sj) = 1, Equation (4) can be simplified to

C(B, sj , t)

=1−
∑

pi∈B,tbegin(sj)≤t′≤(tbegin(sj)+τ)

(1− p(pi, l(sj), t′)).

B. Prediction of Future Tasks

With Type II sensing tasks, we have to assign participants
in advance to the coming of these tasks since they may request
the sensing data in a particular time period before they come to
the system. Recall that we assume that the coming task stream
subjects to a Poisson distribution with parameter γ. Therefore,
at particular time t, the number of future coming tasks n(t)
is given by

n(t) =
(T − t)
T

λ.

Each time a task sj comes, it may request any combination of
time period tbegin(sj) and location l(sj) as its target require-
ment with an independent probability p(sj , tbegin(sj), l(sj))
(we call it task probability), which can be obtained from
historical data of sensing requests2. Therefore, we have the
overall probability of a task sj will appear in the time period
from current time t to T is calculated as:

p(sj , t) = p(sj , tbegin(sj), l(sj))n(t). (5)

To assign participants to the possible future tasks or estimate
the coverage ratio of them by particular participant set, we
basically modify Equation (3) to the following.

∆(B, pi, t) =
∑
sj∈St

∆(B, pi, sj , t)+
∑
sj /∈St

p(sj , t)∆(B, pi, sj , t).

(6)
Here, St represents the current task set which include all
arrived tasks until t. Note that similar equations can also be
defined by caching strategy to estimate the value of a record
for current and future task sets.

C. Participant Selection Algorithm

As discussed above, we would like to design the partic-
ipant selection algorithm as an online algorithm. First, the
task streaming is dynamic, thus new tasks can come at any
time within the time cycle. Second, the completion of tasks
is dynamic, due to the mobility of users is dynamic. The
coverage estimation above is based on the knowledge learned
from historical data. However, the mobility pattern of users
or distribution of tasks is random in real sensing period,
thus the prediction may not be accurate and the coverage

2Since we do not have such traces, in our simulations, we assume that the
probability distribution of tbegin(sj) is uniformly distributed while the one
of l(sj) is proportional to the population nearby.



Algorithm 1 Online Algorithm for Participant Selection at
Time t′

Input: participant pool P , call probability p(pi, lj , t) for
each user in P , task probability p(sj , tbegin(sj), l(sj)),
previous selected participant set Bt′−1, and current task
set St′ (including tasks arrived at time t′).

Output: current selection x(pi, t)
1: update the current task set Bt′−1 and previous selection

x(pi, t) if there are new sensing data uploaded at data
storage and partially fulfilling certain tasks from last time.

2: copy all previous selection x(pi, t) from Bt′−1.
3: while C(x(pi, t)) < γ based on St′ do
4: for all pi ∈ P and t ∈ [t′, T ] and x(pi, t) = 0 do
5: Calculate the improvement ∆(Bt′−1, pi, t

′) by
adding pi with starting time t, i.e., x(pi, t) = 1, based
on Equation (6))

6: end for
7: Select the user pi who leads to the largest coverage

improvement, and set x(pi, t) = 1
8: end while
9: return x(pi, t)

estimation may not reflect the true coverage. Therefore, in
our online algorithm, we dynamically take new coming tasks
into account and add more participants for unfulfilled sensing
tasks whenever the overall estimated coverage can not meet the
coverage requirement during the time cycle. On the other hand,
if certain tasks are fulfilled and partially fulfilled when certain
sensing data is updated at data storage, they will be removed or
updated in current task set St and certain previously selected
users can be withdrawn from the selected participant set Bt.
The details of online algorithm is described in Algorithm 1.
In each round, the algorithm basically repeatedly adding new
participant which leads to largest coverage gain at current time
until the estimated overall coverage reaches the requirement
threshold.

D. Caching Operation and Strategies

So far, it seems that we did not discuss the cache operation
yet. But actually caching has been used in Algorithm 1. First,
in Line 1, if any sensing data is uploaded at data storage, it
may triggers updates of task set and selected participants. If
the record hits a particular task, the required frequency of that
task will be reduced by 1. If frequency becomes zero (i.e, the
task is fulfilled), the task will be removed from the task set. If
certain selected participants cannot contribute to the updated
task set, they can be removed from the current arrangements
too. In addition, when we estimate the coverage improvement
∆(Bt′−1, pi, t

′) in Line 5, we do consider the cached data
from previous selected users. There are two scenarios of
caching can be implemented there: passive caching and active
caching. In the passive caching, the participant selection algo-
rithm only assigns tasks that already arrived to the candidates.
That means that the caching sensing data is only from the
assigned participants for past tasks. In other words, the only

difference between caching and no caching is whether the
collected sensing data can be reused by other tasks. In this
case, ∆(Bt′−1, pi, t

′) can be estimated using Equation (3).
In the active caching, the participant selection algorithm will
assign and withdraw tasks dynamically during the whole time
cycle. In addition, the assignments are not only based on tasks
that already arrived but also the predicted future coming tasks.
In this case, ∆(Bt′−1, pi, t

′) can be estimated using Equation
(6), in which both existing tasks and future coming tasks are
considered. Note that for future coming tasks, the estimation
is based on p(sj , tbegin(sj), l(sj) and p(sj , t

′). In the same
time, such operation may add many unnecessary participants,
thus we also allow the assignments can be withdrew when the
corresponding tasks have been fulfilled. The principle is that
each assignment can be withdrew with no cost at a particular
time if and only if that time is before the begin time of that
assignment. It can not be withdrew once an assignment starts,
in other words, the selected participant in that assignment
begins to upload sensing tasks whenever he makes a call.

In addition, there are two cases depending on the size of
data storage in the proposed MCS system. If the cache space
is infinite (i.e., D = ∞), we call it infinite cache. For this
case, you may just want to cache every sensing data you
received. If the cache space is limited by a finite number,
we call it finite cache, where carefully caching strategy is
needed when the space is full during a sensing data uploading.
We consider three different strategies. The simplest is random
cache. In this strategy, whenever the data storage is full, the
system will randomly choose one record to be replaced by
the next coming sensing date record. The second strategy is
first in first out (FIFO). the oldest data record will be dropped
when the cache is full. The third one is coverage based cache,
in which we estimate the contribution of coverage of each
record. The system will always drop the data record with least
coverage ratio. We will test all of these three strategies in our
simulations.

IV. SIMULATIONS

In this section, we conduct extensive simulations over a
real-life mobile traces (D4D data set [20]) to evaluate the
effectiveness of our proposed participant algorithms under
different scenarios.

A. D4D Dataset and Sensing Task Generation

To simulate the large scale mobile crowd sensing, we choose
a real life wireless tracing data from the cellular operator
Orange for the Data for Development (D4D) challenge. The
released D4D datasets [20] are based on anonymized Call
Detail Records (CDR) of phone calls and SMS exchanges
between 50, 000 Orange mobile users in Ivory Coast for about
20 weeks. We use the dataset of individual trajectories with
high spatial resolution (SET2 in D4D datasets), which contains
10 groups of the access records of antenna (cellular tower) of
each mobile user. Each group of records are collected over a
two-week period. But unfortunately, in each group of records,
the user IDs were renumbered and anonymized, which makes



Fig. 2. Locations of cellular towers in Abidjan used as sensing locations.

impossible to merge them together. Thus, all of our MCS
experiments are performed within a one week period (i.e., T
is one week). We treat one hour as the smallest time unit,
T = 7×24. We perform simulations over five different weeks.
We use the sequences of visited cellular towers of all users
within these weeks to generate the call probability of each
mobile user and location (i.e., cellular tower). We assume that
the mobile users with the same user IDs are same users in all
of these weekly call records. We choose a random set of users
as candidate participants and a subset of 18 cellular towers as
locations in MCS.

All the selected cellular towers are located in the region
of Abidjan, the economic and former capital of Ivory Coast
and the largest city in the nation. Fig. 2 shows the locations
of these towers on the map of Abidjan. The area of Abidjan
is informally composed of two parts (northern Abidjan and
southern Abidjan) with ten formal boroughs, or communes,
each being run by a mayor. One of them is covered by forest
thus mobile call activities in that commune are much fewer
to the other ones. Therefore, we choose to pick the cellular
towers from the other nine communes. We have choose two
towers from each communes with the most and second most
number of mobile calls during a two weeks period. Thus, we
have 18 cellular towers in total.

For each sensing task si, we need to pick its arriving time
tarrive(si), location l(si), starting time tbegin(si), ending time
tend(si), and freq(si). tarrive(si) is generated by a Poisson
distribution with parameter γ, while tbegin(si) is randomly
picked within 1 to T and tend(si) is fixed at τ (set to 24
hours). In other words, the duration of sensing period of a
task is limited to one day. For location l(si), it is chosen from
18 cellular towers based on the publicized population within
the communes where the towers sit. In other words, the area
with higher population has more chance to be chosen as the
sensing target. For the frequency requirement, we simply set
freq(si) = 1 for all tasks. Note that a task with freq(si) = k
can be approximated by k identical tasks with freq(si) = 1.
For candidate participants, we randomly choose them from
the mobile users with the highest number of times of visiting
these towers. All parameters used are given in Table I.

In all simulations, we randomly generate MCS tasks based

TABLE I
PARAMETERS USED IN SIMULATIONS

Parameter Value or Range
Unit of time 1 hour
Task life time τ 24 hours
Number of locations (towers) r 18
Number of tasks m or λ 100, 150, 200, 250, 300
Number of candidate participants n 100, 200, 300, 400, 500
Length of whole sensing cycle T one week = 7× 24 hours
Total simulation period Dec 5 2011 to Jan 8 2012
Coverage threshold γ 0.4, 0.45, 0.5, 0.55, 0.6

on the method discussed above, and apply different participant
selection algorithms to select participants for all tasks. The
selected participant will upload the sensing data around the
location where he make calls during the assigned time interval
(24 hours from the starting time). Based on the real traces, we
evaluate how many tasks can be fulfilled with the selected
participants. Here, a task is completed if and only if there
is at least required number of calls made in the period of the
lifetime of the task within the target location from the selected
participants. Since the prediction of making a call is based on
historical data, it is not possible to guarantee full coverage of
all tasks or even the required portion of all tasks.

B. Tested Algorithms and Scenarios

Beside the proposed method, we also implement two simple
algorithms and the one in [16] for comparisons. Most of
them are greedy algorithms, where in each round a user is
selected as the next participant of the MCS. Here are the four
participant selection algorithms.
• Random: In each round, a random user is selected as the

next participant of the MCS.
• Call Activity: In each round, the user with highest call

activity is selected as the next participant.
• Coverage without Caching: In each round, the user with

largest coverage improvement without caching is selected
as the next participant [16].

• Coverage with Caching: In each round, the user with
largest coverage improvement with caching is selected as
the next participant.

In all experiments, we compare each algorithm using the
following three measurement metrics.
• Number of selected participants: the number of se-

lected participants3 generated by the algorithm for the
whole task set over the sensing period.

• Fulfilled task ratios: the ratio between the number of
sensing tasks which are successfully performed by se-
lected participants from the algorithm during the sensing
period and the total tasks.

• Coverage ratio with caching: the portion of fulfilled
tasks which are fulfilled by cached sensing data.

All results reported here are the average from multiple runs
over different periods from the D4D data set.

3Note that a single user can be selected for multiple sensing periods (each
of them lasts τ , e.g. x(pi, t1) = 1 and x(pi, t2) = 1) and that is counted as
multiple participants.
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Fig. 3. Performance under Scenario A, when λ = 200, γ = 0.6 and n = 100 to 500.
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Fig. 4. Performance under Scenario A, when n = 300, γ = 0.6 and λ = 100 to 300.
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Fig. 5. Performance under Scenario A, when n = 300, λ = 200 and γ = 0.4 to 0.6.

Moreover, we construct two simulation scenarios. In Sce-
nario A, the task cycle type is single-cycle (e.g., one week) and
all generated tasks are Type I. In Scenario B, the task cycle
type is still single-cycle, tasks could be either Type I or II.

C. Performance under Scenario A
We first test the proposed algorithms (Coverage with Cache)

against three existing solutions (Random, Call Activity, Cov-
erage without Cache) when all sensing tasks are Type I. For
this scenario, we consider infinite and passive cache.

In the first set of simulations, we fix the parameter λ of
the coming task stream to 200 and coverage threshold γ to
0.6, while varying the number of candidate participant from
100 to 500. Fig. 3 shows the performance comparison of
four different algorithms. Fig. 3(a) shows that all methods
have similar fulfilled task ratios, since all of them will keep
add participants until the expected fulfilled ratio reaches the
requirement. With more candidate participants, all of them
can achieve better fulfilled task ratio since you have more
choices. However, as shown in Fig. 3(b), the coverage based
solutions have much fewer selected participants than the other
two solutions and they are also stable with the increase of

number of candidate participants. This shows the advantage
of prediction of coverage in participant selection. In addition,
the coverage-based algorithm with caching could select fewer
participants than the one without caching. That is because
when a task comes to the system, it may already be covered by
some selected participant via caching. Thus the system may
not assign or assign fewer participants to this task. Note the
advantage of caching is not significant here, but it is mainly
due to the sparseness of the D4D dataset. Fig. 3(c) shows
the portion of fulfilled tasks by either cached records from
previous selected participants or by newly assigned partici-
pants in the method of Coverage with Cache. The caching
data contributed to 10% to 30% coverage.

In the second set of simulations, we fix the number of
candidate participant at 300 and coverage threshold γ to 0.6,
while varying the parameter λ of the coming task stream from
100 to 300. Fig. 4 shows the performance comparison of four
different algorithms. Clearly, the number of tasks also affects
the results. More tasks need more selected participants to
fulfill. The four algorithms still have similar fulfilled task ratios
but the method of Coverage with Cache uses the minimum
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Fig. 6. Performance in Scenario B when λ = 200, γ = 0.6 and n = 100 to 500.
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Fig. 7. Performance in Scenario B when n = 300, γ = 0.6 and λ = 100 to 300.
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Fig. 8. Performance in Scenario B when n = 300, λ = 200 and γ = 0.4 to 0.6.

number of participants.
Last, we also test different values of the coverage threshold

γ (as shown in Fig. 5). Both the fulfilled task ratio and the
number of selected participants increase as the the threshold
increases. In other words, high coverage requirements lead to
higher fulfilled task ratios with larger selected participant sets.

D. Performance under Scenario B
Next we consider Scenario B with infinite cache, where

tasks could be either Type I or Type II. We perform the same
three sets of simulations as we did for Scenario A. We test
both active caching and passive caching. Fig.s 6 to 8 are the
results for the three sets of simulations, respectively. From
these results, we can draw the following conclusions.

(1) The fulfilled task ratio of Active Caching is about 60
percent more than that of Passive Caching (Fig.s 6(a) to 8(a)).
Recall that in Scenario B there are Type II sensing tasks which
cannot be fulfilled by the passive caching. But the passive
caching can dynamically assign participants to future coming
tasks which leads to higher fulfilled ratios. But the cost of
such advantage is more participants selected to perform the
sensing tasks (Fig.s 6(b) to 8(b)).

(2) Similar to Scenario A, as the number of task or the cov-
erage threshold increases, the number of selected participant
increases (Fig. 7(b) and Fig. 8(b)). In addition, the number
of selected participants decreases as the number of candidate
participants increases (Fig.s 6(b)).

(3) The fulfilled tasks contributed by active caching could be
about 40 ∼ 60% of the total fulfilled tasks (Fig.s 6(c) to 8(c)).
This again shows the advantage of active caching due to Type
II tasks.

E. Performance with Different Caching Strategies

Now we test different caching strategies when the cache
storage has limited space (finite cache). Three different
caching strategies are implemented: random, FIFO, and
coverage-based. We set the size of data storage D = 500, i.e.,
at most 500 records can be cached in the storage at any time.
Fig.s 9 to 11 show the performance of these three strategies.
It is obvious that the strategy based on coverage can achieve
the best fulfilled task ratios with fewest selected participants.
Also in term of the coverage ratios with caching, the hitting
rate of coverage based method is as twice as much that of the
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Fig. 9. Performance of different caching strategies when λ = 200, γ = 0.5 and n = 100 to 500.
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Fig. 10. Performance of different caching strategies when n = 300, γ = 0.5 and λ = 100 to 300.
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Fig. 11. Performance of different caching strategies when n = 300, λ = 200, γ = 0.4 to 0.6 and D = 500.

other two caching strategies. Clearly, it still effective to use
estimated coverage as the metric in caching strategy.

F. Performance with Different Caching Sizes

In the last set of simulations, we vary the size of sensing
data space D while fix the other parameters to evaluate the
affection of caching size. Fig. 12(a) shows that the total
fulfilled task ratio increases when the size of the data storage
space increases. Moreover, the increasing of cache space size
leads to fewer participants selected (in Fig. 12(b)). The reason
is that more space for sensing records means more chance
for effective records being utilized. Fig. 12(c) shows that the
hitting rates of different caching schemes are relevantly stable.

V. RELATED WORK

Mobile crowd sensing (MCS) has been widely used for
different sensing applications [1]. To handle participant se-
lection in large-scale MCS, different algorithms and systems
has been proposed recently. For example, Zhang et al. [13]
study offline participant selection in piggyback MCS for
probabilistic coverage, which aims to select minimum number
of participants to guarantee that the selected participants will

make enough number of calls at certain percentage of the
target locations over a fixed sensing period. The coverage
requirement is different with our model. Xiong et al. [14] have
investigated how to assure the asymptotically full coverage
over a 13 tower region with the minimum number of users.
The task coverage is defined as whether the total number
of calls is equal to or more than a threshold at these 13
towers in a fixed time period. Their algorithm predicts the
call probability of users to estimate the current coverage,
and then allows to assign more participant before the task
period ends to enhance the chance of full coverage. Most
recently, Xiong et al. [11] further consider a task assignment
problem under budget constraint, where the optimization goal
is to maximize the number of calls (sensing data) for certain
location sets under an overall budget constraint (both base and
bonus incentives are given selected participants). Pournajaf et
al. [15] also study task assignment in MCS aiming to assign
moving participants with uncertain trajectories to static sensing
tasks. The optimization goal is to minimize the coverage
cost while maximize or maintain certain-level coverage (in
term of the number of selected participants per target). The
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Fig. 12. Performance of different caching size when n = 300, λ = 200, γ = 0.5 and D = 300 to 700.

coverage cost is based on the distance between the participant
and the task location. But it only considers static spatial
tasks (i.e. location-based tasks) which ignore the temporal
requirements of sensing tasks. Overall, in all of these existing
works, the sensing tasks are static with fixed time period
and no new sensing task can come after the MCS starts. In
[16], Li et al. study a dynamic participant selection problem,
where heterogeneous sensing tasks can arrive at any time
and may have various temporal/spacial requirements and with
various sensing periods. Both offline and online algorithms are
proposed to handle the dynamic problem.

Caching mechanism has been widely used in information
technology, such as Web applications [17], P2P networks
[18] and mobile computing [19]. Systems implemented with
caching mechanism usually improve various type of perfor-
mances by leverage the usage of cached data. Meanwhile,
there are various caching strategies proposed and utilized for
different systems with different characteristics. In this paper,
we introduce caching into MCS and carefully design the new
participant selection algorithms and corresponding caching
strategies for such systems.

VI. CONCLUSION

In this paper, we introduce a new MCS system with caching
capability, and study a dynamic participant selection prob-
lem for heterogeneous sensing tasks in such a system. The
caching component enables new online participant selection
algorithm which can predict the future tasks and dynamic
assign participants based on estimated coverage improvement.
In addition, when the caching space is full, a coverage based
caching strategy can be used to make smart decision on
which cached data to drop. Overall, the newly introduced
mobile crowd sensing with caching can significantly use less
selected participants to achieve similar level of probabilistic
coverage than the previous best solution without caching. This
is confirmed by extensive simulations conducted with real-life
D4D dataset. We leave further improvements on call prediction
as one of our future works.
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