
Paper ID# 900438.PDF

USING DEDUCTIVE KNOWLEDGE TO IMPROVE CRYPTOGRAPHIC PROTOCOL VERIFICATION

Zhiwei Li, Weichao Wang
Department of Software and Information Systems

University of North Carolina at Charlotte, NC USA
Email: zli19@uncc.edu and weichaowang@uncc.edu

Abstract—An effective representation of principals’ knowl-
edge can greatly improve the efficiency of cryptographic protocol
analysis. In this paper, we propose a mechanism to represent
the deductive knowledge contained in a set of terms. Using
Dolev-Yao model as an example, we design two algorithms
to generate the knowledge representation and derive terms,
respectively. We prove that using our knowledge representation,
a principal can derive a term by using only constructive opera-
tions. To demonstrate the advantages of the proposed approach,
we integrate it with Athena to build a new protocol verifier.
The new approach will drastically reduce the number of states
that are generated and analyzed during protocol verification.
Experiments on several cryptographic protocols widely used for
evaluating protocol verifiers demonstrate the improvements.

I. I NTRODUCTION

With the ever-increasing diversity of cryptographic pro-
tocols and security mechanisms that are adopted to protect
our physical and cyber worlds, the efficiency and detection
capabilities of protocol verifiers start to play an important
role in security enforcement. In cryptographic protocols,
principals (both legitimate and malicious) interact with
each other by sending and receiving messages. Through
these interactions, they learn new knowledge and match
received information to existing knowledge to achieve
security goals such as authentication and key establish-
ment. Here we define knowledge as a group of terms
[1] including information units such as principal names,
random numbers, secret keys, and their derivation results.
Therefore, deductive knowledge is an important component
in protocol analysis since it defines the set of messages that
can be understood and generated by protocol participants.

Because of its importance, deductive knowledge has
been explicitly or implicitly used in security protocol
analysis. For example, in Strand Space Model [2], initial
knowledge of an attacker is specified by a set of penetrator
strands. In constraint-based approaches [3]–[6], knowledge
of intruders is represented by a set of constraints. In applied
Pi Calculus [7], knowledge of intruders is organized into
a frame, in which the order of received messages is

This research is supported in part by NSF DUE 0754592.

preserved. Lowe [8] uses a set of terms to model intruder
knowledge and uses them to identify guessing attacks.

One factor that restricts knowledge from being used
more effectively during cryptographic protocol analysis is
the way in which the information is managed. Existing
approaches usually adopt one of the following two methods
to represent deductive knowledge in security protocols.
In method one, they consider only the initial knowledge
of principals when the protocol starts. Since it fails to
trace the dynamic changes of the information, it is al-
most impossible to integrate knowledge into the protocol
verification procedures. In a more sophisticated method,
protocol analyzers represent a principal’s knowledge by
constructing a union of all received and eavesdropped mes-
sages. Although this method captures all knowledge of a
principal, few approaches intentionally use the information
to assist protocol verification. In Section II we will show
that using principals’ knowledge we can greatly improve
the efficiency of some protocol analysis tools.

In this paper, we propose to develop a new mechanism to
represent deductive knowledge under Dolev-Yao model [9]
and integrate it with strand-space protocol verifier Athena
[10] to investigate the efficiency improvements in proto-
col analysis. We will design a decomposition algorithm
to identify all information units in a principal’s knowl-
edge. We will prove that all messages in the principal’s
knowledge can be derived by applying only constructive
operations such as concatenation and encryption to these
units. In this way, we have an efficient mechanism to
determine whether or not a message belongs to a prin-
cipal’s knowledge. To demonstrate the applications of the
proposed approach, we extend the state structure of Athena
with our knowledge representation mechanism and develop
improved protocol verification algorithms. Schemes are
designed to drastically reduce the number of states that are
explored during security protocol analysis, thus improving
the verification efficiency. We implement the approach
with C++ and experiment it with six security protocols
that are widely used for evaluating protocol verifiers. The
experiment results show that our approach can greatly

1 of 7

improve the efficiency of Athena.
The remainder of this paper is organized as follows.

In Section II, we introduce the architecture of Athena
and the potential to improving its efficiency by integrating
principals’ knowledge. In Section III, we present the details
of our approach. Specifically, we focus on the knowl-
edge representation mechanism and reformed algorithms
for protocol verification. In Section IV we present the
experiment results to demonstrate the advantages of the
proposed approach. In Section V we introduce the related
work. Finally, in Section VI we conclude the paper and
discuss future extensions.

II. BACKGROUND OFATHENA

A. Notations and Attacker Model

In this paper, we assume that a principal’s knowledge
contains all terms (possible infinite) that can be derived
by it. For example, if a principal knows a secret keyk
and the principal namesB andC, the term{B, C}k is in
its knowledge. We adopt the standard Dolev-Yao model to
represent the principals’ deduction capabilities. We assume
that a protocol participant can resend a received message,
or construct a new message by decomposing received
packets into smaller units and reorganizing them.

Following the schemes in Athena, we assume that the
deduction capabilities of principals in this approach can be
summarized by the term operators illustrated in Figure 1.
Therefore, a principal’s knowledge can be represented as
the closure of its initial information (e.g. private key and
random numbers) and the received messages under these
operators. We also use a “()” to represent a set of terms.

Constructive operators:

Concatenation t1 t2 → {t1, t2}

Encryption t1 t2 → {t1}t2

One way function t1 → h(t1)

Destructive operators:

Split {t1, t2} → t1

{t1, t2} → t2

Decryption {t1}t2 t−
2
→ t1

Fig. 1. The Dolev-Yao deductive system.

Here we do not distinguish symmetric encryption from
asymmetric methods. On the contrary, we use a uniform
formatkey− to represent the secret that is used to decrypt
{m}key. In symmetric encryption methods,key andkey−

are the same. In asymmetric encryption, they represent the

public/private key pair. Whether or not a principal can
derive key− from key is determined by their meanings
and the protocol setup. The same deductive system has
been adopted in [6].

B. Introduction to Athena

Song proposed Athena [11] to automate verification of
cryptographic protocols. It adopted strand space model
[2] to describe protocol execution procedures. In strand
space model, astrand contains a finite sequence of nodes
that describe the sending (+) and receiving (−) events
happening at a principal. The nodes in the same strand
and different strands are linked by the relationships⇒ and
→ respectively to demonstrate their happening orders. A
bundleis a finite subgraph of strand spaces, in which every
received message was sent by either a legitimate principal
or an adversary. It can be viewed as a snapshot of the
execution of a protocol. In Figure 2 we use the NSPK
protocol [12] as an example to illustrate the terminology.

Fig. 2. NSPK protocol: A bundle.

In Athena, agoal represents a received message of a
node andgoal-binding is the causal relationship to locate
the origin of this message. Those goals without bound
sources are generally referred as unbound goals. Therefore,
a state during protocol verification in Athena can be jointly
determined by a group of strands and a set of unbound
goals in them. Athena starts from an initial state and
recursively generates new states to bind those unbound
goals. This procedure will generate a growing state tree,
in which new goals will be introduced. When there are no
unbound goals in current state, Athena examines whether
or not it contains strands from adversaries to evaluate the
safety of the protocol.

C. Potential Improvements to Athena

Based on the previous description, we notice that Athena
does not maintain a record of the dynamic knowledge
of principals as the protocol proceeds. The lack of the
information has several negative impacts on the efficiency
of the verification procedure. First, since Athena does not
know the latest knowledge of a principal, during the goal
binding procedure we have to introduce new strands and

2 of 7

new states to determine whether or not a message can be
constructed by the principal. Previous studies [13] show
that the number of explored states during verification has
a direct impact on its efficiency.

Second, the lack of principal knowledge leads to a
‘memoryless’ verification procedure and will generate
many unnecessary states in Athena. For example, the
verification algorithm may have confirmed that when a
principal’s knowledge is a term setP , it cannot derive a
messaget. Therefore, it is safe for us to stop attempting to
derive t in another state when the knowledge isP ′ ⊆ P .
Our experiments show that in some security protocols,
more than 7% unbound goals can be avoided by this
technique.

Last but not least, Athena does not maintain the record
when a goal is successfully bound through interactions
among several principals. Therefore, we have to execute
the same binding procedure every time that we want to
bind the goal. The redundant efforts will also degrade the
performance of the verification system.

III. PROPOSEDAPPROACH

To address these problems, we propose to develop a
new mechanism to represent the knowledge of principals
in cryptographic protocols. We will also integrate it with
Athena to build a new protocol verifier. Below we focus
on the knowledge learning and protocol verification algo-
rithms. The system implementation and evaluation results
will be discussed in Section IV.

A. Knowledge Representation and Deduction

The decision problem under Dolev-Yao model has been
studied in [9], [14]. In this part, we first present a de-
composition algorithm to identify the information units
contained in a newly learned term and use them to extend
the principal’s knowledge. We will then prove that using
these information units we can design an efficient algorithm
to determine whether or not a term can be derived from
the principal’s knowledge.

Algorithm 1 : Derive (P, t)

Input: term setP , term t
1: if (t ∈ P) then
2: return true
3: if (t = {t1}t2 or {t1, t2}) then
4: if (Derive(P, t1) and Derive(P, t2)) then
5: return true
6: if (t = hash(t1) and Derive(P, t1)) then
7: return true
8: return false

We first design Algorithm 1 to determine whether or not
we can derive a termt from a term setP by applying only

constructive operators such as concatenation, encryption,
and hash functions to elements inP .

Fig. 3. Construction tree of{hash(t1), {t2}t3
}. Terms in P are

underlined. (a) Derive(P, t)= true. (b) Derive(P, t)=false.

The basic idea is to generate the construction tree oft
and determine whether or not there is at least one element
in P for every path linking a leaf node and the root of
the tree. For example, whent = {hash(t1), {t2}t3} and
P = (t1, t2, {t2}t3), the construction tree oft is illustrated
in Figure 3. For every path linking a leaf node and the root,
we have at least one element inP . Therefore, the function
Derive(P, t) will return “true”. When we remove{t2}t3

from P , the function will return “false”. Since the function
“Derive()” recursively applies decomposition operators to
t, the recursion depth is restricted by the height of its
construction tree and the function will terminate eventually.

Algorithm 2 : Learn (P, t)

Input: term setP , term t
1: initial an empty QueueQ
2: Insert(Q, t)
3: while(!Empty(Q))
4: {
5: x = popQueueHead(Q)
6: if (x /∈ P) then
7: {
8: P = P ∪ x
9: if (x = {t1, t2}) then
10: {
11: Insert(Q, t1)
12: Insert(Q, t2)
13: }
14: if (x = {t1}t2 and Derive(P, t−

2
)) then

15: Insert(Q, t1)
16: for every elementy in P
17: if (y = {t1}t2 and Derive(P, t−

2
)

and !Derive(P − x, t−
2
)) then

18: Insert(Q, t1)
19: }
20: }

Now we use the “Derive()” function to design a learning
algorithm. The algorithm will take a term setP and a term

3 of 7

t as inputs. It will identify the information units contained
in t and use them to extend knowledge representationP .

The conditional statement in line (6) of the algorithm
guarantees that every term will be learned only once. In
line (8) to (15) of the algorithm, we will add termx
into the knowledge representation and apply decomposition
operators tox to enable the learning of its subterms. In line
(16) to (18) we reexamine the terms inP . If the new term
x enables us to decrypt some messages, we will insert the
decryption results intoQ for subsequent learning activities.
In the whole algorithm, we apply only decomposition
operators to terms inP . Since in Figure 3 we have shown
that the height of construction trees of terms is limited,
the Learn() algorithm will terminate. Following the same
analysis, we conclude that when we apply theLearn()
algorithm to a set of terms, the worst case of the complexity
is proportional to the total number of nodes in these terms’
construction trees. When we analyze real cryptographic
protocols, the complexity is usually much lower because
of the redundancy in messages.

As we introduce in Section I, the knowledge of a
principal in a cryptographic protocol can be represented
as the union of its initial knowledge, all received and
eavesdropped messages, and newly generated information
(e.g. random numbers). We represent the union asR =
(r1, r2, · · · , rn). Below we show that if we start from an
empty setP and call theLearn() function to learn every
term inR, the result setP will have the same closure asR
under the Dolev-Yao model and hence represent the same
knowledge asR. The analysis is as follows.

Since we call theLearn() function for every term inR
and a term will be added intoP when it is first learned,
we haveP ⊇ R. Because of the monotonic property of
the knowledge model, we know that the closure ofR is a
subset of that ofP . On the other side, since every term that
is added intoP can be derived fromR under Dolev-Yao
rules, we know that the closure ofP is a subset of that of
R. Combining these results, we find that the output of the
learning algorithm can be used to represent the knowledge
of principals in cryptographic protocols.

Finally, we prove that using the learning outcomeP , we
can design an efficient mechanism to determine whether
or not a term can be derived from a principal’s knowledge
under Dolev-Yao rules.

Proposition III.1. Let R be a term set andP be the final
outcome of applying theLearn() algorithm to every term
in R. For any termt that can be derived fromR in a finite
number of steps under Dolev-Yao deductive system, there
exists a derivation procedure oft from P that uses only
terms inP and constructive operators.

Proof: We prove this proposition by designing a mech-

anism to remove those destructive operators from the
derivation procedure. In Dolev-Yao deductive system, there
are only two types of destructive rules: decryption and
split. Since we assume thatt is in the closure ofR, we
havet in the closure ofP as well. We further assume that
the derivation procedure oft from P contains destructive
operations. These operations can be divided into three types
based on how we get the destructed term, as illustrated in
Figure 4. Type 1: the destructed term is the result of a
constructive operation. Type 2: the destructed term is the
result of another destructive operation. Type 3: there is no
immediate operation before hand and the destructed term
is in P . Below we will discuss these cases respectively.

For the first type, since the two pairs of construc-
tive/destructive operations namely encryption/decryption
and concatnation/split will cancel out each other, the de-
structive operation can be removed and we can directly
use inputs to the constructive operation for future deriva-
tion. Figure 4.a presents an example. We can remove the
encryption and decryption and directly uset2.

For the second type, we seek to transform it to a type 1
or type 3 operation. We continue to move our investigation
target to the operation immediately before as long as it is
a destructive operator. Since the term that is decrypted or
split is longer than the destruction result, this procedure
will terminate and we will have a type 1 or type 3 case.
After we remove that destructive operator, a type 2 case
will become another type 1 or type 3 case. Figure 4.b
presents an example.

Fig. 4. Examples of three types of destruction. Underlined terms
represent the destruction under investigation. (a) Type 1: remove the
destruction. (b) Type 2: transfer to Type 1 or Type 3. (c) Type 3: one
destruction leads to another destruction.

Finally, for the third type, the term that is decrypted or
split is an elementp ∈ P . If p has the format ofp =
{p1, p2}, we will be able to remove the split operator. As
illustrated in line (9) to (13) of the learning algorithm,
when we learnp, both p1 and p2 will be added into the

4 of 7

queueQ. Therefore, we must havep1 andp2 in P and we
do not need the split operation to get either of them.

If p has the format ofp = {p1}p2
, we will need a de-

cryption operator to getp1 for subsequent derivation. Now
we consider two possible conditions. (a) ifDerive(P, p1) =
true. We can remove this decryption operation and use only
constructive operators to buildp1. (b) if Derive(P, p1)
= false. We need to decryptp with p−

2
to get p1. Here

we prove thatDerive(P, p−
2
)= false. If Derive(P, p−

2
)=

true, then either line 14 to 15 or line 17 to 18 of the
learning algorithm will apply this result to{p1}p2

and add
p1 into P . SinceDerive(P, p−

2
)=false, there must be at

least one destructive operation in its derivation procedure
that cannot be removed. Based on previous analysis, it
must be a type 3 decryption. Without losing generality, we
call the destructed termq = {p3}p4

. Following the same
analysis, we can prove thatDerive(P, p−

4
)= false. In this

way, we can locate another type 3 decryption of{p5}p6
for

the derivation ofp−
4

. This procedure has to repeat forever
and we will have a derivation with an infinite size. This is
contradict to the assumption thatt can be derived fromR
andP in a finite number of steps. Therefore, we conclude
that condition (b) will not happen.

Combining cases 1, 2, and 3, we can remove all de-
structive operations in the derivation procedure oft from
P . That impliesDerive(P, t) = true. �

With this proposition proven, we can directly apply the
Derive() function to determine whether or not we can de-
rive a termt from the learning resultP . Since inDerive()
we use only decomposition operators, the recursion depth
is proportional to the height of the construction tree oft.

B. Integrating Knowledge with Athena

In Section III.A, we introduce the algorithms to learn
new knowledge and derive terms. In this part, we will
investigate techniques to extend Athena with our proposed
knowledge representation and design new protocol verifi-
cation algorithms.

We propose to extend the state structure of Athena with
the knowledge representation of principals. Therefore, the
new states have a structure of〈S, G, (P)〉 in which S
contains the partially linked strands,G represents the set
of unbound goals, and the set(P) contains the outputs of
the Learn() algorithm for every principal.

A principal has two methods to learn new knowledge.
First, it can learn from received or eavesdropped messages
in the network. Second, it can use the strands of the
protocol to initiate connections to other parties to get new
information (e.g. man-in-the-middle attack). These meth-
ods also explain the procedures through which a principal
can bind an open goal. When a principal needs to bind a
goal, it will first try to deduct it using its knowledge by

calling theDerive() function. If the derivation succeeds,
the principal can generate the term without introducing
new states. If the deduction fails, it will use the strands
of the protocol to get the information from other parties.
If this procedure succeeds, it will add the information into
its knowledge so that the next time when the same goal is
needed, it can avoid introducing new strands.

Although the scheme of term derivation through protocol
strands is very similar to the goal binding procedure in
Athena, our knowledge based approach is more efficient.
In Athena, if the same goal is needed for multiple times,
new strands will be introduced and new states will be added
during the binding procedure of each time. In our approach,
only the first time will introduce new strands. After that, the
information will be added into the principal’s knowledge
and derivation through knowledge will be adopted in future
bindings. In this way, we achieve ‘learn once, use always’
and can further reduce the number of states in verification.

Our new approach will verify a protocol as follows.
We will first formulate the strands of principals into
an initial state. Using the deduction rules and protocol
strands, we try to bind those open goals and construct
complete interactions among principals. Finally, we will
identify those complete interactions that do not contain
corresponding strands of other legitimate principals and
generate the attack procedures.

In our new protocol verification algorithm, we will first
try to bind a goal through knowledge derivation before
introducing new strands. In this way, we guarantee that
our approach will never have more states than Athena
when they verify the same protocol. The conclusion will be
supported by the experimental results in the next section.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed approach, we have imple-
mented both Athena1 and the knowledge based protocol
verifier with C++. A snapshot of the system interface is
illustrated in Figure 5. We use both tools to verify a set
of well studied protocols. During the comparison, we find
that in the original design of Athena, the protocol verifier
will quit execution as soon as the first attack is located.
Although this method will shorten the response time of
the verifier, it will introduce some bias into the compar-
ison results. When two verifiers adopt different schemes
to choose the next state to examine during verification,
they may generate different numbers of states when the
first attack is located. To address this problem, we make
some adjustments to Athena so that it will conduct a
complete search to the whole state space. By examining

1To the best of our knowledge, Athena tool has never been released.

5 of 7

Protocol Number of states explored

when the first attack is detected the full state space search

knowledge based verifier Athena knowledge based verifier Athena

WooLam 7 15 13 78

Neumann Stubblebine 97 135 117 2614

Needham Schroeder (TTP) 53 53 1411 2133

Needham Schroeder 42 68 55 112

Needham Schroeder Lowe 26 (secure) 43 (secure) 26 (secure) 43 (secure)

Otway Rees 2 7 28 326

TABLE I
EXPERIMENTAL RESULTS.

the whole state space, we avoid this bias and get a better
understanding to the advantages of our approach.

Table I lists the number of states that are generated
and examined by both tools. As shown in the table, in all
tests the knowledge based algorithm reduces the number of
states that are examined, especially in full search scenarios.

Fig. 5. Interface of knowledge based protocol verifier.

Further analysis shows that the generation and main-
tenance of the knowledge of principals introduce limited
overhead to the system. While the analysis shows that the
learning output of a group of terms may contain as many
elements as the total number of nodes in their construction
trees, during the verification of real protocols this number is
usually much smaller. For example, Neumann-Stubblebine
is probably the most complicated protocol studied in Table
I and the learning output of the verifier contains fewer
than 50 elements. As another example, the recursion depth
of the Derive() function can be as large as the height
of the construction tree of the term. However, during
the verification of real protocols, since there is a large
amount of redundant information in the learning output,
the recursion depth is usually much smaller.

V. RELATED WORK

Previous research efforts on applying knowledge to
security protocol analysis can be divided into two groups:
deducibility [15], [16] and indistinguishability [14].

The BAN [17] logic, proposed by Burrows, Abadi and
Needham, is based on the deducibility notion of knowl-
edge. It is probably the first extensively studied logic in
protocol analysis based on knowledge. The agent’s capabil-
ity to synthesize messages is modeled by a set of inference
rules. It is difficult to apply BAN logic to dynamically
evolving knowledge to establish a generic model. There are
many other logics designed for security protocol analysis
[18], [19]. We find that most approaches using Dolev-Yao
adversaries are based on deducibility notion.

Deducibility is one kind of algorithmic knowledge [20],
in which “knowing what” can be determined by an algo-
rithm. Halpern and Pucella have successfully used algo-
rithmic knowledge to model several different adversaries
[21]. Then Pucella proves that the decision problem in a
general case is NP-complete [22]. Our work is inspired by
their previous research on algorithmic knowledge.

The concept of indistinguishability comes from the clas-
sical possible-worlds approach to model knowledge [23],
in which the actual world is considered to be one of
many possible worlds. For example, in security protocol
analysis, a principal cannot distinguish one random number
from another if it has not seen these numbers before.
Recently, Cohen and Dam [24] provide a generalized
Kripke semantics for studying this type of knowledge in
security protocols. They use a static equivalence [7] to
capture the indistinguishability for agents.

Abadi and Cortier [14] examine the decidability of these
two notions of knowledge by studying the underlying equa-
tional theories for deduction and static equivalence. This
is especially important since the termination of knowledge
analysis might not be guaranteed when the decidability
result does not hold. Following this line of research, new
decidability results are obtained for monoidal equational
theories [25].

Though general enough, the notion of knowledge in-
distinguishability could not be easily applied to protocol
verification. A Kripke style semantics usually suffers a
logical omniscienceproblem [26]. Moreover, it is rather

6 of 7

difficult to deal with explicit knowledge, which is widely
used in most of the verification tools.

VI. SUMMARY AND FUTURE WORK

The lack of an effective representation of principals’
knowledge restricts its potential to facilitating protocol
analysis. In this paper, we propose a mechanism to rep-
resent the deductive knowledge under Dolev-Yao adver-
sary model. We design two algorithms to generate the
knowledge representation and derive terms based on the
knowledge, respectively. We prove that both algorithms
will terminate. At the same time, we prove that using our
knowledge representation, a principal can derive a term by
using only constructive operators.

To demonstrate the application and advantages of the
proposed approach, we integrate it with Athena to build
a new protocol verifier. The new approach will try to de-
rive terms using principals’ knowledge before introducing
new states. In this way, our approach will generate and
analyze fewer states during protocol verification and it is
more efficient than Athena. Experiments on real protocols
demonstrate the improvements.

The immediate extensions to our approach consist of the
following aspects. First, we plan to extend our deduction
systems so that principals’ knowledge can be used to
analyze more complicated protocols and detect more subtle
attacks. Specifically, we will investigate the deduction
systems such as Lowe’s rule set. We will also study
knowledge evolution under the operations such as xor and
exponential-modular. Second, we plan to test our approach
on cryptographic protocols deployed in real environments
so that we have a better understanding of the applicability
of the mechanism. We are especially interested in key
establishment protocols for Internet and 802.11 wireless
networks. These efforts will lead to a more effective
knowledge representation and help us gain insight into
protocol analysis.

REFERENCES

[1] I. Bertolotti, L. Durante, R. Sisto, and A. Valenzano, “Efficient
representation of the attacker’s knowledge in cryptographic proto-
cols analysis,”Form. Asp. Comput., vol. 20, no. 3, pp. 303–348,
2008.

[2] F. T. Fábegra, J. C. Herzog, and J. D. Guttman., “Strand spaces:
Why is a security protocol correct?” inProc. of IEEE Symposium
on Security and Privacy, 1998, pp. 160–171.

[3] R. Corin and S. Etalle, “An improved constraint-based system for
the verification of security protocols,” inProc. of Symposium on
Static Analysis, 2002, pp. 326–341.

[4] R. Corin and A. Saptawijaya, “A logic for constraint-based security
protocol analysis,” inProc. of IEEE Symposium on Security and
Privacy, 2006, pp. 155–168.

[5] D. Kähler and R. K̈usters, “Constraint solving for contract-signing
protocols,”Proc. of Conference on Concurrency Theory, pp. 233–
247, 2005.

[6] J. Millen and V. Shmatikov, “Constraint solving for bounded-
process cryptographic protocol analysis,” inProc. of ACM confer-
ence on Computer and communications security, 2001, pp. 166–
175.

[7] M. Abadi and C. Fournet, “Mobile values, new names, and secure
communication,” inProc. of ACM Symposium on Principles of
Programming Languages, 2001, pp. 104–115.

[8] G. Lowe, “Analysing protocols subject to guessing attacks,”Jour-
nal of Computer Security, vol. 12, pp. 83–97, 2004.

[9] D. Dolev and A. C. Yao, “On the security of public key protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–
208, 1983.

[10] D. Song, S. Berezin, and A. Perrig, “Athena: A novel approach
to efficient automatic security protocol analysis,”Journal of Com-
puter Security, vol. 9, no. 1/2, pp. 47–74, 2001.

[11] D. Song, “Athena: A new efficient automatic checker for security
protocol analysis,” inProc. of IEEE Computer Security Founda-
tions Workshop, 1999, pp. 192–202.

[12] R. M. Needham and M. D. Schroeder, “Using encryption for
authentication in large networks of computers,” Technical Report
CSL-78-4, Xerox Palo Alto Research Center, Tech. Rep., 1978.

[13] C. J. Cremers, P. Lafourcade, and P. Nadeau, “Comparing state
spaces in automatic security protocol analysis,”SICS LNCS special
issue on Computer Security, 2008.

[14] M. Abadi and V. Cortier, “Deciding knowledge in security pro-
tocols under equational theories,”Theor. Comput. Sci., vol. 367,
no. 1, pp. 2–32, 2006.

[15] G. Lowe, “Breaking and fixing the needham-schroeder public-key
protocol using fdr,” inTACAs ’96: Proceedings of the Second
International Workshop on Tools and Algorithms for Construction
and Analysis of Systems, 1996, pp. 147–166.

[16] L. Paulson, “The inductive approach to verifying cryptographic
protocols,”Journal of Computer Security, vol. 6, no. 1/2, pp. 85–
128, 1998.

[17] M. Burrows, M. Abadi, and R. Needham, “A logic of authentica-
tion,” ACM Transactions on Computer Systems, vol. 8, no. 1, pp.
18–36, 1990.

[18] L. Gong, R. Needham, and R. Yahalom, “Reasoning about beliefin
cryptographic protocols,” inProc. of IEEE Symposium on Security
and Privacy, 1990, pp. 238–248.

[19] S. Stubblebine and R. Wright, “An authentication logic support-
ing synchronization, revocation, and recency,” inProc. of ACM
conference on Computer and communications security, 1996, pp.
95–105.

[20] J. Halpern, Y. Moses, and M. Vardi, “Algorithmic knowledge,” in
Proc. of 5th conference on Theoretical Aspects of Reasoning about
Knowledge, 1994, pp. 255–266.

[21] J. Halpern and R. Pucella, “Modeling adversaries in a logic for
security protocol analysis,” inIn Formal Aspects of Security, First
International Conference, FASec 2002, 2002, pp. 115–132.

[22] R. Pucella, “Deductive algorithmic knowledge,”Journal of Logic
and Computation, vol. 16, no. 2, pp. 287–304, 2006.

[23] J. Halpern, “Reasoning about knowledge: a survey,”Handbook of
logic in artificial intelligence and logic programming, vol. 4, pp.
1–34, 1995.

[24] M. Cohen and M. Dam, “A complete axiomatization of knowledge
and cryptography,” inLICS ’07: Proceedings of the 22nd Annual
IEEE Symposium on Logic in Computer Science, 2007, pp. 77–88.

[25] V. Cortier and S. Delaune, “Deciding knowledge in security pro-
tocols for monoidal equational theories,” inProc. of International
Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR’07), 2007, pp. 192–210.

[26] R. Fagin, J. Halpern, Y. Moses, and M. Vardi,Reasoning about
Knowledge. The MIT Press, 1995.

7 of 7

