
Non-normalizable Functions: A New Method to
Generate Metamorphic Malware

Rodney Owens
SIS Dept. and CyberDNA

UNC Charlotte

Weichao Wang
SIS Dept. and CyberDNA

UNC Charlotte

Abstract—To successfully identify the metamorphic viruses
oriented from the same base, anti-virus software has adopted
the code normalization technique to transform the variations to
a more uniform signature representation. Current code normal-
ization technique focuses on the simplification of the arithmetical
or logical operators. In this paper, we introduce a new technique
of generating metamorphic viruses by embedding complicated
manipulation functions that cannot be normalized into the
malicious executables. Using encryption/decryption functions as
an example, we present this evasion strategy that malware writers
could employ in the future. We demonstrate the strategy’s effec-
tiveness in evading detection by current anti-virus technologies.
We also discuss the potential mitigation mechanisms.

I. INTRODUCTION

Signature based virus detection has made great progresses
in the past years. Virus signatures can be created by scanning
files for sequences of machine instructions that are unique to
the virus [1]. For example, Symantec released 1.6 million virus
signatures in 2008. Periodically, client anti-virus programs will
check malware definition servers for signature updates and add
the new signatures to their databases for future detection.

Attackers have developed many methods of preventing
anti-virus products from detecting their malicious programs,
such as polymorphic and metamorphic coding. Metamorphic
malware is malware that changes sections of its own code to
syntactically similar versions. This defeats antivirus scanners
by preventing machine code sequences from looking the same
so that a signature would not match in these altered sections.

While mechanisms [2], [3], [4] have been designed to
reduce semantically similar machine instructions to enable
more reliable detection of metamorphic variants of viruses, the
performance of anti-virus software under more sophisticated
manipulation functions remains an open problem. In this paper,
we plan to investigate new methods to change the virus
binaries to avoid detection. Specifically, we propose to embed
public key encryption functions to change the signatures of
malware. Through conducting decryption immediately after
encryption on registers, we insert a sophisticated function
into the virus image without changing its actual duty. We
will demonstrate that by using complex encryption functions
beyond simple arithmetical and logical operators, we can
change the control graph of the malware as well as prevent
code normalization from determining whether or not this
function has no effect on the program execution.

To demonstrate the effectiveness of the mechanism, we
choose a set of malicious executables that can be detected by
many anti-virus products as the base files. We embed a hard-
coded RSA algorithm over the AL register into the base files to
change their control flows and sequences of instructions. The
experiments show that many anti-virus products will be fooled
by this simple technique. At the same time, the performance
penalty on the malware is very limited. The study shows that
new mechanisms are needed to detect such attacks.

The contributions of the paper are as follows. We explore
possible ways of embedding complicated manipulation func-
tions into malicious executables to generate new variations
of malware. Our experiments on state-of-the-art anti-virus
software programs show that this mechanism can deceive
many of them. Therefore, the proposed techniques pose real
threats to computer security. We also investigate mechanisms
to defend against such attacks.

The remainder of the paper is organized as follows. In
Section II, we will review related work. We will focus on
the virus detection mechanisms and the anti-attack of the
malicious parties. In Section III, we will present the proposed
function embedding and malware generation mechanism. In
Section IV, we will describe in detail the new techniques
for modifying Portable Executable (PE) binary files of the
viruses to avoid detection. Concrete examples of manipulation
functions and experimental results on state-of-the-art anti-virus
software will be presented to demonstrate the threats of the
proposed mechanisms. In Section V, we will introduce our
methods of preventing such attacks. Finally, in Section VI, we
will discuss future extensions and conclude the paper.

II. RELATED WORK

A. Malware Signatures

The easiest way for an anti-virus program to detect known
malware is with signatures. A signature is a particular binary
sequence that is unique to the malware program [1]. These
signatures are usually defined by the anti-virus vendors, and
are added into the local database as a definition update. As
a user accesses files and programs, the anti-virus program
checks the binary form of the file with its signature database.
If there is a match, the file is said to contain malicious code.
Virus signatures are made of patterns with thousands of bits to
reduce false alarms caused by short binary strings. Methods of
creating better signatures have been investigated by [5], where

the hexadecimal sequences of the binary code were chopped
up into n-grams in order to use data mining and machine
learning algorithms to analyze and classify the malware.

It has been proposed by [3] that metamorphic malware
can be detected by examining executables using algebraic
specification, by which malware machine instructions are
analyzed for semantic equivalences by assigning instructions
mathematical operation equivalences and comparing these
equivalences to signatures. If they match, then the binary
analyzed was a metamorphic variant of known malware.

B. Metamorphic Engine Analysis

In [6] and [7], the authors discuss methods malware uses
to obfuscate its code. Some examples are “Garbage Inser-
tion/Semantic Nops”, “Code Reordering/Instruction Permuta-
tion”, “Variable Renaming”, “Instruction Substitution”, and
“Control Flow Alteration”. With Garbage Insertion/Semantic
Nops, processor instructions that have no net effect on the out-
come of the program are added. Code Reordering/Instruction
Permutation takes advantage of the fact that many instructions
can be executed out of order and the net outcome is still
the same. Variable Renaming is when an intermediate value
changes which variable it is assigned to. This can most easily
be accomplished by switching the registers that temporary
variables are stored in. Instruction Substitution is when a
sequence of instructions are substituted for another sequence
of instructions that have the same effect. Finally, in Control
Flow Alteration, conditional jumps are added that jump to
sequences of instructions that permanently mutate variables
and perform undesired operations. The conditions for this
jump, however, are set to never be true, so these segments
of code are never executed.

In [8], the authors use varying amounts of code reordering
and semantic nops to obfuscate known malware to avoid
detection. The authors proposed normalization schemes to
detect such changes. In [6], the authors evaluate their normal-
ization technique by defining the Euclidean distance between
normalized code fragments and the malicious code archetype.

III. CONSTRUCTING NON-NORMALIZABLE
METAMORPHIC VIRUS

An effective approach to detecting metamorphic viruses is
the code normalization technique [2], [9]. In this technique,
different schemes are adopted to cancel out the mutations
introduced by the malware. To embed robustness against the
instruction level mutation into the detection tool, high level
representations of the code and the control flow graph are used.
Although the researchers have noticed that some of the code
transformations are non-reversible, they focus on the schemes
such as instruction permutation and substitution. The follow-
ing research shows that some of the arithmetical or logical
operations can be too complicated for the code normalization
technique and can be used to construct metamorphic viruses
that are beyond the detection capabilities of the state-of-the-
art tools. Below we first introduce the basic idea of code
normalization. We will then introduce the families of functions

that can be used to manipulate the instructions and control flow
graph, respectively.

A. Revisit of Code Normalization

Code normalization is the process of optimizing code to a
single efficient normal form. The main idea of code normal-
ization is to simplify different versions of an executable to a
single form (or as few as possible), and then create a signature
on this normal form. In the future, executables can be nor-
malized and then compared to these signatures of normalized
malware. If there is a match, then the executable performs the
exact same actions as the previously identified malware. In this
way, metamorphic malware can make thousands of variants,
but as long as those variants can be normalized to the same
form, this normal form is the only signature that the anti-virus
program needs to have.

Fig. 1. Code normalization through expression propagation.

An example of a code normalizer was given in [2]. In
[2], the authors described code normalization as a five step
process. The first step, “Instructions meta-representation”, is
the raising of the processor instructions to a high-level repre-
sentation. The second step is “Propagation”, where the results
of intermediate calculations are forwarded and compiled into
their intended operations for further analysis. The third step is
“Dead Code Elimination”, through which any values that are
computed, but then never used, are thrown away. The fourth
step is “Algebraic Simplification”, where algebra is used to
simplify the high-level expressions from the previous steps.
This removes statements like “add 1 to eax; then subtract 1
from eax”. The last step is “Control Flow Graph Compression”
where the program’s possible flows are graphed. Then, based
on previously computed values, branches of the graph that
can never be executed are removed. After all of the processes
have finished, the resulting graph is believed to be the reduced
normal form of the program.

B. Code Manipulation Functions

Currently, the code normalization tools integrate the ordi-
nary algebraic rules and intermediate result propagation to
conduct simplification. The first technique can easily identify
the operations such as adding a constant to the register and
then subtracting the same value. In the second technique, as
illustrated in Figure 1, the intermediate results are carried
over to the later instructions for further simplification. Both
techniques can identify and cancel out only the comple-
menting operator pairs with straightforward impacts such as

add/subtract, times/divide, xor, and the logical operators. How-
ever, in the broad field of code manipulation, there are families
of functions that will conduct a series of complex operations to
the register or memory locations without changing their values.
The net effects of these functions cannot be automatically
identified by a computer program. Below we introduce two
families of such functions.

The first family of functions that can be used to manipulate
register and memory values are encryption and decryption
algorithms. Here the toy schemes such as circular shift or
bit permutation should be excluded. We consider only those
product ciphers such as RSA, Elliptic Curve Cryptography,
and AES. For symmetric encryption algorithms, we can use
any register or memory values as the key and the plain text.
For asymmetric encryption algorithms, we can pre-select the
public/private key pair and embed them into the implemen-
tation. We can conduct encryption immediately followed by
decryption to the selected values. In this way, the actual values
at the selected locations will not change. At the same time, we
inject a complex function between those originally consecutive
instructions to avoid the detection of malware signatures.

One concern for using the product cipher algorithms as
value manipulation functions is that many of these algorithms
have standard implementations. Therefore, the anti-virus soft-
ware can generate signatures of these algorithms to identify
them in metamorphic viruses. Two schemes can be used to
solve this problem. First, we know that for many encryption
algorithms, once the secret key is selected, we can optimize
the encryption procedure to improve its efficiency. Since the
customization is built upon the special values of keys, the final
results can be very different from the standard implementation.
Second, there are many user-designed encryption algorithms
that are never accepted as a standard because of their vulner-
abilities. These algorithms can also be used as manipulation
functions. Note that what we need here is a group of complex
operations that have no net effects on the value. The safety of
the algorithm is not a factor.

The second group of functions that can be used to manip-
ulate register and memory values are built upon some special
properties of the encryption functions. For example, some
encryption algorithms have the commutative property. Under
this property, when a value is encrypted for multiple times with
different keys, the decryption operations with corresponding
secrets can be conducted in any order and the final result
will be the same. In this way, we can combine function
permutation with encryption to further increase the difficulty of
normalization. As another example, the self-healing property
of the ECB mode of DES encryption can be used to inject
some randomness into the manipulation procedure without
changing the final results.

C. Control Flow Graph Manipulation Functions

The inserted value manipulation functions can be converged
into segments of code with a straight-line structure. As the
analysis in [2] shows, changing only the order of consecutive
instructions is not enough for defeating the anti-virus software

since under many conditions the control flow graph (CFG) of
the metamorphic virus is constructed and compared to known
malware. Therefore, some fake conditional jumps should be
used to obfuscate the CFG. Since the state-of-the-art anti-virus
software can recognize many kinds of fake jumps, we propose
to use the code manipulation functions to impact the CFG.
For example, we can conduct decryption immediately after
the encryption operation and insert a fake conditional jump
based on the comparison result between the two values.

We can also use some special properties of the encryp-
tion algorithms to control the program execution flow. Two
examples are as follows. The unpadded RSA encryption has
the homomorphic property, which means E(m1) × E(m2) =
E(m1 × m2). Therefore, the malware can conduct three
encryption operations of m1, m2 and m1 × m2 respectively.
Then a fake conditional jump can be inserted based on the
comparison of the encryption result. As another example, DES
encryption exhibits the complemental property, which means
that Ek(P) = C ⇔ Ek̄(P) = C, where x is the bitwise
complement of x. With this property, we can generate two
cipher texts that are bitwise complements to each other. Then
a fake conditional jump can be inserted into the malware based
on comparison of the results.

D. Analysis of Normalizability

The normalizability analysis is essential for the proposed
metamorphic virus construction mechanism since it will deter-
mine whether or not the designed code manipulation functions
can be simplified or identified by the state-of-the-art normal-
ization algorithms. Such analysis will be conducted at both
the instruction level and the abstract function level. At the
instruction level, we consider the techniques proposed in [2].
For example, through expression propagation, the decryption
procedure of RSA can be represented as (mr1 mod n)r2 mod

n, where r1 and r2 are the public and private keys respectively.
Different from those simple operators such as add/subtract, the
values of r1, r2, and n must satisfy some special requirements
for simplification. Since there are an unlimited number of
prime integers, the anti-virus software cannot pre-generate
all possible values of r1, r2, and n. Therefore, it will be
very difficult for anti-virus software to conduct normalization
through expression propagation.

Making sure that the embedded code manipulation functions
are non-normalizable at the instruction level alone will not
prevent the anti-virus software from detecting the metamor-
phic malware. For example, although the anti-virus software
cannot figure out the secret keys, it may be able to figure
out that a function in the virus is actually conducting RSA
encryption/decryption. Unfortunately, the latest achievements
in automatic programming [10], [11] and automatic program
verification [12], [13] focus on the relationship between high
level specifications and their implementations. For example, in
[12], the C2BP tool can generate the predicate abstraction for
only the boolean operations in a C program. In [13], the log-
ical formulas are generated to determine the soundness of the
code with respect to the given specification. The Concurrent

Automatic Programming System [11] focuses on the formal
verification of the high level specification. Given two random
code segments CS1 and CS2, none of these approaches can
determine whether or not the two segments will actually cancel
out each other’s impacts. Based on these observations, we
conclude that it will be very difficult to normalize the code
manipulation functions to detect the metamorphic viruses.

IV. CONCRETE EXAMPLES AND EXPERIMENT RESULTS

To demonstrate the practicability of the proposed approach,
in this section we plan to design a metamorphic virus gen-
erator by embedding asymmetric encryption and decryption
algorithms into malware executables. Specifically, we choose
malware in Windows’ Portable Executable (PE) format and
RSA as the code manipulation functions. Below we describe
the details of the implementation and the experiment results.

A. Implementation

Expanding executable files by embedding new instructions
into them is more complicated than it appears. For example,
all target address of the jump instructions should be carefully
examined so that they will not jump into the middle of the
injected code segments. Our metamorphic viruses are usually
constructed through the following two steps.
Step 1: Expanding PE Executables

Windows’ PE binary executables are composed of several
sections. These include sections that contain the raw processor
instructions (code section), DLL import tables, and multiple
data sections to store initialized variables (such as some mem-
ory locations and strings output to the user). The code section
is almost always one of the first sections in the executable
file. The code section cannot simply be made larger since the
data sections will be pushed to higher memory addresses thus
making all references to the data sections invalid (they will
point to the code section). We cannot add a new code section
to the end of the executable file or increase the last section’s
size and mark it as executable because anti-virus vendors are
well aware of these schemes, so heuristic scanners will flag
the file as containing injected code.

From an attacker’s point of view, we propose to expand
the existing code section to allow room for more processor
instructions, and change all the pointers within an executable
to reflect the new data section’s memory addresses. During this
procedure, the PE header information needs to be modified
to reflect this move. We use a PE file editor such as PEEx-
plorer [14] to edit the PE header information. We then use
a debugger such as OllyDbg [15] to extract the opcodes and
operands from the program. A script is then written to search
these operands for references to the memory addresses that
have been moved. The data section itself sometimes contains
references to other locations in the data section, so these
values should also be searched and incremented by the script
as needed. Once this is complete, the code section can be
made large enough to add an arbitrary amount of code, while
maintaining the integrity of the existing executable.
Step 2: Injecting RSA based code manipulation functions

As we described earlier, new instructions cannot be inserted
into the code section without any restrictions because of the
destinations of the jump instructions. If the code has been
evenly expanded throughout the code section, the jump instruc-
tions will not point to the correct positions and the program
will not operate as desired. To solve this problem, we have
experimented with two mechanisms. In the first mechanism,
we insert the RSA encryption/decryption functions at the end
of the code section. At each place that we want to activate
the function, we will substitute the current instruction with an
unconditional jump. An unconditional jump is five bytes long
and is composed of a one-byte opcode and a four-byte operand.
To prevent the memory locations of other instructions from
being impacted, we usually choose instructions that occupy
five or more bytes as the substitution targets. Each of these
instructions can be replaced with an unconditional jump to the
rear of the enlarged code section, and the original instruction
moved to the jump destination. The next instructions at the
jump destination after the original instruction is executed can
be a public key encryption function of our choice, followed by
its corresponding decryption algorithm. After the decryption,
an unconditional jump back to where we originally jumped out
is written. An example is shown in Figure 2, where the original
instruction has been moved to memory location 0x4085DC.

Fig. 2. A section of assembly codes showing before (left) and after (right)
the encryption/decryption functions are added.

The second code injection mechanism is more flexible but
having tighter restrictions on the original executable file and
heavier workload for modification. Here we will add the code
manipulation functions directly into the code section, shift the
instructions that are executed afterwards, and then update all
the references to these instructions. For this mechanism to
work properly, all jump destinations in the original executable
file must be identified and updated through static scan. If
the file contains a reference that can only be determined
dynamically during execution, depending on the nature of the
calculation, this mechanism may not safely be applied.

B. Experimental Results

To demonstrate the practicability of the proposed approach
to generating metamorphic viruses, we have chosen a group of
well studied malware and state-of-the-art anti-virus programs
to conduct experiments. We use RSA encryption/decryption
algorithms as the code manipulation functions. We choose a
special key pair so that the RSA computation can be conducted
upon the AL register. The evaluation focuses on the reduction
in performance of the malware after the functions are injected

and the detection rate of the generated metamorphic viruses.
Below we presented the details of the experiments and the
evaluation results.
Selected Malware

We chose a variety of malware in PE format as our test
cases to demonstrate that the proposed approach provides a
generic mechanism to construct metamorphic viruses. These
malicious programs are selected from different packages and
their functionality spans in a wide range. Table I illustrates
the details of these malware programs.

malware package functionality
iam-alt.exe

pass the hash
find out the password hashes

whosthere-alt.exe of currently logged in users
genhash.exe

abel.exe Cain and Abel
steal logon hashes from a
Windows computer and crack
the hashes

john-mmx.exe John the Ripper remote password cracker

TABLE I
SELECTED MALWARE FOR EVALUATION.

Performance Results
Inserting new instructions, especially complicated functions

such as RSA encryption/decryption, into the malware exe-
cutable files could degrade the performance of the malware.
Depending on the injection points, the code manipulation func-
tions will be executed at different frequencies and reduction
in performance could be different. We have embedded the
RSA functions at different places in the malware. On all our
test cases except for John the Ripper, the RSA function was
executed on the order of thousands of times with no noticeable
difference in delay. For John the Ripper password cracker, we
embedded the RSA functions into many inter loops of the
cracker so they are called very frequently. In our experiments,
the RSA functions were run approximately 141,824,000 times
with a possible measurement error up to 0.0014%. We test
both the multi-salt mode and the single-salt mode of different
password hash algorithms. Table II shows the results of the
two runs when performed back to back. The computation
efficiency is measured by the number of [user name, password]
combinations that the cracker can test in each unit of time.

hash Computation efficiency performance
algorithm ([usr, passwd]/sec) degrade

before injection after injection (clm 2 / clm 3)

DES, multi-salt 1022K 2897 352.8
DES, single-salt 955K 2842 336

BSDI DES 33267 95 350.2
multi-salt

BSDI DES 32941 95 346.7
single-salt
Blowfish 404 2.1 192.4

AFS DES short 319259 1810 176.4
AFS DES long 827228 5677 145.7

NT DES 9732K 56096 173.5

TABLE II
JOHN THE RIPPER PERFORMANCE BEFORE AND AFTER RSA FUNCTION

INJECTION.

From the experiment results, we find that when the code
manipulation function is inserted into the inner loop of
the password cracker, the performance may degrade several

hundred times. Although this performance penalty may be
intolerable for many user applications, its impacts on many
viruses are not as severe. Since many malicious programs use
idle CPU cycles to accomplish their computation, attackers
usually have all the time they need to compromise the system.
At the same time, RSA is very computationally expensive.
We can use other code manipulation functions to alleviate the
performance penalty.

Detection Results
The ultimate goal of the proposed research is to generate

metamorphic malware to deceive the anti-virus programs. To
evaluate our approach from this aspect, we use state-of-the-art
anti-virus programs to scan the newly generated variants. The
adopted anti-virus programs are shown in Table III.

anti-virus program Product version Virus database version

Avast! Home Edition 4.8.1351 090906-1
AhnLab 8.0.1.6

Avira 9.0.0.407 9.0.0.407
Symantec 10.1.5.5000
Dr. Web 5.0.1.06018

Mcafee VirusScan 13.15.101 5733.0000
Ikarus 1.0.97 73486
Sophos 7.3.0 4.28E

TrendMicro 17.50.1366.0000 6.423.50

TABLE III
ADOPTED ANTI-VIRUS PROGRAMS.

We conduct the experiments as follows. For each malware,
we will first determine whether or not it can be detected by
an anti-virus program. Only when it can be detected, will we
generate metamorphic variants through function injection and
resubmit them for scan. The experiment results are shown in
Table IV. Please note that we illustrate only the anti-virus
programs that can detect the original malware.

During our experiments, we find that sometimes we need
to combine function injection with other techniques to deceive
the anti-virus programs. For example, Symantec uses the at-
tacker’s name embedded in “pass the hash” toolkit to detect the
malware. Therefore, we combine “unique string replacement”
with function injection to generate metamorphic variants to
deceive it. Some anti-virus programs use the DLL call tree
to detect malware. For these programs, we encapsulate the
DLL access with another layer of function calls. The required
additional techniques to deceive the anti-virus programs are
illustrated in parenthesis “()” in Table IV.

From the results in Table IV, we find that the function
injection technique can generate metamorphic variants to
deceive all tested anti-virus programs even when they can
detect the original malware. Our proposed approach provides a
new technique that could be adopted by attackers in the future
to generate metamorphic viruses. New mechanisms must be
designed to defend against such attacks.

V. DETECTING METAMORPHIC VARIANTS THROUGH
SEMANTIC NOP FUNCTION RECOGNITION

Enabling an anti-virus program to detect complicated func-
tions such as encryption and decryption algorithms is harder

than it appears. The anti-virus program cannot generate a
signature for the encryption algorithm since it can change
based on the secret keys or implementation. Further, new
algorithms may appear as cryptographic technology evolves.

malware: IAM alt, Whosthere and Genhash
anti-virus can detect the deceived by metamorphic virus
program original malware generated through func injection

Avast! yes yes
AhnLab yes yes

Avira yes yes (with DLL relay)
Symantec yes yes (with unique string replacement)
McAfee yes yes (with DLL relay)

VirusScan
Ikarus yes yes (with unique string replacement)

TrendMicro yes yes (with unique string replacement)

malware: Abel
anti-virus can detect the deceived by metamorphic virus
program original malware generated through func injection

Symantec yes yes (with unique string replacement)
McAfee yes yes (with DLL relay)

VirusScan
Ikarus yes yes (with unique string replacement)
Sophos yes yes (with DLL relay)

TrendMicro yes yes (with unique string replacement)

malware: John the Ripper MMX
anti-virus can detect the deceived by metamorphic virus
program original malware generated through func injection

Avira yes yes (with unique string replacement)
Symantec yes yes (with unique string replacement)
McAfee yes yes (with DLL relay)

VirusScan
Ikarus yes yes (with unique string replacement)
Sophos yes yes

TrendMicro yes yes (with unique string replacement)

TABLE IV
DETECTION RESULTS OF THE METAMORPHIC VARIANTS GENERATED

THROUGH FUNCTION INJECTION.
In order to detect the metamorphic viruses generated

through function injection, we propose to develop a more
intelligent scanner to identify the semantic nop functions. The
detection procedure will be conducted in two steps. In the
first step, we will locate the suspects of the nop functions.
This can be achieved at both the instruction level and function
call level. At the instruction level, we will locate the code
segments that contain instructions deviating from the purpose
of the software. For example, many asymmetric encryption
algorithms are built upon some hard mathematical problems
and their computation procedures are different from most user
applications. We can identify these code segments through the
density of such instructions. At the function call level, we will
tally the number of times that each function is called. Then,
we will setup a threshold and pick the most frequently used
functions as the candidates. Once the suspect functions are
located, we can conduct the second step. Our scanner will
select a group of random numbers as the input to these code
segments and monitor if any of the values in the storage
locations change. For those semantic nop functions, all of
the values must be preserved to prevent any changes to the

program control flow. When we experiment with the suspect
function with a large enough group of random numbers and
none of their values change, we can conclude with high
confidence that it is a semantic nop function and can be
removed for subsequent virus analysis techniques.

VI. CONCLUSION AND FUTURE WORK

Anti-virus products have come a long way with the detection
of malware, but malware writers can continue to devise
new strategies to overcome these more powerful anti-virus
scanners. In this paper, we brought to life how malware
can be made more sophisticated to evade detection and still
perform the same functions as before. As the malware/anti-
virus war continues to play out, anti-virus software needs to
be armed with several different detection mechanisms in order
to successfully detect evasive malware.

The register/memory manipulation functions may become
so complicated that running test values through them would
be impractical. For example, a complicated register/memory
manipulation function that employs multiple nested calls with
if/then tests would take too much time and have too much
uncertainty within them for test values to uncover them in a
reasonable amount of time. We plan to explore advanced se-
mantic detection algorithms to include encryption/decryption
and other sophisticated register/memory manipulation func-
tions to improve signature based malware detection.

REFERENCES

[1] J. Kephart and W. Arnold, “Automatic extraction of computer virus
signatures,” in Inter. Conf. Virus Bulletin, 1994, pp. 178–184.

[2] D. Bruschi, L. Martignoni, and M. Monga, “Code normalization for
self-mutating malware,” IEEE Security and Privacy, vol. 5, no. 2, pp.
46–54, 2007.

[3] M. Webster and G. Malcolm, “Detection of metamorphic computer
viruses using algebraic specification,” Journal in Computer Virology,
vol. 2, no. 3, pp. 149–161, 2006.

[4] ——, “Detection of metamorphic and virtualization-based malware
using algebraic specification,” Journal in Computer Virology, vol. 5,
no. 3, pp. 221–245, 2009.

[5] J. Kolter and A. Maloof, “Learning to detect and classify malicious
executables in the wild,” J. Mach. Learn. Res., pp. 2721–2744, 2006.

[6] D. Bruschi, L. Martignoni, and M. Monga, “Using code normalization
for fighting self-mutating malware,” in Proc. Inter. Sympo. Secure
Software Engineering, 2006.

[7] M. Christodorescu and S. Jha, “Testing malware detectors,” in Proc. of
ACM Inter. Sympo. Software Testing and Analysis, 2004, pp. 34–44.

[8] M. Christodorescu, J. Kinder, S. Jha, S. Katzenbeisser, and H. Veith,
“Malware normalization,” University of Wisconsin, Madison, Tech. Rep.
1539, 2005.

[9] A. Walenstein, R. Mathur, M. R. Chouchane, and A. Lakhotia, “Normal-
izing metamorphic malware using term rewriting,” in IEEE International
Workshop on Source Code Analysis and Manipulation, 2006, pp. 75–84.

[10] F. Miao, S. Akihiro, T. Tomohiro, K. Masahiro, U. Kazuhiro, and
K. Seiichi, “An automatic programming system by composition of
reusable program components,” SIG-KBS, vol. 76, pp. 19–24, 2007.

[11] E. Kennedy, “A concurrent automatic programming system,” in Proc.
Annual Southeast Regional Conference, 2008, pp. 94–98.

[12] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani, “Automatic
predicate abstraction of c programs,” SIGPLAN Not., vol. 36, no. 5,
pp. 203–213, 2001.

[13] J.-C. Filliatre and C. Marche, “The why/krakatoa/caduceus platform for
deductive program verification,” Computer Aided Verification, pp. 173–
177, 2007.

[14] “Pe explorer,” http://www.heaventools.com, 2011.
[15] “Ollydbg,” http://www.ollydbg.de/, 2011.

