
Fingerprinting Large Data Sets through Memory
De-duplication Technique in Virtual Machines

Rodney Owens
Department of SIS

UNC Charlotte
Charlotte, NC 28223

Email: rvowens@uncc.edu

Weichao Wang
Department of SIS

UNC Charlotte
Charlotte, NC 28223

Email: weichaowang@uncc.edu

Abstract—Because of intellectual property, user privacy, and
several other reasons, many scientific and military projects choose
to hide the information about the data sets that they are using
for analysis and computation. Attackers have designed various
mechanisms to compromise the operating system or database
management system to steal such information. In this paper, we
propose a non-interactive mechanism to identify the data sets in
use in a cloud computing environment when the virtual machine
(VM) hypervisors adopt the memory de-duplication technique.
Specifically, when multiple memory pages with the same contents
occupy only one physical page, their reading and writing access
delay will demonstrate some special properties. We use the access
delay of the memory pages that are unique to some specific data
sets to derive out whether or not our VM instance is accessing the
same data sets as the target of the attack. The experiment results
on a widely used scientific analysis software package ParaView
demonstrate the practicability of the attack. We also discuss the
mechanisms to defend against such attacks.

I. INTRODUCTION

With the ever increasing computation capabilities, storage
space, and network bandwidth, more and more scientific and
military projects are starting to use very large data sets for
analysis, computation, and decision making. For example,
NASA’s Earth Observing System Data and Information Sys-
tem (EOSDIS) can generate two terabytes of data each day.
Because of the intellectual property, user privacy, and several
other reasons, many of these projects choose to hide the
information about what data sets they are using for analysis
and computation, even when some of the data sets are public.
For example, a survey conducted in 2009 [1] shows that
out of 62 groups that are requested to share their data or
data sources, only 24 groups comply. To get access to such
information, attackers have designed various mechanisms to
compromise the operating system and database management
system. Different schemes have also been designed to defend
against such attacks.

The proliferation of virtual machine platforms creates a
new path for non-interactive identification of the data sets in
use. In a VM hypervisor, multiple virtual machines share the
same hardware resources. Although perfect isolation among
VMs is required by design, researchers have identified several
mechanisms to break such isolation through schemes such as
side channels. For example, researchers find that the shared
cache may become a side channel for the detection of the

web traffic access rate or even keystrokes of the co-resident
VM instances [2].

In this research we seek to investigate data set identification
in the cloud computing environment when the virtual machine
hypervisors enable the memory de-duplication functionalities
(such as VMware ESX and ESXi [3] and Extended Xen [4]).
The memory de-duplication technique takes advantage of the
similarity among memory pages so that only a single copy
and multiple handlers need to be preserved in the memory,
as shown in Figure 1. Here V M1 and V M2 share two
identical pages so they only occupy four physical memory
pages. (Note that we have both inter- and intra-VM memory
de-duplication.) Although this technique can reduce the mem-
ory footprint size of VMs, it will break their isolation and
introduce new vulnerabilities such as non-interactive memory
page identification. The objective of this paper is to explore the
vulnerability by constructing concrete attacks on a widely used
scientific visualization software package called ParaView [5],
and investigate the mechanisms to defend against such attacks.

Fig. 1. Memory de-duplication reduces VM footprint size.

The overview of our approach is as follows. First, we will
use the mechanisms in [2] to initiate a VM instance onto the
same physical box as the target of the attack. Then we will read
multiple data sets into the memory of our VM. Without losing
generality, we assume that the target VM is using the data set
Dt for analysis and computation, and the data sets we open are
Da1, Da2, · · · , Dan. The objective is to determine whether or
not Dai and Dt contain many identical pages. If so, we will
conclude that the target VM is actually using Dai for analysis.
To achieve the goal, we will let the memory de-duplication
mechanisms identify and merge those identical pages. Once



this procedure is accomplished, we will introduce reading and
writing operations to those memory pages that are unique to
the data set Dai. Since the hypervisor handles the operations
differently for those de-duplicated pages and the pages with
their own copies, we can measure the memory access delay
to figure out whether or not Dai and Dt are the same file.

The advantages of our approach are as follows. First and
most importantly, it is a non-interactive data set identification
procedure since during the attack we only conduct operations
on our own VM instance. This non-interactive property will
prevent the target VM from detecting the identification opera-
tions. Second, our experiments show that many scientific data
sets, even when they are from the same broad field, contain
a large number of unique memory pages. Reading/Writing
operations to these pages can generate a measurable difference
in access delay. Last but not least, our experiment results on
ParaView show that this attack is practical.

The remainder of the paper is organized as follows. In
Section II we describe the details of our data set identification
approach. Section III presents our implementation and the
experimental results when we use VMWare ESXi as the
virtual machine hypervisor and ParaView as the data analysis
software. We experiment with different combinations of guest
OS and biological data sets. Section IV discusses the problems
such as VM co-residence detection and prevention of the
attacks. Finally, Section V concludes the paper.

II. THE PROPOSED APPROACH

A. System Assumptions and Background

In the investigated scenario, we assume that an attacker can
initiate VMs in the same cloud computing infrastructure as
the target VM. We also assume that through the co-residence
detection discussed in Section IV we can determine whether
or not the target VM is running as a guest on the same host as
the attacker’s VM. The target VM may have very sophisticated
Intrusion Detection/Prevention Systems in place. We assume
that the attacker can submit queries to the target VM to initiate
data access for analysis and computation. The attacker also
holds some data sets and it wants to determine whether or not
the target VM is using one of these data sets to resolve the
queries.

We assume the attacker has root control over the VMs
that it initiates. We also assume the attacker’s VM has large
enough memory (such as 512MB) to avoid very frequent page
swapping. We do not assume the attacker can decide how many
CPU cycles it is allowed to use, nor do we assume the attacker
can decide how much physical RAM its VM is allowed to
consume. These are reasonable assumptions based on current
industry practice. Without losing generality, we assume that
the host uses 4KB memory pages.

Since in our experiments we use VMWare ESXi as the hy-
pervisor, below we briefly describe its memory de-duplication
operations. A full description can be found at [6]. To avoid
unnecessary delay during page loading, whenever a new page
is loaded, ESXi will allocate a new physical page for it. Later,
ESXi will use idle CPU cycles to locate the identical memory

pages in physical RAM, and remove duplicates by leaving
pointers for each VM to access the same memory blocks.
While the reading operations to the de-duplicated pages will
access the same copy, copy-on-write is used to prevent one
VM from changing another VM’s data. This procedure will
incur extra overhead compared to writing to non-shared pages,
which will lead to a measurable delay when a large number
of shared pages are allocated and copied.

ParaView [7] is an open-source, multi-platform data analysis
and visualization software package. ParaView allows users to
generate visualizations to analyze their data using qualitative
and quantitative techniques. ParaView is used by the organi-
zations such as Army Research Laboratory, Sandia and Los
Alamos National Laboratories, and NASA.

B. Generation of Fingerprints of Large Data Sets

Considering the size of the data sets for scientific and
military applications, their memory footprint often contains
many pages. Some of these pages, however, cannot be used
for data set identification since they are not unique for any
specific file. For example, the header of the data files often
follows a pre-defined format and contains information such
as the dimension of the data, the number of records in the
file, and the size of each data record. At the same time, the
data files may also have some identical memory pages with the
operating system or user applications. To determine whether or
not a data file has enough unique memory pages, we propose to
conduct off-line memory dumps of computers after they have
loaded the file. The dump file is then cut into 4KB pages and
compared to the memory pages of different operating systems
and user applications. We adopt the mechanism in [4] and use
hash results of the memory contents as indexes to locate the
identical pages. Once we have categorized the memory pages
of the data sets, we can find out which memory pages are
unique to each data file. These coalesced memory pages will
hereafter be referred to as data file signatures.

The data file signatures created in this fashion give us a
real world representation to what can be found in the wild.
The off-line memory dump and analysis is also much faster,
easier, and only slightly less accurate than calculating what
the similar memory pages would be based on the documented
loading behavior of the data analysis software and the data
files themselves. Based on these considerations, we believe
that an attacker would most likely build data file signatures in
the same fashion as we have for the proposed approach.

C. Data Set Identification Procedures

As we describe in Section I, the virtual machine hypervisor
ESXi uses different methods to handle the writing operations
to the de-duplicated pages and pages with their own copies.
For the pages with their own copies, the writing operation can
be conducted immediately. For the de-duplicated pages, a new
copy must be created first, introducing a delay. Our data set
identification procedure, is to measure and detect the delay
caused by the de-duplication between our data file signatures



and the data sets in use at the target VM. To achieve the goal,
we adopt the following schemes.

First, since we want to measure the extra processing delay
caused by the writing operations to the de-duplicated pages of
the data sets, we need to control at what time and to which
pages such writing operations will be initiated. Fortunately,
for many data analysis and visualization applications such
as ParaView, the data sets are treated as read-only raw-data
inputs. Therefore, we will compile the unique pages of each
data set into single binary files for the attacker to load.

Second, since those long un-used pages may be swapped out
by the hypervisor, we need to distinguish the delay of hard disk
reading from that of copy-on-write. To accomplish this task,
we plan to conduct a reading operation to the constructed data
signatures before the writing operation. If the page is already
in the memory, this reading operation can be accomplished
immediately. On the contrary, if the page has been swapped
out, this reading operation will force the hypervisor to execute
a hard disk access with extra delay. Since ESXi will allocate
a new memory page for the newly read content, the next step
of writing will not provide us useful information. In this way,
we can distinguish between the two types of delay.

With these basic components established, our data set iden-
tification procedure is illustrated in Figure 2.

Fig. 2. The proposed data set identification procedure.

When we confirm that our VM instance and the target VM
are located on the same physical box through co-residence
detection, we will submit queries to the target system to trigger
the data access and analysis operations. We will then read the
data set signature files into the memory of our VM. These files
will be left alone to allow memory de-duplication algorithms
to locate and merge the identical pages. Once we are sure
that the de-duplication procedure is accomplished, we will
conduct a reading operation to the signature files. If the reading
access delay matches the hard disk loading time, we will
abort the data identification procedure since the newly loaded
pages all have their own copies. Otherwise, we will conduct a
writing operation to the signature files. Since we already know
these pages are in memory, based on the delay of the writing
operation, we can determine whether or not they experience
the copy-on-write procedure. If so, we know that another data

file matching to this signature exists in the physical box.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Although the basic idea of the proposed approach is straight-
forward, many issues need to be solved when we implement
the attacks. For example, we need to examine the size of
the data set signatures to make sure that the accumulated
difference in delay is actually measurable. At the same time,
we need to examine the timekeeping schemes in hypervisors
so that we can measure the real delay. In this section, we
present the details of our implementation of the attack and the
experiment results.

Fig. 3. Screenshot of 3D-IRCADb2.2, as used in experimentation.

A. Experiment Environment Setup

Our VMWare ESXi server is running on a PC with a dual
core 2.4GHz Xeon CPU, 4GB RAM, and SATA hard drives.
We have chosen two Windows Operating Systems as the guest
OSes for the target VM: Windows 7 32-bit, and Windows XP
SP3. The attackers VM is Windows 95 because it has a smaller
memory footprint than modern Windows Operating Systems.
Here, having a small memory footprint prevents our attackers’
VM from requiring excessive amounts of memory for loading
memory page samples. We have chosen five biological data
sets available from 3D-IRCADb [8] to serve as the data
files for fingerprinting and identification. A screenshot of an
example data set is available in Figure 3. We choose the five
data sets available that have a signature of over 3,000 memory
pages. Their basic information is shown in Table I.

file & size content source signature size
3D-IRCADb1.1 liver tumor 3D-IRCADb 3524 pages(6.9MB) structure database
3D-IRCADb1.3 liver tumor 3D-IRCADb 7836 pages(13.4MB) structure database
3D-IRCADb1.5 liver tumor 3D-IRCADb 3640 pages(7.1MB) structure database
3D-IRCADb1.6 liver tumor 3D-IRCADb 3661 pages(7.2MB) structure database
3D-IRCADb2.2 Chest/Abdomen 3D-IRCADb 7435 pages(13.1MB) 3D CT-scan database

TABLE I
SELECTED DATA SETS.



In order to build our data set signatures, we have gener-
ated and examined the memory dump files under different
scenarios. Specifically, we need to examine the memory page
contents under two conditions: (1) ParaView is initiated but
no data file is opened; and (2) ParaView has opened the
data file and generated the visualization. We experiment with
different types of guest OS to investigate their impacts on the
size of the signatures. The number of unique pages of each
data set is summarized in Table I. Please note that in this
table, we have cross-compared all the memory pages of the
two guest operating systems, the memory pages of ParaView
opened under different guest OS, and the pages of the data
sets. From the table, we find that the signature files usually
have the size of several thousands pages. The later experiment
results will show that the accumulated delay of accessing these
pages can be easily detected. At the same time, we find that
when ParaView opens the same data file in different guest
OSes, the memory dumps have many duplicate pages. This
shows that ParaView is almost OS-independent. This property
will definitely promote its wide adoption. However, it will also
provide convenience to attackers in data set identification since
the malicious parties do not need to first figure out the guest
OS of the target virtual machine.

Another issue that we are facing is the accuracy of time
measurement. Traditionally an operating system provides three
methods to measure the length of a time duration: time of the
day, CPU cycle counter, and APIC timer. The first method
provides the granularity of seconds and it is too coarse for
our application. The second method will be a good candidate
for time measurement if the OS completely owns the hardware
platform. In a VM-based system, however, it cannot accurately
measure the time duration. For example, if a page fault hap-
pens during our reading operation, the hypervisor will pause
the CPU cycle counter and switch to another VM. Therefore,
the delay caused by hard disk reading will not be measured.
Based on these observations, we choose to use the timestamp
service provided by masm32 in winmm.lib to access the APIC
timer. Specifically, we use the timeGetTime directive because
it provides a 1 millisecond resolution. According to [9],
VMWare has fully emulated the local APIC timer to provide
accurate time readings, so the page fault handler built into
ESXi to handle de-duplication will not pause the virtual local
APIC timer. To further reduce extra delay caused by high level
programming languages such as Java, we implemented the
memory access and time measurement functions in assembly.

As illustrated in Figure 2, we have divided our program’s
functions into four groups of operations. The operation group
one is to immediately read the first 32 bits of each data set
signature’s memory page and store the result of each read
operation in the accumulator (EAX). Our program then sleeps
the processor for a sufficient amount of time to allow de-
duplication to occur. Our program then performs operation
groups two through four immediately after each other. Group
two does the same operation as group one, but reads the
signatures after the sleep period. Group three writes junk data
to the first 32 bits of every memory page for each data set

signature. Group four then reads back the memory pages to
confirm the changes.

B. Experiment Results

We conduct four groups of experiments to evaluate the data
set identification capability of the proposed approach under
different levels of computation and memory access workload.
We have two virtual machines running on the physical box.
The operating system of the target virtual machine is Windows
XP SP3. It has the latest version of ParaView installed. The
attacker’s VM uses Windows 95 as the operating system. The
target VM has 512 MB memory and the attacker’s VM has
256 MB memory. Since we have constructed the data set
signature files in the binary format, we do not need to install
ParaView on the attacker’s VM. This is actually preferred,
because writing junk data to memory pages in actual use by
ParaView may cause the program to crash, which may be a
detectable event on the hypervisor. We assume that the attacker
has a rough idea of what sample data sets might be used by
the target VM. In our experiments, since we have direct access
to the target VM, we will activate ParaView to operate on a
single selected data set at a time. Since the attackers do not
know which data sets the target VM is using, we will load the
signature files of all data sets into memory and conduct the
reading/writing operations on each of them. Our results are
shown in Figures 4 through 7. In addition to our 4 groups of
operations, we first show in each figure the hard disk delay
required to load each signature from disk. Since the access
delays span across multiple degrees of magnitude, we use log-
scale Y-axis. Since the signature files of different data sets have
different sizes, we illustrate the average reading and writing
time per memory page in the figures. Each node in the figures
are the average value of five experiment runs with the same
configuration. All time delays are measured in milliseconds.
To help readers better understand the identification results, the
page access delay of the data set read by ParaView on the
target VM is always represented by “x”.

Fig. 4. Identification results of the 3D-IRCADb1.1 data set under idle level
computation workload.

In the first experiment, we set up a baseline test case.
Here the ParaView software on the target VM reads the
3D-IRCADb1.1 data set and generates the visualization. We



choose this data set as the test case since it contains the
smallest number of signature pages that still fit our 3000 page
count lower limit. As shown in Figure 4, the hard disk delay
is long. Next, the first read operation is short because the
pages have just been freshly loaded into memory. After that,
the target VM and the attacker’s VM are left idle to give the
de-duplication algorithms enough time to scan the memory.
Since each VM has enough memory to store the signature
files, we do not expect a lot of page swapping to happen. This
is confirmed by the very short access delay of the second
group of reading operations. The access delay of the writing
operations, however, demonstrates the difference among the
signature files. Here the delay of the signature file of the 3D-
IRCADb1.1 data set is about twelve times longer than those of
other data sets because of the copy-on-write operations. Our
approach can successfully identify the data set in use in this
baseline setup.

Fig. 5. Identification results of the 3D-IRCADb1.1 data set under moderate
computation workload.

For the second experiment we continued with the 3D-
IRCADb1.1 data set. This time, we also startup a Windows 7
VM and allow it to run along side the target and attacker VMs.
We repeatedly ran the System File Checker (SFC) included
with Windows 7 to simulate a normal moderate computer load
by a third party Virtual Machine running on the hypervisor.
The physical machine maintained fluctuating demands on the
CPU, memory, and hard disk through the entire test. The
results are shown in Figure 5. From the figure, we find that
the reading and writing delays are very similar to Figure 4.
The measured writing delay is still much longer than those
of other data sets (4 to 6 times longer). From this figure, we
find that the proposed approach will work properly when the
signature file is as small as three thousand pages under normal
real-world operating conditions.

In the third experiment, we want to assess what the impacts
are of using a data set with a larger signature, so we used the
3D-IRCADb1.3 data set. To introduce the impacts of normal
CPU, memory and disk usage operations, we again run the
SFC included with Windows 7 in a loop during the experiment.
As we describe above, the ParaView software on the target VM
reads the 3D-IRCADb1.3 data set. After the visualization is
generated, we leave the ParaView application alone to avoid

extra computation and memory access overhead caused by the
software. The results are shown in Figure 6. The write delay
measured is still 2 times longer than those of other data sets.
This figure shows that our approach can work properly with
larger signature data sets under normal operating conditions.

Fig. 6. Identification results of the 3D-IRCADb1.3 data set under moderate
computation workload.

In the fourth experiment, we write a script to continually
change the viewing angle on the target VM. The view point
rotated between each viewing axis and back again within one
second, causing the virtual CPU to peak out at 100 percent
usage, with each physical core maintaining about 50 percent
usage. We use the 3D-IRCADb1.1 data set to see if a smaller
signature will have a noticeable access delay. The results are
shown in Figure 7. The identification of the data set in use in
the target VM can still be identified with a 10 times longer
writing delay.

Fig. 7. Identification results of 3D-IRCADb1.1 data set under high level
computation workload and memory demand.

IV. DISCUSSION

A. The problem of VM instance co-residence detection

Although the experimental results in Section III are very
encouraging, one problem is left unsolved: how can we put
our VM instance onto the same physical box as the target
and determine their co-residence. We plan to experiment with
two adversarial strategies to place the attacker’s VM onto the



same physical box as the target. The first strategy is brute-
forcing placement in which we will launch numerous instances
over a period of time and conduct co-residence test discussed
below. Previous research [2] shows that this simple approach
has about 10% probability to successfully put the attacker’s
VMs onto the same physical box as the target. In the second
attack strategy, we plan to explore the strong sequential and
parallel placement locality of VM instances that have been
shown in third party clouds such as Amazon EC2 [2]. With
this property, if attackers launch VM instances relatively soon
after the launch of the target, it has a better chance to achieve
co-existence.

We understand that different VM management systems have
different mapping policies among the virtual machines and
physical boxes. For example, some systems use static mapping
between the two groups. Under this condition, we can use
the information such as the Dom0 IP addresses and internal
IP addresses in the cloud to determine whether or not two
instances are on the same physical box.

We plan to use two groups of mechanisms to verify co-
residence of the attacker’s VM and the target. In the first group
we will examine the similarity of their Dom0 IP addresses
and internal IP addresses in the cloud since many third party
cloud management systems use static mapping between the
addresses of VMs and the physical boxes. In the second group
we will investigate load-based co-residence detection schemes
[2]. The basic idea is to induce different levels of computation
and data access loads onto the target and measure the operation
delay of the attacker’s VM instance. If the two sequences of
events match very well, the two VMs have a good chance to
be located on the same physical box.

B. Prevention of the de-duplication based data set identifica-
tion

Since the proposed data set identification mechanism uses
the access delay to the memory pages to identify their contents,
the defense mechanisms need to hide the difference. Two
approaches can be used to achieve the goal. In the first
approach, we can combine the unique pages of different data
sets to construct a data file. When a VM instance tries to
defend against the fingerprinting attack through memory de-
duplication, it can periodically read the data file into its mem-
ory. In this way, the instance will demonstrate the signatures of
multiple data sets and raise the difficulty level of identification.
Please note that this approach can only defer the attack but
not totally disable it since the real data set in use will still be
in memory.

In the second approach, we can change the organization of
the data records in the memory when they are loaded from the
hard disk. In this mechanism, we can adopt different indexing
schemes to organize the data records in the main memory.
Therefore, even when the same data file is read at different
VMs, the memory pages will still have different contents. The
flexibility in data organization will not introduce too much
overhead in information processing and analysis since many
software packages such as MS SQL server are designed to

support multiple logical equivalent plans for query processing
[10].

V. CONCLUSION

In this paper we propose a new data set identification
mechanism for VM instances on hypervisors that enable the
memory de-duplication functionality. The analysis shows that
the reading and writing operation delay of the memory pages
will demonstrate a measurable difference when they do not
have their own copies in the memory. Experimental results
on multiple biological data sets show that each of these sets
contains a large number of unique pages that can be used as
its signature. We can use the co-residence detection schemes
to launch VM instances onto the same physical box as the
target and determine the data set in use. Our approach has the
non-interactive property and is more difficult to detect by IDS
or network traffic monitor.

Immediate extensions to our approach consist of the fol-
lowing aspects. First, we plan to experiment with more types
of operating systems and data analysis software to determine
whether or not such an attack can be used to identify different
data sets. We will also experiment with other hypervisors
such as extended Xen to generalize the attacks. Second, we
want to extensively study the designed prevention mechanisms.
We will determine the frequency to access the data file that
contains the unique pages of different data sets under various
loads and assess the probability to fool the identification proce-
dure. The research will provide guidelines for determining the
tradeoff between memory management strategies and security
in hypervisors.

VI. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. OISE-0730065.

REFERENCES

[1] B. McCullough and R. McKitrick, “Check the numbers: The case for
due diligence in policy formation,” the Fraser Institute, February, pp.2–
43, 2009.

[2] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proc. of ACM CCS, 2009.

[3] VMWare, “Esxi configuration guide,” VMware vSphere 4.1 Documen-
tation, 2010.

[4] D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren, G. Varghese,
G. Voelker, and A. Vahdat, “Difference engine: harnessing memory
redundancy in virtual machines,” Commun. ACM, vol. 53, no. 10, pp.
85–93, 2010.

[5] A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, and J. Favre, “Remote
large data visualization in the paraview framework,” in Eurographics
Parallel Graphics and Visualization, 2006, pp. 162–170.

[6] VMWare, “Understanding memory resource management in vmware esx
4.1,” VMware vSphere 4.1 Documentation, 2010.

[7] Kitware, “Paraview,” http://paraview.org/, 2011.
[8] European Institute of Tele-Surgery - Institut de Recherche Contre les

Cancers de L’Appareil Digestif, “Ircad/eits laparoscopic center,” http:
//www.ircad.fr/softwares/3Dircadb/3Dircadb.php, 2011.

[9] VMWare, “Timekeeping in vmware virtual machines,” http://www.
vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf, 2010.

[10] R. Rankins, P. Jensen, P. Bertucci, C. Gallelli, and A. Silverstein,
Microsoft SQL Server 2000 Unleashed. Sams, 2001.


