
Lightweight Examination of DLL Environments in Virtual
Machines to Detect Malware

Xiongwei Xie
Department of SIS

UNC Charlotte
Charlotte, NC 28223
xxie2@uncc.edu

Weichao Wang
Department of SIS

UNC Charlotte
Charlotte, NC 28223

weichaowang@uncc.edu

ABSTRACT
Since it becomes increasingly difficult to trick end users to
install and run executable files from unknown sources, at-
tackers refer to stealthy ways such as manipulation of DLL
(Dynamic Link Library) files to compromise user comput-
ers. In this paper, we propose to develop mechanisms that
allow the hypervisor to conduct lightweight examination of
DLL files and their running environment in guest virtual ma-
chines. Different from the approaches that focus on static
analysis of the DLL API calling graphs, our mechanisms
conduct continuous examination of their running states. In
this way, malicious manipulations to DLL files that happen
after they are loaded into memory can also be detected. In
order to maintain non-intrusive monitoring and reduce the
impacts on VM performance, we avoid examinations of the
complete DLL file contents but focus on the parameters such
as the relative virtual addresses (RVA) of the functions. We
have implemented our approach in Xen and conducted ex-
periments with more than 100 malware of different types.
The experiment results show that our approach can effec-
tively detect the malware with very low increases in over-
head at guest VMs.

Keywords
Malware Detection through Hypervisor; Attacks on DLL
Files; Lightweight Monitoring

1. INTRODUCTION
Computer systems face the threats from high spreading

rate of computer malware (worms, Trojan horses, rootkits,
botnets, etc.). Malware intrudes into computer systems and
causes millions of dollars in damage. Host-based malware
detection mechanisms have their limitations. On one side,
since the anti-malware systems are installed and executed
inside the hosts that they are monitoring, they can collect
rich information from the local host. On the other side, since
they are visible and tangible to advanced malware running

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SCC’16, May 30-June 03 2016, Xi’an, China
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4285-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2898445.2898456

in the system, effective attacks towards them become feasi-
ble. For example, some malware such as Agobot variant [1]
can detect and remove more than 105 types of anti-malware
programs in the victim machine.

Since it becomes increasingly difficult to trick end users
to download and run executable files from unknown sources,
attackers refer to more stealthy ways to avoid detection.
Based on a report released by Kaspersky [13], about 60%
of malware collected at KingSoft anti-malware lab are DLL
files. From this point of view, protecting the authenticity
and integrity of DLL files that are loaded into computer
systems is essential for the safety of end users.

The emergence of cloud computing opens a new horizon
for combating with the trends in malicious attacks on DLL
files. Some researchers [7, 10, 23] proposed to place the
intrusion detection mechanisms outside of the virtual ma-
chine being monitored. A well implemented hypervisor will
enforce strong isolation among virtual machines and the pro-
grams running within them. Under this condition, even if
a virtual machine is compromised by malware, it is difficult
for the attacker to compromise the hypervisor. For example,
VMwatcher [6] uses the general virtual machine introspec-
tion (VMI) methodology in a non-intrusive manner to in-
spect the low-level VM states. UCON (usage control model)
[24] is an event-based logic model. It maintains the lowest
level access to the system and ensures that such access can-
not be compromised by internal processes of a VM.

Existing malware detection approaches often use informa-
tion from DLL or other executable files in the following way.
They will collect a large number of PE or DLL files and
conduct static analysis of the API calling graphs in these
applications. The learned knowledge will then be used as
features to detect malware. Example solutions include [17,
18, 25]. These approaches are effective in detection of in-
fected files when they are stored in hard-drive. However, if
no continuous examination is conducted, they cannot cap-
ture infections to the DLL files that happen after their ini-
tial screening. Another thread of research uses signatures
of different pieces of kernel code [12] or cross-compares code
segments among multiple VMs [2] for code integrity check-
ing purposes. However, it quickly becomes cumbersome and
time consuming to maintain a database of all legitimate sig-
natures. For example, ModChecker [2] will introduce a de-
lay of 0.2 second when it tries to compare http.sys on two
mostly-idle virtual machines.

In this paper, we propose a lightweight approach at the
hypervisor level to continuously monitor the status of loaded
DLL files in guest virtual machines to detect malware. In-

stead of using information that is extracted from differ-
ent modules of a VM as individual components, our cross-
verification schemes cover a wide range of properties of the
DLL files including their loading path, loading order, and
RVA (relative virtual address) of the functions. Our over-
all approach can be divided into three steps: collection,
analysis, and monitoring. Through memory reconstruction
technology of the virtual machines, we record the execution
states of different applications in the VMs at the hypervisor
level. Using freshly installed virtual machines, our collection
procedures will extract and record information of DLL files
in malware-free environments. After we collect enough in-
formation from the training data, we will start the analysis
procedures. We will explore relationship between the active
processes and the loaded DLL files. We will also generate fin-
gerprint of the loading order and RVAs of the DLL files. We
will then continuously monitor the DLL files running in the
VMs and compare them to the extracted features. If attack-
ers make any changes to the information under surveillance,
we can detect the infection in real time.

The contributions of our research can be summarized as
follows. First, instead of examining the DLL files for only
once when they are loaded, our approach conducts contin-
uous monitoring on the files. In this way, infections to the
libraries can be detected on the fly. Second, our malware
detection mechanism uses non-intrusive introspection of vir-
tual machines. Since the detection mechanism is running at
the hypervisor level, it is very difficult for malware running
in a VM to detect, remove, or avoid our approach. Third,
instead of examining the contents of the whole libraries, we
focus on some high level yet essential information such as
the RVA of the functions. In this way, even when we ex-
amine the VMs’ memory at a relatively high frequency, the
impacts on their performance are still very low. Last but
not least, we conduct extensive experiments to evaluate the
proposed approach. We use more than 100 malware of differ-
ent types (Trojans, stealth backdoors, adware, and virus) to
test our detection mechanism. Our solution detects almost
all malware samples with very low false negatives.

The remainder of this paper is organized as follows. In
Section 2 we discuss the related work. In Section 3 we
present the details of the proposed approach. In Section
4 we describe the implementation of the malware detection
mechanism and experiment results. Section 5 discusses a
few issues in the detection procedure. Finally, Section 6
concludes the paper.

2. RELATED WORK
Existing approaches to manipulating DLL files in a com-

puter system can be roughly classified into two groups. In
the first group, malware will try to load its own DLL files
into the system through DLL injection mechanisms [3]. An
attacker can achieve the goal through either remote thread
injection or registry DLL injection. For example, Conficker
worm injects undesirable DLLs into legitimate software pack-
ages [19]. Another way of manipulating the DLL files is to
change the files directly. For example, attackers can use API
hooking [26] to redirect a benign function call to malicious
code segments. In-line code overwriting can also be used to
achieve the goal [22].

Our approach can effectively detect the attacks described
above. During the collection phase, we have learned the

relationship between the application software and the DLL
files loaded by it. Therefore, if attackers try to link their ma-
licious DLL with an application, we can detect the anomaly.
Since our approach will examine the RVA of the function
calls, API hooking can be detected as well.

Researchers have experimented with malware detection
through verifying integrity of system files. For example,
SBCFI (state-based control-flow integrity) [15] monitors ker-
nel integrity of the OS to detect malicious changes. Copi-
lot [14] implements a similar approach in coprocessor plat-
forms. The disadvantage of these approaches is their rela-
tively heavy overhead on the system. In our approach, we
choose to examine only the high level information instead
of the complete file contents to reduce impacts on the VMs.
More discussion on this choice is presented in Section 5.

3. THE PROPOSED APPROACH

3.1 System Assumptions and Design Goals
In the investigated scenario, we assume that we can get

access to malware-free virtual machines during the collection
and learning phases of the approach. This can be achieved
through using freshly installed systems. After the collection
procedures, we do not restrict user behaviors on the VMs.
They may be tricked by attackers and download or install
some adware, virus, worm, or spyware into the system. We
also assume that an attacker can acquire the administrator
privilege of a compromised virtual machine after she/he in-
trudes into the system. Malware installed by the attacker
may modify return results to anti-virus programs that are
running in the local VM to hide the malicious process. The
malware may also inject in some benign process, such as
explorer.exe, and start several threads to conduct malicious
activities. However, similar to the approaches in [27], we as-
sume that the attacker cannot infect the hypervisor through
the VM.

Our investigation has the following design goals. First,
the malware detection mechanism should be transparent to
end users. Moreover, it can extract and recover the virtual
machine’s execution states accurately. This goal is realized
through the non-intrusive introspection technology. Since
we examine the VM execution states from the hypervisor, it
is very difficult for the malware to mislead the detection pro-
cedure. Second, the approach should be independent from
specific hypervisors. The design should support VMM in
both full virtualization mode (e.g., VMware[20] and KVM
[9]) and paravirtualization (e.g., XEN [4]) modes. This prop-
erty allows more users to benefit from the approach. Analy-
sis in later parts will show that our malware detection mech-
anism does not depend on any specific hypervisors. Third,
we also need to control the performance impacts of the pro-
posed approach on virtual machines. This requirement is
essential for future deployment and adoption of our malware
detection mechanisms. Our experiments will show that ex-
amining only the execution states in VM memory, even pe-
riodically with a short time interval, will introduce a small
increase in overhead.

3.2 Memory reconstruction
Before we can collect and analyze information from guest

virtual machines, we must first reconstruct memory of the
VMs at the hypervisor level. Since the hypervisor sees only

the raw memory pages of a virtual machine, we need to
rebuild its semantic view, so that we can extract high level
semantic information.

To better explain the memory reconstruction procedure,
below we use an example of a Windows guest OS to illustrate
the information extraction operations. We can go through
the process list from PsActiveProcessHead (the head of
the double linked list). In Windows XP, each process has
an EPROCESS object through which we can traverse the
whole list. Each EPROCESS object contains both Flink
(forward link) that points to the next EPROCESS struc-
ture and Blink (backward link) that points to the previous
EPROCESS structure. PsActiveProcessHead is a mem-

ber of the kernel debugger data block (KDDEBUGGER
DATA64), which is used by the kernel debugger to find

out the states of the operating system [11]. Furthermore, the
Kernel Processor Control Region (KPCR) is a data structure
used by the Windows kernel to store information about each
process. It is located at virtual address 0xffdff000 in Win-
dows XP. In KPCR, the data structure KdV ersionBlock
contains a linked list of KDDEBUGGER DATA64.

Through memory introspection technique, we can extract
high level execution states of a virtual machine. The exe-
cution states that we can get include process list, network
connections, opened files, dynamic loadable library, and rel-
ative virtual address of functions in DLLs. In the process
list, we could get the full path of the files in execution. For
each process, the order of the extracted DLL files is identical
to the order in which the process loads them into memory.
Moreover, we can get the relative virtual address (RVA) of
functions in different DLLs. Access to the information pro-
vides a rich data set for us to conduct subsequent analysis
and design of detection mechanisms.

3.3 Design of the Malware Detection Mecha-
nisms

At the high level, we propose a malware detection mecha-
nism that runs in hypervisor to detect infected DLL files in
guest VMs. This is accomplished in three steps (Figure1):
(1) the collection phase, in which a process collects infor-
mation about different applications from malware-free vir-
tual machines; (2) the analysis phase, in which we analyze
the execution states of each benign process, and extract the
characteristics of these benign applications; and (3) an on-
line detection phase, in which the detection program is used
to detect infected DLLs in a guest VM through compar-
ing their execution states to the learned information. These
three steps are described in more details below.

Secure VM

getInformation

Behavior Logger

B
e

n
ig

n

b
e

h
a

v
io

rs

Behavior Analyzer

Information Collection Offline Analysis Runtime Detection

Benign Process

Signature

Untrusted VM

Runtime Detection

Benign Process

Signature

Figure 1: The proposed malware detection proce-
dure.

First, we use a running example to illustrate the informa-
tion collection procedure. In order to get a comprehensive
view of the execution states and avoid impacts from a spe-

cific running environment, our information collection pro-
gram will run many times in the hypervisor to extract behav-
iors of each process from different installations of malware-
free VMs. For example, in a PE file, the export structure
is called Image Export Directory with eleven (11) mem-
bers in it. AddressOfFunctions is the head of the array
that keeps RVAs to all functions in the module. AddressOf
−Names is the head of another array that keeps the names
of functions in the module. Combining these two arrays, we
can get export functions and RVAs in pairs.

Although the information that we gather through the col-
lection phase contains a lot of data that can be used to differ-
entiate malware from benign applications, two reasons lead
us to apply some learning algorithms to filter out noises and
generate behavior patterns of benign processes. The first
reason is that different versions of the same software demon-
strate different behaviors. We can use an example of the
RVAs of the same function to illustrate this. In ws2 32.dll
with version 5.1.2600.5512, the RVA of function socket is
0x00004211, while the RVA of the same function in version
6.3.9600.17415 is 0x00003BD0. The second reason is that
even when the same application software with the same ver-
sion number is installed, the VMs may still demonstrate dif-
ferent behaviors in different environments. For example, un-
der most conditions, explorer.exe will not load avcuf32.dll
into memory. However, if we install Bitdefender in our vir-
tual machine, which is an anti-virus application, explorer
.exe will load avcuf32.dll into memory after KERNEL32
.dll. Similarly, explorer.exe will load 7-zip.dll into memory
only if we install 7-zip. Because of the differences in behav-
iors, we need to experiment with the same application in
different running environments to learn their behaviors.

The knowledge that we learn from the malware-free VMs
covers a wide range of properties of the applications. For
example, we will check the DLL names, their full loading
paths, and RVAs of functions in them. In this way, if an
attacker loads his own malicious DLLs into the system, we
will be able to catch them. Some malware may impersonate
a popular process name, such as svchost.exe, to fool the de-
tection algorithm. The fake process, however, usually needs
to load DLLs from a folder that is different from that of
the real application. Therefore, we can distinguish between
them based on these differences.

Another feature that we can use to detect malware is the
relationship between the functionality of an application and
the DLLs it loads. DLL files usually serve specific pur-
poses. For example, ws2 32.dll, hnetcfg.dll, pstorec.dll,
and crypt 32.dll are used for networking, firewall mainte-
nance, access to protected storage, and cryptography, re-
spectively. An application should load only the DLLs that
it needs to use. Through analyzing the functionality of dif-
ferent applications and the DLL files that they load, we can
expose their relationship. If DLL files that deviate from
the functionality of an application are loaded, we need to
conduct further investigation. For example, if a malicious
application calls functions from all four DLLs we mention
above, it can read confidential information from the system,
encrypt it with secret keys, and send it out to the attacker.
This type of anomaly can be detected through cross com-
parison among the DLLs that are loaded by the applications
with similar functionality.

We can also use dependency among DLL files to detect
malware. Their dependency could impact the order in which

they are loaded into the system. For example, IEXPLORE
.EXE is a frequent target of attackers. We analyze its be-
haviors and find out that there are 16 groups of consecutive
loading orders of DLL files. The length of these consecutive
segments ranges from 2 to 20. Some DLL injection attacks
will break these consecutive segments. Therefore, we can
use this change to detect the malware.

Last but not least, through checking the RVA addresses
of the functions, our detection mechanism can catch several
types of code injection and in-line code overwriting attacks
upon DLLs. In order to increase the efficiency of our detec-
tion mechanism, we will examine the RVAs of the functions
as one unit by calculating and checking their hash result.

Extract Behaviors

Report alarm to

end user

DLL name, full path

 Order of loaded DLL

Verify Section Table

Abnormal

Abnormal

Abnormal

Wait for next period

RVA and functions
Abnormal

Figure 2: Runtime detection procedure.

After analyzing the extracted information from malware-
free VMs, we will start an on-line monitoring and detection
procedure in the hypervisor. The details of the detection
procedure are shown in Figure 2. At the beginning of each
round of detection, we need to take a snapshot of the mem-
ory pages of a VM that contain its execution states. This
operation will take a very short period of time and will not
impact the user experiences with the guest VM [10]. After
the system data structures are reconstructed from the mem-
ory pages, we will compare the information to the knowledge
that we have learned through Step 2. If any anomaly is de-
tected, we will raise an alarm.

4. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

4.1 Experiment Setup
To evaluate the detection capabilities of the proposed ap-

proach and assess its impacts on the system performance, we
implement the mechanisms in Xen and conduct two groups
of experiments. In the first group, we investigate the effec-
tiveness of our malware detection approach through a group
of real-world malware. In the second group, we evaluate the
impacts of our detection mechanism on the guest system per-
formance. The experiment environment setup is as follows.
The physical machine has a four core 3.30GHz Intel CPU, 10
GB RAM, and SATA hard drives. The hypervisor that we

use is Xen version 4.1.2 with the libvir 0.9.8. The host op-
erating system is Ubuntu Server 12.04 LTS (64bit). We test
two virtual machines. One virtual machine is using Windows
XP SP3 (32bit) as the operating system. The other virtual
machine is using Windows 7 Professional (32bit) as the op-
erating system. Each virtual machine occupies one CPU
core and 20GB hard disk. We vary the allocated memory
to VMs from 1GB to 3GB to evaluate the impacts of the
memory size on our proposed approach.

4.2 Detection Capability of the Proposed Ap-
proach

To collect behavior patterns of the benign systems and
software, we install popular benign applications in the guest
VMs. We download 100 benign and freely available appli-
cations from a trustworthy and reputable web site. These
benign applications cover freeware programs in a wide range
of different domains (such as system utilities, office applica-
tions, media players, instant messaging, and browsers). We
experiment with different combinations of the software in
different environments so that the analysis phase can ex-
tract their special properties. After that, we download and
install six groups of different malware to evaluate the de-
tection capabilities of our program. We conduct malware
detection experiments on two types of virtual machines. In
the first group, the guest virtual machine runs Windows 7
Professional 32 bit. Our malware collection consist of 75
real world malware samples, including 10 stealth backdoors,
20 trojans, 15 adwares, 10 worms, 10 rootkits, and 10 virus.
All of them are publicly available on the Internet (e.g., from
web sites such as http://oc.gtisc.gatech.edu:8080/).

Category

Backdoor

Trojan

Adware

Worm

Rootkit

Total

10

DLL
Path

8

18

13

9

10

Loading
Order

6

17

13

10

10

RVA

8

18

13

10

10

Virus 10 8 10

Total

10

20

15

10

10

10

Total

1

False
Negative

0

1

2

0

0

0

Figure 3: Summary of malware detection results on
Windows 7 VM.

Figure 3 summarizes the detection results. Here ‘False
Negative’ represents the number of malware that is missed
by our detection mechanism. ‘DLL Path’ represents the
number of malware that is detected based on anomaly in
name/loading path of the DLL files. ‘Loading Order’ repre-
sents the number of malware that is detected based on the
order in which the DLL files are loaded. ‘RVA’ represents
the number of anomaly in hash results of the relative virtual
addresses. For example, 17 out of 20 Trojan attacks are de-
tected by our approach since they change the order in which
DLL files are loaded into the system.

From Figure 3, we can see that our proposed mechanism
is able to correctly identify most of the malware samples.
There are three false negatives in our detection results. One
of them is a Trojan that attempts to redirect our browser
to another website. This Trojan is a JavaScript Trojan that
does not have any DLL related behaviors. The other two
are JavaScript adware. They attempt to display pop-up and

pop-under advertisements when we are visiting some website
in a JavaScript-enabled browser. The advertisements pop-
up as separate windows to the active browser window so
that they can bring additional profit to the designer. None
of the missed malware demonstrates abnormal behaviors of
a process or tries to infect DLL files. Therefore, they are
not detected by our approach.

In the second group, the guest virtual machine runs Win-
dows XP SP3 32 bit. From Figure 4, we can see that our
proposed mechanism is able to correctly identify most of the
malware samples. There are two false negatives in the detec-
tion results. One of them is a Trojan that changes a registry
value. The computer is also showing an advertisement in the
Yahoo Messenger chat window. Hence, its behavior resem-
bles a benign application. If we click on that advertisement,
it would download and execute a setup file that will run at
every system boot-up. Our malware detection mechanism
will catch it if this behavior shows up. The other false nega-
tive is an adware, which is a download manager. Every time
a user wants to download a file from the internet, a window
with advertisement will appear. However, no user data will
be reused, stored, or shared. The reason that it is missed is
because our malware detection mechanism can identify only
the abnormal behaviors of a process, but not its intent or
phishing. In real life, it is not difficult for a user to identify
this type of advertisement.

Category

Backdoor

Trojan

Adware

Worm

Rootkit

Total

10

DLL

Path

3

9

4

4

3

Loading

Order

3

8

4

5

3

RVA

3

9

4

5

3

Virus 4 3 4

Total

5

10

5

5

3

4

Total

1

False

Negative

0

1

1

0

0

0

Figure 4: Summary of malware detection results on
Windows XP VM.

We have conducted a third group of experiments to assess
the false positive mistakes of our approach. We download
60 benign and freely available applications that are different
from our training set. These applications cover a wide range
of different domains (such as browsers, audio players, video
players, instant messaging, and security applications). From
Figure 5, we can see that our malware detection mechanism
causes no false positive mistakes.

Windows 7

Windows XP

Total

10

Browser

3

3

Audio

3

3

Video

3

3

Total

15

15

Total

1

False
Positive

0

0

Office

3

3

IM

3

3

Windows 7

Windows XP

Total

10

Utilities

3

3

Graphic

3

3

Education

3

3

Total

15

15

Total

1

False
Positive

0

0

DVD/CD
Tools

3

3

Security

3

3

Figure 5: Tests for false positive mistakes of our
approach.

4.3 Overhead and Performance Analysis
To protect a VM from malware infection, we need to run

the proposed approach at the hypervisor level periodically.

Since our detection mechanism needs to temporarily freeze a
part of the memory in the VM, it will impact the operations
of the guest VM. Therefore, we must study the relationship
between the detection frequency and its impacts on the sys-
tem performance. We conduct two sets of experiments to
assess the impacts.

In the first group of experiments the guest VM is running
CPU intensive applications. We choose two examples: (1)
the Fibonacci benchmark that computes the fibonacci se-
quence; and (2) the Prime benchmark that generates prime
numbers. Each of the software is running in parallel with
the malware detection mechanism. When they are running
in a virtual machine, the measured CPU usage is very close
to 100%. The malware detection algorithm is running in
the hypervisor. We measure changes in execution time of
the software since this is the most intuitive parameter that
end users adopt to evaluate the system performance.

In the second group of experiments the guest VMs are
running CPU and memory intensive applications. We also
choose two examples: (1) the N -Queens package that tries
to generate all possible solutions to the N -Queen problem in
chess; and (2) the Combination benchmark that computes
all possible combinations of the input numbers and stores
them in memory. We also measure their execution time
when each of them is running in parallel with the proposed
detection mechanism.

95%

97.5%

100%

102.5%

105%

1s 5s 25s

Fibonacci

E
xe

cu
ti

o
n

 T
im

e

(R
at

io
 t

o
 w

/o
 m

al
w

ar
e

 d
e

te
ct

io
n

)

Prime N-Queen Permutation

Interval of Rootkit Detection (seconds)

Figure 6: Relationship between malware detection
frequency and its impacts on system performance.

From Figure 6, we find out that when we increase the
interval between malware detections, the impacts on virtual
machine performance are decreasing. When the interval is
equal to 25 seconds, there is almost no measurable increases
in execution time at guest VMs. Even when we execute the
proposed approach every second, the increase in application
execution time is less than 5%. At the same time, since
our approach does not need a lot of memory from the VMs,
the difference between the two groups of experiments is not
large. Based on the results, we can see that our proposed
approach has very low performance impacts on the VM.

We also study the relationship between the allocated mem-
ory to guest VMs and the impacts of our malware detection
mechanism on system performance. In this experiment, we
use CPU and memory intensive applications to assess the
performance impacts. In each guest virtual machine with
different memory allocation, we run the N -Queens pack-

age while we test the malware detection mechanism with
different execution intervals. Here we allocate 1GB, 2GB,
and 3GB RAM to the virtual machine. From Figure 7, we
can see that the system performance stays almost the same
as long as the intervals between malware detections do not
change. In our melware detection mechanism, we extract
only high level semantic information from the system data
structures of the VMs. While malware detection is running
at the hypervisor level, the differences in memory alloca-
tion size to guest VMs would not bring a huge difference to
system performance since we do not conduct “brute force”
memory scanning.

95%

97.5%

100%

102.5%

105%

1 GigaBytes 2 GigaBytes 3 GigaBytes

1 second

Ex
e

cu
ti

o
n

 T
im

e
(R

at
io

 t
o

w
/o

 m
al

w
ar

e
d

et
e

ct
io

n
)

5 seconds 25 seconds

Memory Allocation of Guest Virtual Machine

Figure 7: Relationship between memory allocation
size and the impacts of our malware detection mech-
anism on VM performance.

To reduce performance impacts, in the proposed mecha-
nism we examine only the RVA of the DLL functions. A
more comprehensive detection mechanism would examine
the contents of all read-only sections of DLL files. To com-
pare the two schemes, we conduct a group of experiment and
measure their execution time. The execution time measures
only the hashing and comparison delay but not the loading
time of the files. From Figure 8, we can see that the ex-
ecution time of hashing all read-only sections of DLL files
is about 3 times longer than that of examining only RVAs.
When the total size of DLL files is about 350MB, the ex-
ecution time of RVA examination is about 250ms, while it
takes about 850ms to examine the whole read-only contents.

5. DISCUSSION
In this section, we will discuss a few potential extensions

to our approach. We are especially interested in the tradeoff
between detection capability and increases in overhead.

RVA only vs Read-only Content Examination
To reduce overhead of the proposed approach, in this pa-

per we examine only the virtual addresses of the functions
in the DLLs. The assumption is that if attackers inject ma-
licious code segments into a DLL, the relative address will
change. This assumption may not hold under some cases.
For example, an attacker may apply compression algorithms
to in-line overwriting contents so that the size of the mali-
cious segments does not grow beyond the function bound-
aries [16].

To detect such attacks, we can use one of the following
schemes. First, we could generate the hash result of the

200

50MB 100MB 150MB 200MB 250MB 300MB 350MB

100

400

300

600

500

800

700

900 Hash

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Total size of Dynamic Link Library Files (MB)

RVA

Figure 8: Comparison of hashing all read-only sec-
tions of DLL files with examining only RVAs.

read-only contents of DLL files during the learning phase so
that any small changes could be caught. Our experiment
results in Figure 8 show that we will have to pay for the
increases in computation and memory access delay. Another
mechanism is to scan the DLL files and try to locate the code
segment for decompression [21]. This method has the same
memory access overhead but avoids computation.

Diversity and Order of Loaded DLLs
Researchers have proposed several mechanisms to use func-

tion call graphs to detect malware [8, 5]. In this paper, we
try to use information at a higher level of abstraction with
the DLL names and their loading orders. One difficulty that
we face is the diversity of the DLL functions. Very frequently
the same operation can be accomplished by functions from
different DLL files. Another challenge that we face is the us-
age of DLL files that are not directly related to the function-
ality of the application software. For example, an increasing
number of applications will collect user information, encrypt
it, and send it back to the company server so that user pro-
filing can be conducted. Such operations also increase the
difficulty of malware detection.

In this paper, we investigate the order in which the DLL
files are loaded into the system and use it for malware de-
tection. Here we do not differentiate tight dependency from
loose dependency (several DLLs may switch their order of
loading without impacting the software functionality). The
lack of such knowledge may lead to false positive alarms.
In the next step, we plan to investigate this problem and
classify their dependency.

6. CONCLUSION
In this paper, we propose a lightweight malware detec-

tion mechanism for virtual machines. The hypervisor will
collect, analyze, and monitor the execution states of virtual
machines and detect compromised DLL files. In the experi-
ments, we have evaluated more than 100 real world malware
samples. We use both Windows XP and Windows 7 as test
operation systems. Our experiment results show that the
proposed approach is practical and effective. Furthermore,
we conduct several groups of experiments to evaluate the
increased overhead under different situations. The increases
in overhead at virtual machines are very low since we access

only a small portion of their memory pages through high
level data structures.

Immediate extensions to our approach consist of the fol-
lowing aspects. First, we plan to experiment our approach
with Linux virtual machines so that we can evaluate its prac-
ticability in other environments. Second, we plan to design
innovative mechanisms to extract more high level informa-
tion from virtual machines. The rich data set will allow us
to better understand the difference between benign and ma-
licious software. Finally, we plan to extend our approach
to other hypervisors (such as KVM) so that more end users
can benefit from our research.

7. REFERENCES
[1] Agobot. http://www.f-secure.com/v-descs/agobot

.shtml, 2012.

[2] I. Ahmed, A. Zoranic, S. Javaid, and G. Richard.
Modchecker: Kernel module integrity checking in the
cloud environment. In International Conference on
Parallel Processing Workshops (ICPPW), pages
306–313, 2012.

[3] A. Alasiri, M. Alzaidi, D. Lindskog, P. Zavarsky,
R. Ruhl, and S. Alassmi. Comparative analysis of
operational malware dynamic link library (dll)
injection live response vs. memory image. In
International Conference on Computing,
Communication System and Informatics Management
(ICCCSIM), 2012.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proceedings of ACM SOSP, pages 164–177, 2003.

[5] A. A. E. Elhadi, M. A. Maarof, and A. H. Osman.
Malware detection based on hybrid signature behavior
application programming interface call graph.
American Journal of Applied Sciences, 9(3):283–288,
2012.

[6] X. Jiang, X. Wang, and D. Xu. Stealthy malware
detection through vmm-based “out-of-the-box”
semantic view reconstruction. In ACM CCS, pages
128–138, 2007.

[7] A. Joshi, S. King, G. Dunplap, and P. Chen.
Detecting past and present intrusions through
vulnerability-specific predicates. In SOSP, 2005.

[8] J. Kinable and O. Kostakis. Malware classification
based on call graph clustering. Journal in Computer
Virology, 7(4):233–245, 2011.

[9] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. Kvm: the linux virtual machine monitor.
In Linux Symposium, pages 225–230, 2007.

[10] P. F. Klemperer. Efficient Hypervisor Based Malware
Detection. PhD thesis, CMU, May 2015.

[11] M. H. Ligh, A. Case, J. Levy, and A. Walters. The Art
of Memory Forensics: Detecting Malware and Threats
in Windows, Linux, and Mac Memory. Wiley, 2014.

[12] K. Makris and K. D. Ryu. Dynamic and adaptive
updates of non-quiescent subsystems in commodity
operating system kernels. SIGOPS Oper. Syst. Rev.,
41(3):327–340, 2007.

[13] M. Narouei. Mining modules dependencies for
malware detection. www.kaspersky.com/downloads
/pdf/masoud narouei.pdf, 2012.

[14] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A.
Arbaugh. Copilot: a coprocessor-based kernel runtime
integrity monitor. In USENIX Security Symposium,
2004.

[15] N. L. Petroni, Jr. and M. Hicks. Automated detection
of persistent kernel control-flow attacks. In ACM CCS,
pages 103–115, 2007.

[16] K. A. Roundy and B. P. Miller. Binary-code
obfuscations in prevalent packer tools. ACM Comput.
Surv., 46(1):4:1–4:32, July 2013.

[17] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian,
S. Hashemi, and A. Hamze. Malware detection based
on mining api calls. In Proceedings of the ACM
Symposium on Applied Computing (SAC), pages
1020–1025, 2010.

[18] M. Shafiq, S. Tabish, F. Mirza, and M. Farooq.
Pe-miner: Mining structural information to detect
malicious executables in realtime. In E. Kirda, S. Jha,
and D. Balzarotti, editors, Recent Advances in
Intrusion Detection, volume 5758 of Lecture Notes in
Computer Science, pages 121–141. Springer Berlin
Heidelberg, 2009.

[19] A. Srivastava and J. Giffin. Automatic discovery of
parasitic malware. In S. Jha, R. Sommer, and
C. Kreibich, editors, Recent Advances in Intrusion
Detection, volume 6307 of Lecture Notes in Computer
Science, pages 97–117. 2010.

[20] B. Walters. Vmware virtual platform. Linux J., (63es),
1999.

[21] T.-E. Wei, Z.-W. Chen, C.-W. Tien, J.-S. Wu, H.-M.
Lee, and A. Jeng. Repef: A system for restoring
packed executable file for malware analysis. In
International Conference on Machine Learning and
Cybernetics (ICMLC), volume 2, pages 519–527, 2011.

[22] C. Willems, T. Holz, and F. Freiling. Toward
automated dynamic malware analysis using
cwsandbox. IEEE Security and Privacy, 5(2):32–39,
March 2007.

[23] X. Xie and W. Wang. Rootkit detection on virtual
machines through deep information extraction at
hypervisor level. In International Workshop on
Security and Privacy in Cloud computing (SPCC), in
conjunction with IEEE CNS, 2013.

[24] M. Xu, X. Jiang, R. Sandhu, and X. Zhang. Towards a
vmm-based usage control framework for os kernel
integrity protection. In SACMAT, pages 71–80, 2007.

[25] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang. An
intelligent pe-malware detection system based on
association mining. Journal in Computer Virology,
4(4):323–334, 2008.

[26] H. Yin, Z. Liang, and D. Song. Hookfinder:
Identifying and understanding malware hooking
behaviors. In NDSS, 2008.

[27] A. Yu, Y. Qin, and D. Wang. Obtaining the integrity
of your virtual machine in the cloud. In IEEE
International Conference on Cloud Computing
Technology and Science (CloudCom), pages 213–222,
2011.

