Overview

- Concepts of CIA: confidentiality, integrity, and availability
- Confidentiality: concealment of information
 - The need arises from sensitive fields (military, industry)
 - Examples: encryption (protect the key), access control, existence of the data, resource hiding (configuration, google 1.7 – 2.4 M servers.)
- Integrity: prevent unauthorized or improper changes, is directly related to trustworthiness of data and sources
 - Include data integrity and origin integrity (has impact on trust), therefore, related to credibility
 - Prevention:
 - prevent unauthorized changes
 - changes in unauthorized ways
 - Detection
 - Report integrity violation (confine dirty data??)

Overview

- Concepts of CIA: confidentiality, integrity, and availability (continued)
- Availability: ability to use the data or resources
 - Example of highway
 - DoS or DDoS attacks (SMS for cell phone)
 - Very difficult to detect
 - Is it attack or we are unlucky today
 - Attacker will mess with the security methods as well (packet tracing)

- Threats:
 - A potential violation of security (not necessarily occur at this moment).
 - The actions that cause such violations are called attacks.
 - 4 classes of threats:
 - Disclosure: unauthorized access to data
 - Deception: acceptance of false data
 - Disruption: interruption or prevention of correct operation
 - Usurpation: unauthorized control of the system

- Examples of threats:
 - Snooping: unauthorized interception, is a kind of disclosure (eavesdrop on wireless). Countered by confidentiality or other information hiding methods.
 - Modification: unauthorized change of data, may lead to deception, disruption, and usurpation. Countered by integrity.
 - Spoofing: impersonation, may lead to deception and usurpation. Countered by integrity.
 - Difference b/w impersonation and delegation
 - Denial of receipt or origin: is a kind of deception
 - Interesting questions: simultaneous contract signing

- Policy and mechanism
 - Policy is a statement of what is and what is not allowed.
 - Can be presented formally (in mathematical way)
 - Can be described in plain English
 - When two communicating parties have different policies, they may need to compromise (example b/w univ. and industry)
 - Mechanism is a method to enforce a policy.
 - May impact the system performance
 - Prevention: to fail an attack
 - Detection
 - Recovery: fix not only data, but also vulnerabilities
 - Tolerance

- Assumptions:
 - Security rests on assumptions of the required security and application environments
 - Assumptions of a security policy
 - A policy can correctly and unambiguously partitions system states into secure and insecure
 - A security mechanism will prevent a system from entering a insecure state
 - Define a security mechanism as secure, precise, or broad (the example of highway)
 - In real life, security mechanisms are usually broad (Why?)

- Operational issues:
 - An isolated PC will not be attacked through network, but it cannot access network either
 - We must balance the benefit of protection against the cost of designing, implementation, and usage of a system
 - Cost-benefit analysis:
 - Protect data or regenerated data? Which is cheaper?
 - There are after-impacts as well. (view of company?)

- Operational issues (continued):
 - Risk analysis:
 - We must understand the kinds and levels of threats, and their likelihood to happen to determine the levels of protection
 - Risk is a function of environment
 - Risk changes with time
 - Low probability attacks still exist
 - You must act on the analysis results

- Human issues:
 - Get the security tools from right hands, and put them into right hands
 - Organizational issues:
 - Security does not directly generate profit, but reduce potential losses
 - It often reduces performance
 - Power and responsibility must be properly linked
 - Shortage in people and resources

- Human issues (continued):
 - People issues:
 - People is heart of any security system
 - Attacks from outsider and insiders
 - Under trained workers and administrators
 - Social engineering based break-ins (in a bar at SV you can learn a lot)
 - The problem of misconfiguration (Example of SigComm)