Project Kick-Off Meeting: Integrated Learning Environment for Cyber Security of Smart Grid

0

Participation Universities: UNCC, Georgia State, and Texas A&M Jan/24/2014, Charlotte, NC.

• Background:

- The project was first submitted as NSFTUES Phase II in 2012;
- Submitted to NSF SFS program "capacity building" track in Oct 2012;

- Team member:
 - UNCC: Weichao Wang, Yu Wang, and Chuang Wang;
 - Texas A&M: Le Xie;
 - Georgia State: Yi Pan and Wenzhan Song

Overall architecture of the project

• What is new:

- An integrated, open source system that covers both power grid and information networks;
- Real time interaction b/w the two systems;
- Focus on the user-end protocols instead of generation and distribution sides;
- Educational materials and evaluation;

• Overall architecture of the project

- Major challenges
 - Choose a platform;
 - Implement LonTalk in the chosen platform;
 - Interconnection between the cyber and physical systems and how they impact each other;
 - Associate the efforts with educational activities and work force development;

• Task I: Choose a platform

- We have considered the following network simulators: OMNeT++, ns2, ns3, and CORE;
- The following power grid simulators: Power Grid Simulator Program (PGSP), SCORE
- Thanks to the contribution of Wenzhan, we plan to choose CORE and SCORE as the foundation of the project.

- CORE (common open research emulator)
 - Designed by Boeing, now under the wing of Navy;
 - A communication network emulator;
 - Front side is TCL/TK, back side is written in Python;
 - Run in Linux environments;

CORE structure

10

More details

- Use Linux embedded virtualization technique (namespaces);
- Every node is a virtual machine: with its own network stack and process environment;
- Shared file system;
- Use Linux Ethernet bridging to communicate;
- Can simulate wireless networks;
- Can connect to outside real network devices (for emulation);
- Support distributed emulation;

- Major challenges
 - Choose a platform;
 - Implement LonTalk in the chosen platform;
 - Interconnection between the cyber and physical systems and how they impact each other;
 - Associate the efforts with educational activities and work force development;

LonTalk

Application and presentation layers	Network management and application specific functions	
Session layer	Request-response service	
Transport and transaction control layers	Acknowledged and unacknowledged packet delivery, transaction processing	TCP
Network layer	Connection-less packet transmission, learning routers	IP
Link and MAC layer	Framing, CRC error checking, collision avoidance CSMA	

LonTalk

- a popular industry standard adopted by US, EU, and China;
- More than 35 million smart meters are connected through the protocol;
- For short messages, low bandwidth, and weak processing capabilities;
- Hierarchical address: (Domain, Sub-net, Node)
- No routing needed within a subnet

LonTalk

- Support multicast through "groups";
- Parties communicate through "transactions": servers can support 16 transactions and slaves can support 2;
- Acknowledged messages or unacknowledged repeated messages;
- Support one way authentication of the slaves;

Add LonTalk into CORE

- Approach I: change the network component of CORE or even Linux
 - Difficult and time consuming;
 - Accurate and wide deployment for future;
- Approach 2: implement LonTalk as a service upon TCP/IP
 - Easy and fast;
 - Extra overhead and encapsulation;

- Either approach will work for our proposed hands-on exercise: DoS, authentication, replay attack, work attack;
- May impact future projects using the system;

- Major challenges
 - Choose a platform;
 - Implement LonTalk in the chosen platform;
 - Interconnection between the cyber and physical systems and how they impact each other;
 - Associate the efforts with educational activities and work force development;

- Three questions need to be answered
 - How can the two systems communicate with each other?
 - What are the possible events \rightarrow messages \rightarrow responses?
 - Is there chain effect?

- How can the two systems communicate with each other?
 - CORE IPC API
- What are the possible events → messages → responses?
 - Directly depend on the power grid simulator
- Is there chain effect?
 - Directly depend on the power grid simulator
 - Real clock instead of fake clock;

- Course modules
- Hands-on projects

Course modules

- Intro to Smart Grid and its Cyber Security (9 hours)
- Network Security and Infrastructure Stability (9 hours)
- Data Security and Privacy in Smart Grid (9 hours)

- DoS
- Authentication
- Replay attack
- Worm attack