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Abstract—This paper examines the impact of supervisory con-
trol and data acquisition (SCADA) data corruption on real-time
locational marginal price (LMP) in electricity markets. We present
an analytical framework to quantify LMP sensitivity with respect
to changes in sensor data. This framework consists of a unified
LMP sensitivity matrix subject to sensor data corruption. This sen-
sitivity matrix reflects a coupling among the sensor data, an esti-
mation of the power system states, and the real-time LMP. The
proposed framework offers system operators an online tool to: 1)
quantify the impact of corrupted data at any sensor on LMP vari-
ations at any bus; 2) identify buses with LMPs highly sensitive to
data corruption; and 3) find sensors that impact LMP changes sig-
nificantly and influentially. It also allows system operators to eval-
uate the impact of SCADA data accuracy on real-time LMP. The
results of the proposed sensitivity based analysis are illustrated and
verified with IEEE 14-bus and 118-bus systems with both Ex-ante
and Ex-post real-time pricing models.

Index Terms—Economic dispatch, locational marginal price
(LMP), power market, supervisory control and data acquisition
(SCADA), sensitivity analysis, state estimation.

NOMENCLATURE

The main notations used throughout this paper are summa-
rized here. Bold symbols represent vectors or matrices. Hat
symbols represent estimates of true parameter value.

a; Linear cost coefficient for generator .

b Quadratic cost coefficient for generator .

Ci(9) Energy cost for generator .

P, Scheduled generator power output for
generator 4.

Ly Fixed demand at bus 7.

Ly

Min/max generation limits for generator ¢
at Ex-ante dispatch.

min max
sz' ’ P!]z

Min/max flow limits for transmission line
[ at Ex-ante dispatch.

min max
Fyoin | p
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S Generation shift factor of transmission
line [ to bus .

Min/max incremental generation limits

A pmax APmin
gi g . .
for generator i at Ex-post dispatch.

R, Ramp rate of generator 7.

AT Dispatch interval.

T Locational marginal price at bus .

A Shadow price of the system energy
balance equation.

Ti Shadow price of the capacity constraint
for generator .

] Shadow price of the transmission line
constraint for transmission line {.

Ny Total number of buses.

N, Total number of sensor measurements.

N; Total number of transmission lines.

CLy,CL_ Sets of positively and negatively
congested lines at Ex-ante dispatch.

S, Set of voltage magnitude measurements.

Sri Set of real power injection measurements.

Sai Set of reactive power injection
measurements.

Srf Set of real power flow measurements.

Suf Set of reactive power flow measurements.

I k x k identity matrix.

14,0y k x 1 column vectors with all ones and all

zeros, respectively.

I. INTRODUCTION

TATE estimation is one of the key applications for power-
S system energy management systems (EMSs). The impact
of bad data on power systems has been intensively investigated
in recent decades in power-system state estimation literature [1].
Measurement noise and/or manipulated sensor errors in a su-
pervisory control and data acquisition (SCADA) system may
mislead system operators about real-time conditions in a power
system, which in turn may impact the price signals in real-
time power markets. This paper attempts to provide a novel
analytical framework with which to investigate the impact of
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Fig. 1. Three-layered framework illustrating the coupling of the physical
power system, state estimation, and SCED.

bad sensor data on electric power market operations. In future
power-system operations, which will probably involve many
more sensors, the impact of sensor data quality on grid oper-
ations will become increasingly important.

Locational marginal price (LMP) is the core variable in
market operations [2]. In real-time power markets, LMP is
obtained as the by-product of security-constrained economic
dispatch (SCED) in either of the two main pricing models:
Ex-ante (e.g., in ERCOT, NY ISO) and Ex-post (e.g., in ISO
New England, PJM, and Midwest ISO) [3]. Both pricing models
are built on the power flow and network topology results given
by the state estimator, which uses two types of sensor data: 1)
analog (e.g., the power injection/flow and voltage magnitude)
and 2) digital (e.g., the on/off status of a circuit breaker). In
this paper, we focus on a sensitivity analysis of real-time LMP
subject to corrupted analog data fed into the state estimator.
Fig. 1 illustrates that, via state estimation, SCADA measure-
ment z may impact the results of a pair of Ex-ante nodal price
and optimal generation dispatch {w(%4(z)), P;(x.4(z))} and
the Ex-post price 7(xp(z)).

Real-time market LMPs are primarily affected by a system’s
physical conditions, which are the results of state estimation
routine. A study of LMP sensitivity with respect to system phys-
ical conditions was first conducted by Conejo ef al. [4]. In this
work, the LMP sensitivity problem was formulated in nonlinear
programming based on the ac optimal power flow (ACOPF)
model. It provided a generalized platform for calculating the
sensitivity of LMP with respect to changes in various parame-
ters such as load, generator cost, voltage limit, generation power
limit, and network topology. Sensitivity studies have also been
conducted with linear programming based on the dc optimal
power flow (DCOPF) model with a DCOPF-based algorithm
[5], the probabilistic model [6], and the continuous locational
marginal pricing approach [7]. All previous work has focused
mainly on the impact of physical load variations on LMP sensi-
tivity. More recently, some work has studied the economic im-
pact of cyber data attacks on real-time power market operations.
This recent work has demonstrated that data corruption from an
adversary can bypass the Chi-squares bad data detection [8], [9],
consequently leading to LMP distortion due to state estimation
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error [10], [11]. Our paper is motivated by a desire to study the
effect of data corruption on LMP via state estimation. In partic-
ular, this paper provides an analytical framework for answering
the following questions.

1) How much does LMP change at every bus given a set of

SCADA measurements with corrupted data?
2) What is the impact of data accuracy on LMP sensitivity at
each bus?
Here, data corruption refers to both natural noise and man-made
attacks.

The novel aspect of this paper is that it provides system oper-
ators with an analytical tool for assessing the financial risks of
bad/malicious data in light of secure market operations. To this
end, a unified LMP sensitivity matrix subject to data corruption
is developed, describing the coupling between LMP, the esti-
mation of power system states, and the sensor data. This matrix
offers system operators an online tool to: 1) quantify the impact
of corrupted data at any sensor on LMP variation at any bus;
2) identify buses with LMP highly sensitive to data corruption;
3) find significant and influential sensors with regards to LMP
change; and 4) study the effect of data accuracy on LMP sensi-
tivity.

The remainder of this paper is organized as follows. We
briefly review state estimation and two representative real-time
pricing models in Section II. We formulate the problem in
Section IIl and derive the quantifying sensitivity of LMP
subject to corrupted data in Section IV. Section V presents nu-
merical examples that illustrate the impact of different SCADA
sensors on LMP in IEEE 14-bus and 118-bus systems with both
the Ex-ante and Ex-post pricing models. We make concluding
remarks and suggest future work in Section VII.

II. PRELIMINARIES

A. State Estimation Model

The measurement model for state estimation is formulated as

z=h(x)+e (1)

T .

where z = [zlzlz!]" is the N,, X 1 measurement vector

that consists of real power injection and the flow vector
T . S

z, = [z?lz;‘rf] , the reactive power injection and flow vector

_ T,T
Z, = [Zaiza

]T, and the bus voltage magnitude vector z,.
x = [0"VT] is the state vector that consists of the (N; — 1) x 1
bus voltage phase angle vector # excluding a slack bus and
the Ny x 1 voltage magnitude vector V. h(x) is the NV,,, x 1
nonlinear vector valued measurement function relating mea-
surements to states, and e is the V,;, X 1 independent identically
distributed (i.i.d.) Gaussian measurement error vector with zero
mean and diagonal covariance matrix R. The state estimator
computes the optimal estimate of x by minimizing the weighted
least squares of measurement error as follows:

minimize J(x) = rTR !¢ )

st.r =z — h(x). 3)
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Using the Gauss—Newton method, the weighted least-squares
estimate vector x is computed by the following iterative proce-
dure [12]:

ARF = [G(xM)] TTHTRH)R 1Az 4)

where H(x*) = [0h(x")/0%"] is the N,,, x (2N}, — 1) Jacobian
matrix at kth iteration, and

Aklﬂ»l — )«(k+l _ )A(k; (5)
Az* =z — h(x") (6)
G(x") =HT "R THEY). ©)

The iteration process in (4) continues until the maximum of
|A%¥| is less than a predetermined threshold, otherwise it stops
and yields the ultimate estimates.

B. Real-Time Electricity Pricing Model

State estimation results impact real-time market operations.
Here, we present two real-time pricing models based on the
DCOPF model. For simplicity, we assume that each bus has one
generator and one load.

1) Ex-Ante Model: In ex-ante real-time market models,
LMPs are computed before the actual deployment of dispatch
orders. For the system operator, the Ex-ante dispatch is formu-
lated as follows [5]:

j\/-}J
Iggi?; Ci (Py;) ®)

73
=+

Ny Ny

AP, =) L, ©)
i=1 i=1
T PMR P, < PR wi=1,... N, (10)
p PR < i: S1i(Py, — Lg,) < ™™Vl =1,...,N,
i=1 .
where

f’;mx = min {P;imx, Rh (z) + RiAT}

pgr?i“ = max {P;ﬁnj lA’gi(z) - R,;AT} .

In this formulation, the objective function is to minimize the
total generation costs in (8). Equation (9) is the system-wide en-
ergy balance equation, (10) is the physical capacity constraints
of each generator embedded with its ramp constraints, and (11)
is the transmission line constraints.

2) Ex-Post Model: In ex-post real-time market models,
LMPs are computed after the fact using real-time estimates

for settlement purposes. Assuming no demand elasticity, the
Ex-post dispatch is written as [13]

Ny
min > Ci(Py) (12)
g; —
s.t.
Ny Ny
A Py =Y Pu(2) (13)
i=1 i=1
TP P < PR Wi=1,. . N, (14)
Ny
Poax Y S (Py. = La)) < Fi(z) Vi€ CLy  (15)
=1
Ny
Pnin © Y S1i(Py, — La)) > Fi(z) Vi€ CL (16)
i=1

where

P;,,:lax _ ]Sgi(z) + AP;:&X’ P;-lin — pg,,' (Z) + AP;H”.
The above formulation is expressed with different notation than
the Ex-post model formulated in [13] in order to emphasize that
the state estimation solution has a direct impact on the Ex-post
model.

III. PROBLEM FORMULATION

Referring to Fig. 1, for all buses (i = 1,..., N;) and mea-
surements (j = 1, ..., N,,), the Ny x 1 vector of LMPs can be

expressed in a composite function form

LMP =r (%(z))

where
T = [7r177T27...77T]\7b]T (17)
;= fi (F1, 82, %nN,,) (18)
B =g (12 ) 19)

m; represents the LMP at bus 4. z; and £; are the measurement
and its corresponding estimate at sensor j, respectively. f;()
is the vector function that describes the relationship between
any estimate and LMP at bus ¢, and g;(-) is the vector function
that describes the relationship between any measurement and
estimate at sensor j.

The primary goal of this paper is to compute LMP sensitivity
at any bus ¢ subject to a measurement change at any sensor j
throughout the entire transmission network:

In;
- ! - A1' i) 20
82], ( '!]) ( )
By the chain rule, for all ¢ and j, (20) is written as
67‘@ _ 87@ 8%1 07& 6’?’2 871’1' ai’Nm (21)
sz N Oil é)zj 81:‘2 sz Oi'Nm 82]- )
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In (21), the estimate &; is chosen as an intermediate variable
for computing the partial derivative of m; with respect to z;.
This variable is used to set the bounds for: 1) minimum and
maximum generation capacity in (10) and (14); 2) the system
balance equation in (13); and 3) the positive and negative trans-
mission line capacity in (15) and (16). Equation (21) can be ex-
pressed in matrix form as shown as

A o  Om0x
NyXNy) = %
(N, ) " 9z 9% 0z )
amy L ory
O Qdo dEn,,
371'2 a’/Tz 37‘&'2
_ 0% Do O N,
87r-Nb 877.—"\’1, BW-NI‘
BEN BE a.’f}]\rm
Aa
65}1 B:i’vl Ve dLl
az1 Ozo dzn
3{2‘2 8552 e BTZ
Oz1 BED Dz N,
X .2
iy, —Oiw Dy,
921 9z 02y,

The sensitivity A(; ;) in (20) is the element at the ith row and
jth column of the N, x N,, sensitivity matrix A. The matrix A
is written as the multiplication form of two matrices with dif-
ferent types of sensitivities: the Ny x N,, matrix A4 = d1/9%
quantifies the economic impact of any estimate on any LMP, and
the NV,;, X N,,, matrix Ag = 9%/0z quantifies the cyber impact
of any sensor measurement on any estimate. The derivations of
A 4 and A g are described in more detail in the next section.

IV. LMP SENSITIVITY TO SENSOR DATA CORRUPTION

A. Sensitivity of LMPs to Estimated States

We first derive the sensitivity matrix A 4 using the Ex-ante
model. To this end, the perturbation approach developed in [4]
is applied to the Ex-ante model in Section II-B. The Lagrangian
function of the Ex-ante dispatch is written as

N, N
,CZZCL‘(PQ) A(Z[Pyi_l’fho
' :21 Ny Ny - .
+ ZTJ' (Z AjiPy, — Cj)

2Ny

+ZM1 (Zslz 9 — JD1>

where A;;, Si, é'j and D, are the elements of the following
matrices:

Iy
AN, xny) = [As] = [ Yo } (23)

~Iy,
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S
B xn,) = [Su] = —S} (24)
. . r ]_Sr(;mx
C(2Nb><1) = [Cj] = A (25)
_7P2nm
r Fmax
D(QJVl x1) = [Dl] = _Fnlin:| (26)
where S is the generation shift factor matrix, and
P;]nax(mm) — |:P5Tax(nun) P;I;\::X(Hlln)i| (27)
i max (1in max (1nin T
Fmax(unn) _ |:F1 ( )7 . FNI ( )i| (28)

As in [4], unbinding inequality constraints are excluded in our
sensitivity analysis. Let us define B, and B¢ as the number of
binding constraints associated with generation capacity and line
capacity, respectively. Then, the KKT conditions of the Ex-ante
problem are written as

aC; (

1) —p ()P - A+ Z TiAji
B,
+> uSu=0 Vi=1,..,N,
=1
Np Ny
(11) ZP i ZLdi
i=1 i=1
Np

(iii ZAJLP —(' Vi=1,....B,
=1
Ny

(iv) Z Sii |

after which the above KKT equations are perturbed with respect
to Py,, Lg,, C5, A, 75, and 1, as follows:

P, —La)=D; ¥l=1,...,B;.

B,

d ac ( )
M;
By
—I—ZS],(],U] =0 Vi=1,....N;
=1
Ny Ny
(i) > dP,, = dLy,
i=1 i=1
Ny
(iil) > AjidP,, =dC; Vji=1,...,B,
i=1
Ny

]\‘Y;,
(iv) > SudPy, = SudLg, ¥I=1,...,B;.
=1 =1

It should be noted that the variables J;, A;;, and Sj; in the KKT
equations are not perturbed. This is due to the fact that: 1) the
limits of line flow constraint limits in the Ex-ante model are not
updated by the state estimator and 2) the network topology is not
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affected by corrupted analog data. These perturbation equations
can be expressed in matrix form as

dP,
l\q/:*[ 1[\/}) T d T T (]'Ld
1L, o0 o = [U, L U, |
,fqé 0 0 (l’rs —_—— (lCS
N dp, ®
) (29)
where
M(N(, XNb) = dldg (Ml, e ,_ZV[N})) (30)
Y (v, x(B,+B,)) = Al Bl] (1)
U (N, x[Ny+14B,+5,)) = [0 1n, 0 B!] (32)
Us(p,x(N,+1+B8,+8;)) = (005, Is, 0] . (33)
Taking the inverse of Z on both sides of (29) yields
dP,
dA | _ o-15 | dLg
dr, | — "'\3 {dCJ (34)
dps, Ae

The subscript s of the variables in (29), (31), and (32) represents
the subvector (submatrix) of the original vector (matrix) that
corresponds to the binding constraints. The matrix A, in (34) is
partitioned into two sensitivity matrices—Ar,, and A¢,_, shown
as

oP, oP,
9Ly ac,
3y A
_ _ | 9L4 aC,
A=A, | Agl= |50 | 2% (35)
9L, aC,
on, Op,
[2) aC,

Using the sensitivities of two shadow prices with respect to
C.((01/8C,), (0p,/0C,)) in A¢_ and according to the defi-
nition of LMP [14], we finally construct the matrix A 4.

On the other hand, in the Ex-post model, (29) can be extended
as follows:

M-y, T iP,

1L, o0 o b =[U," U," Ul ac,

T s N

T 0 0 i dD.,
(36)

D, is the subvector of D (the real power flow estimate vector)
that corresponds to the binding constraints, and

Us(B; x [N, +14B,+B;]) = [0 0p, 0 IB.[] : (37

Compared with (35), A, in the Ex-post model is written as

P, P, aP,
P, 8¢, 8D,
X 22 A
_ N 1| 8P aC, oD,
AP_[APg ’ ACs ‘ ADS]_ E):rg or aT
opP, aC, oD,
Ip dp Ipe
oP, aC, oD,

(38)

B. Sensitivity of State Estimation to SCADA Data

Sensitivity analysis of state estimation subject to SCADA
measurements was pioneered by Stuart and Herget [15], who
investigated the effect of power system modeling errors on
weighted least-squares (WLS) state estimation. A more rigorous
sensitivity analysis method, based on the same perturbation
approach illustrated in [4], has been proposed by Minguez and
Conejo [16]. This method has been formulated in a general
optimization problem that allows for the sensitivity analysis of
alternative state estimation methods with different objective
functions, such as the least absolute value (LAV) from the WLS.
It should be noted that, in this paper, the sensitivity analysis is
based on WLS state estimation. However, one can apply it to
various state estimation methods by using the method proposed
in [16].

Here, we first derive the matrix A that illustrates the sensi-
tivities of the real power injection and real flow measurement
estimates with respect to the changes in all types of measure-
ments. In (4), the matrix ¥(%¥) is defined and partitioned as

LACY
[ml 39

where W,(%*) and ¥y, (x*) represent the sensitivities of the
voltage phase angle estimates and the magnitudes with respect
to all perturbed measurements at the k-th iteration, respectively.
Therefore, (4) can be rewritten as

Akt
de B
AVEFL|
It should be noted that the DCOPF-based SCED is formulated
with linearized real power injection and a flow estimation so-
lution [17]. Using the linear equations in the upper partition of

(40) and the matrix ¥, computed with the converged estimate
X, we have the following sensitivity equation:

(M = [GEN] THIEHR ! =

dz. (40)

B2, ] . [Be
dir: Bpg (]0: Bpg \I’édZ:KdZ (41)
Brg Brg
where
B?,
K= |Bpgs | ¥, (42)
Brg

dz, is the perturbed estimate vector of the real power injec-
tion and the flow measurements. The matrix Bpg = A,,,BdA,T
is defined as the (N, — 1) x (N, — 1) reduced node-to-node
susceptance matrix that explains the relationship between real
power injections at any bus except the slack bus and the phase
angles. Here, B, = diag(s1, s2,....8n,) is the N; x N diag-
onal branch susceptance matrix and A, is the (N, — 1) x NN,
reduced node-to-branch incidence matrix without a slack bus.
According to the law of conservation of power, the 1 x (N, — 1)
matrix B%H = _1{1\%71)]3 po is derived, and it explains the re-
lationship between real power injections at the slack bus and the
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TABLE I
GENERATOR PARAMETERS IN THE IEEE 14-BUS SYSTEM

[ Bus | P™(MW) | Pi™(MW) [ a:($/MWh) | b:(8/(MW)?h) |

1 0 332.4 20 0.043
2 0 140 20 0.25
3 0 100 40 0.01
6 0 100 40 0.01
8 0 100 40 0.01
M : Injection sensor @ : Flow sensor
A : Voltage magnitude sensor
Fig. 2. IEEE 14-bus system with a given measurement configuration.

phase angles. The matrix Bpy = B;AZ specifies the relation-
ship between real power flows and the phase angles. Using (42),
we compute the matrix Ap = K.

Remark 1: The proposed sensitivity analysis is beneficial in
several ways. Through online predictions of LMP variations,
system operators can identify economically sensitive buses with
respect to data corruption. This could help system operators pri-
oritize sensor data quality upgrades in view of robust market op-
erations. From a practical perspective, the proposed approach
can be easily integrated into applications in existing EMSs or
market management systems (MMSs).

Remark 2: The sensitivity index (20) can be used to provide
the following system-wide metrics that alert system operators to
the jth most and kth least influential sensors on LMP, on av-
erage, with respect to a total of N, buses and 7" dispatch inter-
vals:

Ny
j = arg max (Z Z ‘Agf)j) /NbT>

=1 t=1

Ny
k = arg IIllIl (Z Z ‘A( )k)‘ /NbT>

=1 t=1

V. NUMERICAL EXAMPLE

Here, we illustrate and verify the proposed approach to
quantifying the sensitivities of real-time LMP with respect
to changes in sensor data. The proposed sensitivity analysis
is applied to IEEE 14-bus and 118-bus systems. System data
for the IEEE 14-bus system are taken from the MATPOWER
4.0 IEEE 14-bus test case file. Table I shows the generator
parameters in the IEEE 14-bus system.

In this simulation, the measurement configuration consists of
eight voltage magnitude measurements, eight pairs of real and
reactive power injection measurements, and 12 pairs of real and
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reactive power flow measurements. V; is the measurement of
voltage magnitude at bus ¢, F; and (J; are the measurements of
real and reactive power injection at bus :, respectively, and F; ;
and (); ; are the measurements of real and reactive power flow
from bus ¢ to bus j, respectively. Fig. 2 shows the IEEE 14-bus
system with a measurement configuration that consists of the
following five measurement sets:

Sy ={Va, V3, V7, Vs, Vig, Vi1, Via, Via}
Spi ={P2, Py, Pr, Py, Py, P11, P12, P1y}
Sai ={0Q2,Q3,0Q7,0Qs, Q10, @11, Q12, Q14}
Spp={P12, P23, Pyo,Pyr, Py, P52, P54, P5g,
Ps13,Prg, Pi1g, Pi213}
Saf =1Q12,Q23,Qu2, Qa7,Q19,Q52, P54, P56,
Q6,13. Q7.9, Q116: Q12,13}-

In this measurement configuration, the locations of the
voltage magnitude measurements are consistent with those of
the real and reactive power injection measurements. For each
measurement set, the measurement index is numbered from
one to the total number of measurements in each set.

We assume that all measurements are corrupted by additive
Gaussian noises with equal variances ¢ = 0.00001. Finally,
for all buses ¢, j, and k£, we compute LMP sensitivities with
respect to the five types of measurements—real/reactive power
injection, real/reactive power flow, and voltage magnitude—as
follows:

or; Omy Om  Orm;  Om
OP;’ 0Q;" Oy 9Q 1 IV

Units for the sensitivities {(8m;/0P;), (0mi /0P, 1)},
{(87:/0Q;),(07;/0Q; 1)}, and {(87;/0V;)} are ($/MWh)/
(puMW), ($/MWh)/(puMVAr), and ($/MWh)/(puV), respec-
tively.

Fig. 3 provides snapshots of five different Ex-ante LMP sensi-
tivities in (43) at some buses in the IEEE 14-bus system with line
3—4 congestion. These figures provide information about the di-
rections of the post-corruption LMPs as well as their sensitivi-
ties with respect to each type of measurement at a given dispatch
time. In this simulation, after the Ex-ante dispatch problem has
been solved, there exist two binding generation capacity con-
straints: P, and F,, are binding at Pmln and Pmax respec-
tively. We assume that the corruption of the measurements im-
pacts the binding constraint associated with P, . In other words,
the corrupted measurements affect Pmln (an mtermedlate vari-
able in (21)), subsequently leading to changes in all the LMPs.
We randomly choose seven buses (buses 1,2, 3,4, 5, 10, 13) out
of the 14 to differentiate clearly the LMP sensitivities among the
various buses. The absolute values of the LMP sensitivities at
buses 3 and 5 are the largest and smallest, setting the upper and
lower bounds for sensitivity at the fourteen buses. We obtain
from the simulation results the following observations.

(O1) Sensitivity grouping property: all buses can be catego-
rized into two sensitivity groups. In each group, buses ob-
tain sensitivities with the same sign, but of different magni-
tude and subject to all types of measurements. Group I in-
cludes buses 1,2, 3, and 5, and Group Il buses 4, 10, and 13.

(43)
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1 2 3 4
Real Power Injection Measurement
(a)

04

™ 2 3 4 5 6 7 8 9 10 11 12
Reactive Power Flow Measurement
()

1
Reactive Power Injection Measurement

(b)

4123456789101112
Real Power Flow Measurement

(©

-0.25

T 2 3 4 5 6 7 8
Voltage Measurement

(e)

Fig. 3. Sensitivities of Ex-ante prices with respect to (a) real power injection measurements, (b) reactive power injection measurements, (c) real power flow
measurements, (d) reactive power flow measurements, and (e) voltage magnitude measurements. Line 3—4 is congested and P, is binding at P(‘I'S',"‘ in the IEEE

14-bus system.

For example, in Fig. 3(b), the corruption of zy yields pos-
itive sensitivities for Group I and negative sensitivities for
Group II, whereas the corruption of zg yields the reverse:
negative sensitivities for Group I and positive sensitivities
for Group II. This grouping property enables system oper-
ators to predict rapidly the direction of LMP’s distortion in
response to sensor data corruption.

* (02) Identification of buses that are economically sensitive
to data corruption: buses incident to both ends of the con-
gested line have the highest LMP sensitivities with respect
to sensor data corruption. For example, bus 3 in Group I
and bus 4 in Group II incident to congested line 3—4 have
the largest absolute sensitivities in each group. In partic-
ular, it should be noted that the largest sensitivities are as-
sociated with bus 3. This implies that bus 3 is the most fi-
nancially vulnerable to any corruption in sensor measure-
ment.

* (0O3) Identification of influential sensors on LMP: the
sensor most influential on LMP change is identified in
each measurement group. In Fig. 3(a) and (b), the sensors
with zo (P3 and Q3) have the most significant impact on
LMP. This is due to the fact that the change of the interme-
diate variable Pmln is dominantly affected by P35 and ()3,
subsequently leadmg to more change in LMP. This effect
is also verified in Fig. 9(a) and (b) based on the IEEE-118
bus system. In Fig. 3(c)—(e), the sensors with zg, 211 and 23
(P56, Q11,6 and V7) are the most influential, respectively.
In addition, it should be noted that the localized effects
on increasing sensitivity of measurements adjacent to the
congested line and/or the intermediate variable do not
always hold true. For example, z11(Py1 g) is farther away
from both the congested line and the intermediate variable
than z5( Py 9); however, in Fig. 3(c), data corruption in the
former leads to a higher sensitivity than in the latter. This

nonlocalized data effect motivates system operators to use
our developed tool for identifying which sensors impact
LMP sensitivity.

* (04) Impact of different types of sensor data on LMP:

through a comparison of all of the figures, LMP appears
to be more sensitive to real power injection/flow measure-
ments than to reactive power injection/flow and voltage
magnitude measurements. In order to compare the sensi-
tivities of different units fairly, a normalized LMP sensi-
2;|(87;/0z;) is defined, which is incorporated into
the following proposed metric:

|Sk|

Qi = Z

=1

dwl

/ |Sk| (43)

|27‘

where (2%, is the average of the absolute normalized sensi-
tivities at bus ¢ with respect to any measurement z; in the
setSi(k = v, ri,at,rf, af). The cardinality of the set |Sk|
means the number of elements in Si. For example, at bus
3, we compute (2}, = 0.474, @}, = 0.253, %} = 0.175,
03 up = 0.013, and Q2. = 0.012, Which is consistent with
our expectation that real power injection and flow mea-
surements have a more significant impact on LMP sensi-
tivity than other measurements. This is due to the fact that
DCOPF-based SCED is conducted based on a linearized
state estimation solution that is more influenced by real
power measurements than by reactive power and voltage
magnitude measurements, as illustrated in (40) and (41).

+ (O5) In Fig. 3(e), LMP sensitivities at all buses affected

by corrupted voltage magnitude measurements fluctuate
more smoothly than the ones affected by other types of cor-
rupted measurements. In other words, all voltage magni-
tude measurements impact LMP variations almost evenly.
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Fig. 4. Sensitivities of Ex-post prices with respect to (a) real power injection measurements, (b) reactive power injection measurements, (c) real power flow
measurements, (d) reactive power flow measurements, and (e) voltage magnitude measurements. Line 612 is congested and the corresponding line flow is binding

at the capacity limit of line 612 in the IEEE 14-bus system.

In addition, the nonlocalized effect mentioned in (O3) is
also verified between z2(V3) and z3(V7).

Fig. 4 provides snapshots of the Ex-post LMP sensitivities
at arbitrarily chosen buses (buses 1, 6, 7, 9, 12, 13, and 14)
with respect to the aforementioned five types of sensor mea-
surements. In this simulation, line 6—12 is assumed to be con-
gested at both Ex-ante dispatch and Ex-post dispatch. 156712 is
chosen as an intermediate variable to compute LMP sensitivity.
We can observe from Fig. 4 the same phenomena as in Fig. 3:
(O1) Group 1 for buses 1 and 6, and Group 2 for buses 7,
9, 12, 13, and 14; (O2) buses 6 and 12 incident to the con-
gested line have the largest absolute value of LMP sensitivity
in each group; (O3) in Fig. 4(a) and (b), the sensors with z7;
(P12 and Q12) have the most significant impact on LMP, and in
Fig. 4(c)—(e), the sensors with 25, 212, and 25 (Ps g, (112,13, and
V10) are the most influential, respectively; and (O4) and (O5)
real power measurements have a stronger impact on LMP sen-
sitivity than the reactive power and voltage magnitude measure-
ments, and the voltage magnitude measurements influence LMP
sensitivity almost evenly. In addition, these analytical LMP sen-
sitivity results have been checked using the perturbation method
(f'(2) = ([f(x + €) — f(x)]/€)). It has been verified that the
sensitivity results obtained from the proposed analytical method
are consistent with those from the perturbation method.

Fig. 5 shows actual Ex-ante LMP and how they differ when
they have or do not have corrupted data at all buses. It is assumed
that the magnitude of zg is corrupted by 2% in Fig. 3(c). In the
Chi-squares test [12] within a 99% confidence level, the esti-
mated objective functions and the bad data detection threshold
are computed. .J(#) = 15.69 and J®) (&) = 30.17 correspond
to the values of the estimated objective functions without and
with corrupted data, respectively, and Y2 = 38.93 is the value
of the bad data detection threshold. It should be noted that, since

OlGroup 1 |

15 i ; e i

Price deviation ($/MWh)

™ 2 3 4 5 6 7 8 9
Bus Location

10 11 12 13 14

Fig. 5. LMP differences between with and without corrupted data when ¢5 is
corrupted in Fig. 3(c).

J®) (&) = 30.17 < x? = 38.93, the corrupted measurement zg
bypasses the bad data detection engine, which could then lead
to LMP distortion. As expected, Fig. 5 justifies the result of our
sensitivity analysis in two main ways. First, the prices at buses
1,2, 3, and 5 in Group I change in a positive direction whereas
the prices at the buses in Group II change in a negative direc-
tion. This observation explains the grouping property specified
in (O1). Second, the descending order of the magnitudes of the
actual price deviations is in accordance with that of sensitivity
magnitudes. For example, Fig. 3(c) shows that buses 3, 2, 1, and
5 in Group I are in descending order of sensitivity magnitudes,
which is consistent with the descending order of the actual price
deviations at those same buses in Fig. 5.

Fig. 6 shows the Ex-ante LMP deviations that are caused by
the undetectable same amount of corruption in each measure-
ment group {Ps, @3, Vs3} and { Ps 6, @5 ¢ }. These figures show
that real power injection and flow measurements have a more
significant impact on LMP than other measurements. This fact
justifies observation (O4).
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Fig. 6. LMP differences between with and without corrupted data in Fig. 3. (a)
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Fig. 7. Comparison of LMP sensitivities at bus 3 in Fig. 3(a) with varying
variances of injection measurements P; and Py .

Fig. 7 shows the impact of sensor measurement accuracy on
LMP sensitivity. In this figure, four plots represent LMP sensi-
tivities at bus 3 in Fig. 3(a), with consistently varying variances
of the two injection measurements z3(Ps) and zg( P11 ). These
sensitivities are measured at four different variance levels; 02 =
0.00005, 0.0001, 0.0005, and 0.001. We can observe from Fig. 7
that, as the measurement variance decreases (i.e., the measure-
ment accuracy increases), the corresponding LMP sensitivity
increases. In other words, more accurate sensors lead to more
change in LMP while sensor data remain corrupted. This shows
the coupling between state estimation accuracy and LMP cal-
culation. Based on this observation, one possible guideline for
mitigating the financial risk from data corruption is to make it a
high priority to protect accurate sensors.

For the IEEE 118-bus system, with 54 generation buses and
186 transmission lines as shown in Fig. 8, we assume that real
and reactive power injection measurements are placed at 49
generator buses, voltage magnitude measurements at nine gen-
erator buses, and real and reactive flow measurements at 129
lines. Therefore, this system has a total of 365 measurements.
System data for the IEEE 118-bus system are taken from the
MATPOWER 4.0 IEEE 118-bus test case file.

Fig. 9 show the Ex-ante LMP sensitivities at buses 15, 17,
35, and 75 in the IEEE 118-bus system with line 15-17 con-
gestion with respect to the five different types of measurement.
The magnitudes of the sensitivities at buses 15 and 17 are the
highest in each sensitivity group. ]51“53" is chosen as an inter-
mediate variable to compute LMP sensitivity. As expected, all
observations from Fig. 3 are also verified in the larger IEEE
118-bus system: 1) sensor grouping property (Group 1: buses
15 and 35, and Group 2: buses 17 and 75); 2) identification of
the most economically sensitive buses in each group (buses 15

Fig. 8. IEEE 118-bus system.

and 17) and the most influential sensors (e.g., z19 with Pg and
(219 in Fig. 9(a) and (b)) on LMP change; and 3) the impact
of different types of sensor data on LMP (e.g., the more sig-
nificant impact of real power measurements than other types of
measurements).

VI. DISCUSSIONS

A. Phasor Measurement Unit (PMU) Implementation

Recently, with PMUs being increasingly deployed in power
systems, novel hybrid state estimation methods based on tradi-
tional SCADA and PMU measurements have been intensively
investigated [18]-[21]. The state estimation measurement
model (1) presented in this paper can be easily expanded into
a hybrid model (e.g., [19, eq. (12)]). Using the same steps
illustrated in Section IV-B, our proposed approach quantifies
LMP sensitivity with respect to PMU as well as SCADA
measurements.

B. Dependent Sensor Measurements

Recent studies have speculated that state estimation mea-
surements with a substation may be correlated and proposed as
a response a novel dependent WLS (DWLS) state estimation
method that considers measurement dependencies [22]. These
methods differ from the traditional WLS method based on
independent measurements only in that it computes the nondi-
agonal covariance matrix of dependent measurements using the
point estimate technique in the WLS formulation. By simply
replacing diagonal covariance matrix R in (2) with a computed
nondiagonal covariance matrix, our proposed formulation is
also applicable to any LMP sensitivity analysis subject to
dependent sensor measurements.

C. LMP Sensitivity With Respect to Network Topology Errors

This paper is limited to the study of LMP sensitivity with
respect to changes in the analog data corruption-induced power
flow estimate. A very important extension of our work here
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Fig. 9. Sensitivities of Ex-ante prices with respect to (a) real power injection measurements, (b) reactive power injection measurements, (c) real power flow

measurements, (d) reactive power flow measurements, and (e) voltage magnitude measurements. Line 15-17 is congested and P,

IEEE 118-bus system.

would be to study LMP sensitivity with respect to network
topology estimate changes caused by corrupted digital sensor
data such as the on/off status of a circuit breaker. A key part
of this task would be to investigate how such LMP sensitivity
is analytically expressed as a function of topology information
such as the generation shift factor matrix and corrupted digital
data. As an initial step in this direction, recent work of ours
[23] proposed a simple LMP sensitivity index that accounts
for the relationship between changes in network topology and
LMP during single transmission line congestion. This index
quantifies the economic impact of network topology errors on
LMP and is expressed in terms of the energy costs of marginal
units and the congested line-related generation shift factors at
any bus and marginal units. Here, a marginal unit is defined as
a unit that generates power in a range somewhere between its
minimum and maximum capacity. Future work should include
the development of a sensitivity index that evaluates the cyber
impact of digital data on network topology estimate.

VII. CONCLUSION

In this paper, we present an analytical framework for cal-
culating LMP sensitivity in response to small variations in
SCADA and/or PMU measurement data. Corrupted sensor data
are shown to deviate power system state estimation from their
actual values, which subsequently leads to the distortion of
real-time market LMPs. We build two matrices: the first with
LMP sensitivity at any bus to any estimate, and the second
with sensitivity of any estimate to data at any sensor. A unified
matrix that combines these two matrices in multiplication form
enables system operators to quantify the impact on LMP of
data at any sensor at any bus throughout the entire transmission
network. Our simulation results suggest that the proposed
sensitivity matrix can provide system operators with a quick
and accurate method to identify the buses most vulnerable to

is binding at P}%* in the

measurement errors. In addition, we verify that more accurate
sensors impact LMP much more significantly.
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