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Abstract

Planning in contact state space is very important
for many robotics tasks. This paper introduces a gen-
eral and novel approach for automatic creation of high-
level, discrete contact state space between two objects,
called contact formation (CF) graphs. A complete CF
graph is the result of merging several special subgraphs,
called the goal-contact relaxation (GCR) graphs. We
have implemented our algorithm for arbitrary contact-
ing polygons with results presented in this paper and
is extending the implementation for arbitrary contact-
ing polyhedra. The time complexity of our algorithm
is bounded by O(N2), where N characterizes the com-
plexity of each object.

1 Introduction

Contact motions, or compliantmotions (as they are
constrained by contact), are basic motions for manip-
ulation and are necessary for assembly to overcome
uncertainties [2, 11, 12, 13, 14, 16, 17]. A contact
motion plan can be generally viewed as consisting of
a sequence of contact state transitions and compliant
motion strategies to realize the transitions. Hence,
how to model and represent the knowledge of contacts
is a key problem.

In many planning systems which require the knowl-
edge of a collection of contact states, the information
is usually fed manually into the system as input. In
other words, all contact states and the relations among
contact states are enumerated1 and presented to the
system manually. This, however, is awfully burden-
some and is practically infeasible for complex tasks
where complicated non-convex objects can create a
huge variety of di�erent contact states [16]. Recently
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1for discrete contact states

an algorithm was reported by Hirukawa et al. [6, 7] to
create certain contact state graphs automatically, but
only the result for convex polyhedra was reported.

We need to point out that there is considerable
work in the literature computing con�guration space
(C-space) obtacles, but most are just for 2-D ob-
jects [1, 9, 14, 15]. Only a few researchers attempted
to compute the C-space obstacles for 3-D polyhedra
[5, 10]. Although the surface of C-space obstacles
constitute contact con�gurations, 6-dimensional C-
space computation for general 3-D polyhedra remains
a formidable open problem. In this paper, we intro-
duce a novel, alternative approach aiming at deriving
high-level graphs of discrete contact states from ex-
ploiting both topological and geometrical knowledge
of contacts in the physical space. Note that our ap-
proach is general to both 2-D and 3-D objects. Al-
though the results reported in this paper are for 2-D
polygons, the implementation of our approach for 3-
D polyhedra will soon be reported. Note also that a
high-level graph of discrete contact states is not only
needed itself for many purposes (see previous para-
graphs), but can also be used to simplify computation
of C-space paths of (continuous) contact con�gura-
tions: a high-level sequence of contact state transitions
can �rst be planned with such a contact state graph,
and then the computation of the low-level path of con-
tact con�gurations is reduced to computing the path
of a transition between two adjacent contact states in
a lower-dimensional con�guration space (constrained
by the known contact states).

The paper is outlined below. In Section 2, we re-
view the notion of contact formation (CF) in terms
of principal contacts (PC) [18] as a contact state rep-
resentation. We also examine the neighboring rela-
tion among CFs and represent the contact state space
as a CF graph. In Section 3, we introduce a general
approach to automatically creating the so-called goal-
contact relaxation graphs (GCR graphs) [20], which
are subgraphs of a CF graph, and merging the GCR
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Figure 1: Principal contacts (PCs)

graphs to form the CF graph. In Section 4, we describe
the implementation of our approach for generating CF
graphs between arbitrary polygons and present the re-
sults. In Section 5, we discuss further implementation
and extension before concluding the paper.

2 Contact State Space

2.1 Principal Contacts and Contact For-
mations

The concept of principal contact (PC) was �rst in-
troduced in [18]. Denoting the boundary elements of
a face as the edges and vertices bounding it, and the
boundary elements of an edge as the vertices bounding
the edge, a PC can be de�ned as the following:

De�nition 1: A PC denotes the contact between a
pair of surface elements (i.e., faces, edges, or vertices)
which are not the boundary elements of other contact-
ing surface elements (if there is more than one pair in
contact).

With the notion of PC, an arbitrary contact state
between arbitrary polyhedra is described as the set of
PCs formed, which we still call a contact formation
(CF). There are four and ten types of PCs between
arbitrary polygons and arbitrary polyhedra in 2-D and
3-D respectively, as shown in Figure 1.

Note that PCs are higher-level primitives than
other topological primitives introduced in the litera-
ture [4, 5, 10] and are thus more robust to uncertainties
[21].

2.2 Connectivity of Contact Formations

The question about connectivity of contact forma-
tion (CF) is whether, for each CF, the contact con�g-
urations belonging to it form a connected region, as
CFs partition the space of contact con�gurations. In
most practical cases the answer is yes (including all
cases in Section 4). We restrict our consideration to
cases where each CF describes a single connected re-
gion of contact con�gurations in the rest of this paper.

A general de�nition of neighboring CFs was pro-
posed by Desai [3] in terms of relative contact mo-
tions. Speci�cally, for objects A and B in contact, if
there exists a contact motion which brings A and B in
CFi to CFj such that during the motion,A and B are
always in contact and are not in any CF other than
CFi to CFj, then CFi and CFj are neighboring con-
tact formations. Desai's de�nition took into account
the important fact proven by Hopcroft and Wilfong
[8] that if there was a way to move two objects from
one contact con�guration to another, then there was
a way to do so with the objects remaining in contact
throughout the motion.

As CFs describe discrete contact states topologi-
cally, we can map the general motion-based de�nition
of neighboring CFs to a topological one in terms of
how PCs (or the topological surface elements of the
PCs) are related. We �rst de�ne a containment rela-
tion among PCs.

De�nition 2: Let PCi = (aA; bB) and PCj =
(cA; dB) be two PCs between two polyhedra A and
B. PCi contains PCj i� one of the following
holds:

1. cA is on the boundary of aA and dB is on the
boundary of bB ,

2. cA is on the boundary of aA and dB is bB , or

3. cA is aA and dB is on the boundary of bB .

With the above de�nition, we can de�ne a contain-
ment relation among CFs.

De�nition 3: Let CFi and CFj be two contact for-
mations between polyhedra A and B such that CFi 6=
CFj. CFi contains CFj i�

� card(CFi) � card(CFj), where card(�) returns the
cardinality;

� for every PC in CFj, it either belongs to CFi or is
contained by a unique PC in CFi, and no two PCs
in CFj are contained by the same PC in CFi.

Corollary: For two CFs, CFi and CFj, if CFj �CFi
then CFi contains CFj.

Now we can de�ne neighboring relations among
PCs and among CFs in terms of the corresponding



containment relations.

De�nition 4: Two PCs, PCi and PCj , are neigh-
boring PCs, i� either one contains the other. If PCi
contains PCj , then PCj is a less-constrained neigh-
bor of PCi, and PCi is a more-constrained neighbor of
PCj .

De�nition 5: Two CFs, CFi and CFj (CFi 6=CFj),
are neighboring CFs, i� either one contains the other.
If CFi contains CFj, then CFj is a less-constrained
neighbor of CFi, and CFi is a more-constrained neigh-
bor of CFj.

We can represent the entire contact state space (of
the contacting objects) as a contact formation graph
where each node denotes a CF, and each arc connects
two neighboring CFs.

3 Generation of CF graphs

Consider two objects in contact, with a moving ob-
ject A and a static object B. To construct the contact
formation graph GCF automatically requires the han-
dling of two issues: (1) how to generate valid CFs, or
how to tell if a set of PCs form a geometrically valid
CF, and (2) how to connect these CFs in the graph.
While the second issue can be handled by applying the
neighboring relations de�ned in Section 2, the �rst one
is more di�cult in general because the domain of valid
CFs depends on the geometric shapes of the contact-
ing objects2.

3.1 Approach

Our approach is to divide the contact formation
graph GCF into certain subgraphs, generate the sub-
graphs, and then merge them to form GCF .

The kind of subgraph we generate consists of a
seed CF, CFg , and all the less-constrained CFs in its
neighborhood, which we call a Goal-Contact Relax-
ation (GCR) graph of CFg [20]. Starting from such
a goal CF, CFg, the GCR graph can be grown by re-
peatedly \relaxing" contact constraints to obtain less-
constrained neighboring (LCN) CFs. The process ter-
minates when there is no new LCN CF to be added
to the graph3. As for the goal CFs, they are the lo-
cally most-constrained CFs in GCF , many of which
indicate goal or intermediate goal CFs of an assem-
bly. Given the goal CFs, GCF can be formed either

2Only in the case of two convex objects, it is trivial to decide
a valid CF: every valid CF consists of a single PC, and every
possible PC is a valid CF.

3Clearly, such process will always terminate.

partially or completely by merging the corresponding
GCR graphs.

We prefer to form GCF from GCR graphs because a
GCR graph is much easier to generate automatically
than an arbitrary subgraph of GCF , taking advantage
of the following two facts: (1) all CFs in the GCR
graph of CFg can be hypothesized topologically from
the topological expression of CFg, and (2) the tran-
sition motion from a CF to an LCN is often simpler
than that to a more-constrained neighboring CF. Our
algorithm for constructing a GCR graph can be out-
lined below:

Add CFg to FIFO queue open;

WHILE open is not empty DO
BEGIN

1) CFc  CF removed from open;

2) hypothesize LCN CFs of CFc (Section 3.2);

3) �nd feasible LCN CFs (Sections 3.3 & 3.4);

4) for each feasible LCN CF found, link it to
CFc and add it to open.

END

After GCR graphs are generated, our merge algo-
rithm performs merging by taking the union of the
nodes in all the GCR graphs and their neighboring
arcs (connections). Note that, as we associate each
CF node with a contact con�guration belonging to it
for feasibility check (Sections 3.3 and 3.4) and for dis-
play (Section 4), there can be two or more nodes of the
same CF but with di�erent associated con�gurations
during merging. In such cases, only one node is kept,
others will be discarded.

3.2 Hypothesizing LCN CFs

Given a valid CF = fPCig
N
i=1, where N � 1, its

possible LCN CFs can be hypothesized by applying
one of the following actions to each PCi of the CF,
according to De�nitions 3{5 (Section 2.2):

remove PCi,
change PCi to an LCN PC,
keep PCi,

provided that either remove or keep is not simulta-
neously applied to all PCs in the CF to result in an
empty set or the CF itself4.

4This obviously implies that for a single-PC CF, only
change can be applied.



3.3 Hypothesizing Neighboring Relax-
ation Motions

To determine if a hypothesized LCN CF is feasible
is to check if there is a feasible neighoring transforma-
tion motion to that LCN CF.

A neighboring transformation motion consists of up
to two parts:

� recon�guration5 which changes contact con�gura-
tions within the same CF,

� transition which changes a contact con�guration
in a CF to one in the neighboring CF and is an
in�nitesimal motion.

In the case when a CF Q is an LCN of another CF P ,
a neighboring transformation motion between P and
Q is further called a neighboring relaxation motion.

Neighboring relaxation motion has the following
important characteristics which make its feasibility
check much easier than that of a general neighboring
transformation motion:

� in many cases, there is no need for recon�guration,
i.e., there is a neighboring relaxation motion con-
sisting of only an in�nitesimal transition motion;

� in the other cases, only a �nite translation is
needed for recon�guration.

For 2-D objects (i.e., contacting polygons), there
are a �nite number of possible relaxation motions,
in terms of a �nite number of axes and directions of
motions, to change any CF to one of its LCN CFs.
The possible (or hypothesized) motions can be speci-
�ed topologically by the edge elements involved in the
change, and every �nite translation for recon�guration
is a straight-line translation. For example, in Figure 2,
to change an edge-edge PC (eA1 ; e

B
1 ) to a vertex-edge

PC that it contains, (vA1 ; e
B
1 ), there are only two pos-

sible neighboring relaxation motions: either (i) just
an in�nitesimal rotation (IR) about vA

1
or (ii) a �nite

translation (FT) along eB
1
succeeded by an IR about

vA1 .
For 3-D objects (i.e, contacting polyhedra), how-

ever, certain change of CF to its LCN can be achieved
by an in�nite number of motions, in terms of an in-
�nite number of axes/directions, and for recon�gura-
tion, the �nite translation is not limited to a straight-
line. In cases where there can be an in�nite number
of possible neighboring relaxation motions, it is neces-
sary to discretize the motions by sampling the motion
axes. In cases where recon�guration is needed, �nding
a feasible �nite translation can be treated as a local
path planning problem.

5This term was �rst introduced by Desai in [3].
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Figure 2: Neighboring relaxation motions

3.4 Checking Motion Feasibility

Once a neighboring relaxation motion is hypothe-
sized, we need to check its feasibility. As explained
in Section 3.3, we only need to check the feasibility of
an in�nitesimal transition motion and that of a �nite
translation.

To check the feasibility of an in�nitesimal transition
motion is relatively easy. Let n denote the normal of
a contact plane, de�ned by a contacting face or two
crossing edges (or of a contact line, de�ned by a con-
tact edge, for 2-D objects) pointing towards the static
object B. Given the type, axis, and direction of an
in�nitesimal motion, the feasibility of the motion is
checked as folllows.

In�nitesimal Translation (IT): It is feasible if the
direction of translation, in terms of the linear velocity
vector v, does not penetrate through all the contact
planes (or contact lines) into B: v � n � 0 means no
penetration through the contact plane with normal n.

In�nitesimal Rotation (IR): The speci�ed rotation
is feasible if the tangent velocity vector v at each con-
tacting vertex (of either object) does not penetrate
through the corresponding contact plane (or contact
line) with normal n, i.e., v � n � 0.

In�nitesimal Combined Translation and Rota-

tion (IC): An IC motion can be equivalent to either (i)
an IR followed by a guarded translation (GT) or (ii)
an IT followed by a guarded rotation (GR) 6, see Fig-
ure 3. It is feasible if either (i) or (ii) is feasible. The
amount of GT or GR is determined by the � amount
of the IR or IT prior to it respectively7.

To check the feasibility of a �nite translation

(FT) which follows a straight line is also relatively
easy. First, calculate the direction and the amount
of motion in terms of a distance vector d. Second,
�nd all the faces and edges of A and those of B which

6A guarded motion is terminated by a collision/contact.
7Theoretically � can be arbitrarily small, but it is �nite in

implementation.
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roughly face each other as A moves towards B along
d and the bounding vertices of these faces and edges.
Last, check whether there is an intersection between
such a vertex of one object with the other object as A
translates d. If there is intersection, the FT is infea-
sible; otherwise, it is feasible.

Figure 4 shows a 2-D example to demonstrate the
need for feasibility check of motions. From the topo-
logical expressions of CFi and CFj , in the upper two
cases it is feasible to transmit the CF from CFi to
CFj by some in�nitesimal transformations, but in the
bottom case, there is no in�nitesimal transformation
to do that. The actual feasibilities of motions depend
on the actural geometry of objects.

3.5 Complexity Analysis

Suppose two polyhedra (or polygons for 2-D) A and
B have the same number of faces (or edges for 2-D

polygons), represented byN , for simplicity. According
to the Euler formula, the total number of edges and
the total number of vertices are 3N � 6 and 2N � 4
respectively for polyhedra. Thus, the average number
of edges/vertices per face for a polyhedra is bounded
by the constant 6 (and the number of vertices per edge
for a polygon is 2). Further, we will only consider CFs
with � 3 PCs since in an n-PC CF (n > 3), many PCs
are not independant so that the CF is often found
equivalent to a certain CF with � 3 PCs [19].

Now we describe the asymptotic complexity of our
algorithm. Due to limited space, we will only present
the results of our analysis. First, it can be shown that
the maximum number of GCR graphs, i.e., the maxi-
mum number of locally most constrained (or \seed")
CFs, S, is bounded by O(N2). Second, it can be
shown that the number of nodes in one GCR graph
is much smaller than the constant 66 for 3-D polyhe-
dra (or 26 for 2-D polygon). Hence, the total num-
ber of nodes W of the entire contact state graph is
much smaller than 66S (or 26S for 2-D polygon), and
is bounded by O(N2).

To generate each CF node requires either just a
constant time based on local contact information or
a constant number of feasibility check of FT motions,
where each FT feasibility check requires time O(N ).
It can be shown that the total number of CF nodes in
the entire contact state graph which require FT fea-
sibility check, W1, is bounded by O(N ). Hence, the
total time to generate those CF nodes is bounded by
O(N2). In addition, the total number of nodes with-
out requiring FT feasibility check is W �W1, which is
bounded O(N2). Therefore, the total time T to gener-
ate the entire contact state graph using our algorithm
is bounded by O(N2).

4 Implementation and Results

We have implemented the approach of constructing
and merging GCR graphs for arbitrary CFs with �
3 PCs between arbitrary polygons. The program is
written in C using Xwindow graphics library on Sun
Ultra 10 workstation. Note that to make the graph
look less crowded, we have made a modi�cation on
the de�nition of neighbors, i.e., case 1 is removed from
De�nition 2. With such modi�cation, the number of
neighbors for each CF is reduced, and so is the number
of arcs in a GCR graph. However, the modi�cation
does not a�ect the number of CFs (i.e., nodes) in a
GCR graph.

Figure 5 shows the goal CFs of several pairs of poly-
gons which contain 2 or 3 PCs and the number of
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nodes in the GCR graphs generated from these seed
(goal) CFs.

Figure 6 shows one GCR graph of a peg-in-hole as-
sembly (the node with `�' is the seed node), and Fig-
ure 7 shows the merged result of several GCR graphs
for the peg-in-hole assembly, all produced by our GCR
graph generation and merging algorithms.

We have run our algorithm for constructing GCR
graphs on over 40 di�erent examples involving poly-
gon pairs of vastly di�erent shapes (some of them are
shown in Figure 5). The running time has always been
in the order of several milliseconds on a SUN Ultra 10
workstation. For example, the GCR graph in Figure 6
was generated in only 1:6 milliseconds.

5 Discussion and Conclusion

We have introduced a general approach for auto-
matic construction of contact state space, in terms of
CF graphs of the objects in contact. E�ective imple-
mentation has been completed (a) for automatically
generating GCR graphs of arbitrary CFs formed by
� 3 PCs between two arbitrary polygons and (b) for
merging GCR graphs.

We are extending the implementation to generat-
ing GCR graphs of CFs between 3-D polyhedra. It
is worth emphasizing that our approach is general for

*

Figure 6: One GCR graph of the peg-in-hole assembly:
the node with `�' is the seed node.

Figure 7: Merged result of several GCR graphs of the
peg-in-hole assembly.



both 2-D and 3-D cases except for the detailed se-
lection of possible neighboring relaxation motions, as
explained in Section 3.3. Now we are incorporating
sampling and local path planning in our algorithm in
order to handle 3-D cases, and we expect to achieve
preliminary results soon.

References

[1] Randy C. Brost, \Computing Metric and Topolog-
ical Properties of Con�guration- Space Obstacles",
IEEE Int. Conf. Robotics & Automation, pp. 170-
176, 1989.

[2] G. Dakin, and R. Popplestone, \Simpli�ed Fine-
Motion Planning in Generalized Contact Space",
IEEE Int. Symp. on Intell. Control, pp. 281-287,
1992.

[3] R. Desai, On Fine Motion in Mechanical Assembly
in Presence of Uncertainty, Ph.D. thesis, Dept. of
ME, Univ. of Michigan, 1989.

[4] R. Desai, J. Xiao and R. Volz, \Contact Forma-
tions and Design Constraints: A New Basis for
the Automatic Generation of Robot Programs",
NATO ARW: CAD Based Prog. for Sensor Based
Robots, pp. 361-395, 1988.

[5] B. R. Donald, \On Motion Planning with Six De-
gree of Freedoms: Solving the Intersection Prob-
lems in Con�guration Space", IEEE Int. Conf.
Robotics & Automation, pp. 536-541, 1985.

[6] H. Hirukawa, Y. Papegay, and T. Matsui, \A Mo-
tion Planning Algorithm for Convex Polyhedra in
Contact under Translation and Rotation", IEEE
Int. Conf. Robotics & Automation, pp. 3020-3027,
May 1994.

[7] H. Hirukawa, \On Motion Planning of Polyhedra
in Contact", Proc. of the Works. on Algor. Found.
of Robotics, 1996.

[8] J. Hopcroft and G. Wilfong, \Motion of Objects in
Contact", Int. J. Robotics Res., 4(4):32-46, 1986.

[9] L. Joskowicz, R. H. Taylor, \Interference-Free In-
sertion of a Solid Body Into a Cavity: An Algo-
rithm and a Medical Application", Int. J. Robotics
Res., 15(3):211-229, June 1996.

[10] T. Lozano-P�erez, \Spatial Planning: A Con�g-
uration Space Approach", IEEE Trans. Comput.,
C-32(2):108-120, 1983.

[11] T. Lozano-P�erez, M. T. Mason, and R. H. Tay-
lor, \Automatic Synthesis of Fine-motion Strate-
gies for Robot", Int. J. Robotics Res., 3(1):3{24,
Spring 1984.

[12] B. J. McCarragher, and H. Asada, \A Discrete
Event Approach to the Control of Robotic Assem-
bly Tasks", IEEE Int. Conf. Robotics & Automa-
tion, pp. 331-336, 1993.

[13] B. J. McCarragher, \Task Primitives for the Dis-
crete Event Modeling and Control of 6-DOF As-
sembly Tasks", IEEE Trans. Robotics and Au-
tomation, 12(2):280-289, April 1996.

[14] J. Rosell, L. Basa~nez, and R. Su�arez, \Deter-
mining Compliant Motions for Planar Assembly
Tasks in the Presence of Friction", Proc. of the
1997 IEEE/RRSJ Int. Conf. on Intell. Robots &
Sys., pp. 946-951.

[15] E. Sacks, C. Bajaj, \Sliced Con�guration Spaces
for Curved Plannar Bodies", Int. J. Robotics Res.,
17(6):639-651, June 1998.

[16] R. H. Sturges, and S. Laowattana, \Fine Mo-
tion Planning through Constraint Network Analy-
sis", IEEE Int. Sym. Assembly and Task Planning,
pp. 160-170, Aug. 1995.

[17] J. Xiao, \Replanning with compliant rotations in
the presence of uncertainties", IEEE Int. Sym. In-
tell. Cont., pp. 102-107, Aug. 1992.

[18] J. Xiao, \Automatic Determination of Topolog-
ical Contacts in the Presence of Sensing Uncer-
tainties", IEEE Int. Conf. Robotics & Automation,
pp. 65-70, May 1993.

[19] J. Xiao and L. Zhang, \Contact Constraint Anal-
ysis and Determination of Geometrically Valid
Contact Formations from Possible Contact Prim-
itives", IEEE Trans. Robotics and Automation,
13(3):456-466, June 1997.

[20] J. Xiao, \Goal-contact Relaxation Graphs for
Contact-based Fine Motion Planning", 1997 IEEE
Int. Sym. Assembly and Task Planning, pp. 25-30,
Aug. 1997.

[21] J. Xiao and L. Liu, \Contact States: Representa-
tion and Recognizability in the Presence of Uncer-
tainties", IEEE/RSJ Int. Conf. Intell. Robots and
Sys., Oct. 1998.


