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Abstract— Based on evolutionary computation (EC) concepts,
we developed an adaptive evolutionary planner/navigator (EP/N)
as a novel approach to path planning and navigation. The EP/N is
characterized by generality, flexibility, and adaptability. It unifies
off-line planning and on-line planning/navigation processes in the
same evolutionary algorithm which 1) accommodates different
optimization criteria and changes in these criteria, 2) incorporates
various types of problem-specific domain knowledge, and 3)
enables good tradeoffs among near-optimality of paths, high
planning efficiency, and effective handling of unknown obstacles.
More importantly, the EP/N can self-tune its performance for
different task environments and changes in such environments,
mostly through adapting probabilities of its operators and ad-
justing paths constantly, even during a robot’s motion toward
the goal.

Index Terms—Evolutionary computation, mobile robots, navi-
gation, path planning.

I. INTRODUCTION

T HE mobile robot path planning problem is typically for-
mulated as follows [22]: given a robot and a description

of an environment, plan a path between two specified loca-
tions which is collision-free and satisfies certain optimization
criteria. Although a great deal of research has been performed
to further a solution to this problem, conventional approaches
tend to be inflexible in responding to 1) different optimization
goals and changes of goals, 2) different environments or
changes and uncertainties in an environment, and 3) different
constraints on computational resources (such as time and
space). Traditional off-line planners often assume that the
environment is perfectly known and try to search for the
optimal path based on some fixed criteria (most commonly,
the shortest path) which is usually costly (see [22] and [9]
for surveys). On-line planners, on the other hand, are often
purely reactive and do not try to optimize a path (e.g., [1],
[3], [4], [12], [13]). There are also approaches combining
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traditional off-line planners with incremental map building
to deal with a partially known environment such that global
planning is repeated whenever a new object is sensed and
added to the map [5], [16], [23]. Such approaches, however,
suffer from the same inflexibility as the traditional off-line
planners. The many advantages of evolutionary computation
have inspired the emergence of evolutionary computation
(EC)-based path planners. Early planners, however, often used
standard evolutionary algorithms (e.g., [17], [18], [24]) without
being empowered by more domain-specific knowledge. In
addition, they often assumed discrete search maps derived
from known environments, and thus, they were also inflex-
ible, like many traditional planners, and were not adaptive
to changes or uncertainties. More recently, EC-based plan-
ners have been offered to deal with dynamic environments
with parallel implementation [2] and to create diversity in
paths [7].

There is still a need, however, for more general, flexible, and
preferably adaptive planners capable of meeting any changes
in requirements and environments. EC provides a promising
paradigm for such a general planner, but to be effective, such
a planner 1) should be the product of creative application of
the EC concept incorporating heuristic knowledge rather than
the dogmatic imposition of any standard algorithm, 2) should
not be limited to searching paths in some fixed abstract map
structure, and 3) should be able to accommodate or adapt to
diversities and changes in optimization goals, environments,
and computing resources.

The evolutionary planner/navigator (EP/N) described in
this paper combines the concept of evolutionary computation
with problem-specific chromosome structures and operators
[14]. Unlike many other planners which need to first build a
discretized map for search, the EP/N simply “searches” the
original and continuous environment to generate paths, and
there is little difference between off-line planning and on-line
navigation for the EP/N. In fact, the EP/N combines off-
line planning and on-line navigation in the same evolutionary
algorithm using the same chromosome structure.

Since its first version [11], the development of the EP/N
system has itself been an ever-living “evolution” process:
major effort was focused on operators and fitness evaluation
[20], [15] and more recently on system performance and self-
tuning [21]. In this paper, we focus on the adaptability of
the EP/N system, particularly with respect to the operator
probabilities and the on-line (real time) navigation process.

The paper is organized as follows. Section II introduces
the evolutionary algorithm of the EP/N in detail. Section III
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Fig. 1. A high-level description of the structure of the adaptive evolutionary
planner/navigator algorithm.

describes the self-tuning capabilities of the EP/N. Section IV
presents a set of off-line experiments performed on the EP/N
which demonstrate its adaptability to diverse environments.
Section V discusses the on-line process and presents simula-
tion results of the on-line navigation on a few environments.
Section VI concludes the paper and discusses further research
issues.

II. DESCRIPTION OF THEEP/N ALGORITHM

As introduced in Section I, the EP/N uses the same evolu-
tionary algorithm and chromosome structure for both off-line
planning and on-line navigation. The outline of the adaptive
EP/N is shown in Fig. 1.

A chromosome in a population of generation repre-
sents a (feasible or infeasible) path leading the robot to the
goal location (see Section II-A for details on the chromosome
structure). Each chromosome is evaluated (Section II-B), and
the algorithm enters the evolutionary loop (while statement).
An operator (Section II-C) is selected on the basis of some
probability distribution (Section III); the set of operators
consists of a number of unary transformations (mutation type),
which create offspring by a small change in a single individ-
ual, and higher-order transformations (crossover type), which
create offspring by combining parts from two individuals.
The produced offspring replaces the worst individual in the
population. Thus, in this steady-state evolutionary system, the
populations and differ by a single individual. The
process terminates after some number of generations, which
can be fixed either by the user or determined dynamically by

the program itself, and the best chromosome represents the
near-optimum path found.

The two Boolean variables and are
used to achieve maximum flexibility. If is true,
it means that the EP/N does not have to create the initial
population of chromosomes (which represent paths) from
scratch. Instead, it can input a population of paths as the initial
generation, which could be the result of previous planning
and/or navigation or obtained froma priori knowledge of
the task (i.e., the paths to accomplish the task), and so on.
Otherwise, the EP/N needs to generate an initial population
(Section II-A). The value of indicates the working
mode of the EP/N. If is false, the algorithm is run
off line, characterized by evolution of paths (chromosomes)
based on only known information of an environment. If
is true, the algorithm is run in real time to guide a robot’s
movement based on both known and newly sensed information
of the environment.

The on-line EP/N runs two processes in parallel:
1) navigation of the robot along the current best path while

sensing the environment to detect unknown objects;
2) continuation of the evolution process in search of further

path improvements, taking into account the new location
of the robot and newly sensed objects (if any).

The two processes are related in the following way. While
the robot moves along the current best path, the best
new path emerged from the evolution process is checked
every generations for feasibility. If is feasible, the robot
starts moving along; otherwise the robot continues to move
along while the evolution process also continues. Note that
during such on-line navigation, the starting location of each
path (chromosome) in a population is constantly updated to
reflect the current location of the robot as it moves. By letting
the robot follow the current best path from the continuing
evolution, the EP/N is able to constantly improve the robot
motion between the current location of the robot and the
goal, even if the robot is not approaching any obstacles. A
discovery of a new obstacle during the navigation process
results in changes in fitness values for all paths in the cur-
rent population. The on-line process is further detailed in
Section V.

The flexible EP/N algorithm (as the two Boolean variables
and indicate) allows an off-line plan-

ning process and an on-line navigation process to be nicely
concatenated. The final generation of paths found by the off-
line planning can be input to the on-line process as the initial
population, a basis to start navigation and further evolution.
On the other hand, if the environment is totally unknown
beforehand, planning will depend on the on-line process only,
where the evolution can start from a randomly generated initial
population of paths (Section II-A).

The following subsections describe the important compo-
nents of the EP/N algorithm: 1) the chromosome structure
and initialization process, 2) the evaluation function, and 3)
the operators used. The current forms of these components
are the results of numerous redesigns, modifications, and
improvements. These are by no means, however, the only way
to implement the EP/N approach, and the current components
can still be further improved upon (see Section VI).
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Fig. 2. A linked list chromosome representing a path. Each node containsx

andy coordinates of a point together with a state variableb, which provides
information on feasibility of the point and the following path segment. The
point (x1; y1) is the starting point, and the point(xn; yn) is the goal point.

A. Chromosomes and Initialization

In the EP/N algorithm, a chromosome represents a path,
which consists of straight-line segments, as the sequence of
nodes with the first node indicating the starting point of the
first segment, followed by (a varied number of) intermediate
nodes representing the knot points (i.e., intersection points)
between segments, and the last node indicating the ending
point of the last segment, which is the goal point (Fig. 2).
Each node, apart from the pointer to the next node, consists
of the and coordinates of the point and a state variable
, providing information such as whether or not 1) the point

is feasible (i.e., outside obstacles) and 2) the path segment
connecting the point to the next point is feasible (i.e., without
intersecting obstacles). Thus, a path (or chromosome) can be
either feasible or infeasible. A feasible path is collision free,
i.e., has only feasible nodes and path segments.

A path (or chromosome) can have a varied number of
intermediate nodes. An initial population of chromosomes can
be randomly generated such that each chromosome has a
random number of intermediate nodes and randomly generated
coordinates for each intermediate node.1

B. Evaluation

The evaluation function of a chromosome measures the cost
of the path it represents. Since can be either feasible (i.e.,
collision-free) or infeasible, we adopt two separate evaluation
functions, and , to handle these cases, respectively.
For feasible paths, is designed to accommodate three
different optimization goals: 1) minimize distance traveled,
2) maintain a smooth trajectory, and 3) satisfy the clearance
requirements (the robot should not approach the obstacles too
closely). We have selected a linear combination of these three
factors2

as a formula for calculating , where the constants , ,
and represent the weights on the total cost of the path’s
length, smoothness, and clearance, respectively. We define

, , and as the following.

• , the total length of the
path, where denotes the distance between
two adjacent path points and .

• , the maximum “curvature”
at a knot point, where “curvature” is defined as

1Note that all paths have the same starting point and goal point. Thus, paths
only differ because of different intermediate (i.e., knot) points.

2The linear combination is very simple and consequently allows the
investigation on significance of all components involved in the expression.

and is the angle between the extension of the
line segment connecting path points and and
the line segment connecting points and .

• , where

if
otherwise

is the smallest distance from the segment
to all detected objects, is a parameter defining a
“safe” distance, and is a coefficient. When the distance
between a path segment and the closest obstacle is smaller
than , the penalty grows exponentially to discourage
such close encounters strongly. The function
is defined as the maximum of ’s to make sure that if
a certain segment of a path is dangerously close to an
obstacle, i.e., within distance, then the path is penalized
strongly even if all other path segments are safe.

With this formulation, our goal is to minimize the function
.

For infeasible paths, our design of takes into account
several factors: 1) the number of intersections of a path with
obstacles, 2) the depth of intersection (i.e., how deep a path
cuts through obstacles), 3) the ratio between the numbers of
feasible and infeasible segments, 4) the total lengths of feasible
and infeasible segments, and so on, as detailed in [20]. To
determine the worst path in the whole population we assume
that the worst feasible path is better (or fitter) than the best
infeasible path.

C. Operators

The current version of EP/N uses eight types of operators to
evolve chromosomes into possibly better ones. These operators
are sufficient to generate a path of an arbitrary shape, but each
may not be applicable or needed in a given situation. The appli-
cation of each operator is probabilistic. Note that all operators
only change the intermediate nodes of a chromosome. Now
we introduce these eight operators, which are also illustrated
in Fig. 3.

Crossover recombines two (parent) paths into two new
paths. The parent paths are divided randomly into two parts
respectively and recombined: the first part of the first path
with the second part of the second path, and the first part of
the second path with the second part of the first path. Note
that there can be different numbers of nodes in the two parent
paths.

Mutate_1 is used for fine-tuning node coordinates in a
feasible path for shape adjustment. Given a path, the operator
randomly selects3 its intermediate nodes for adjusting their
coordinates within some local clearance of the path so that the
path subsequently remains feasible.

Mutate_2is used for imposing a large random change node
coordinates in a path, which can be either feasible or infeasible.
Given a path, the operator randomly selects an intermediate
node and changes the coordinates of this node randomly.

Insert–Deleteoperates on an infeasible path by inserting
randomly generated new nodes into infeasible path segments

3Here and in the rest of the descriptions of operators, “random selection”
means selection with equal probability for all outcomes.
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Fig. 3. The roles of the operators. The upper part of each of the eight pairs
of diagrams represents a subpath (or two subpaths in the case of crossover)
before the operator is applied, whereas the lower diagram shows a possible
outcome after application of the operator.

and deleting infeasible nodes (i.e., nodes that are inside
obstacles).

Delete removes nodes from a path, which can be either
feasible or infeasible. If the path is infeasible, nodes for
deletion are selected randomly in the chromosome. Otherwise,
the operator decides whether or not a node should be deleted
based on some heuristic knowledge. In the case where there is
no knowledge supporting the deletion of a node, its selection
for deletion is decided randomly with a small probability.

Swapexchanges the coordinates of selected adjacent nodes
in a chromosome to eliminate two consecutive sharp turns
(Fig. 3). The path can be either feasible or infeasible. The
probability for selecting a node and the next node is
proportional to the sharpness of the two turns (measured by
angles between the path segments) at the two nodes.

Smoothsmooths turns of a feasible path by “cutting cor-
ners,” i.e., for a selected node, the operator inserts two new
nodes on the two path segments connected to that node
respectively and deletes that selected node. The nodes with
sharper turns are more likely to be selected.

Repair fixes a randomly selected infeasible segment in a
path by “pulling” the segment around its intersecting obstacles.

It can be seen that except for the purely random operators
Crossover and Mutate_2, all the other operators (which are
varied forms of mutations) are designed with some heuristic
knowledge to make them more effective for this problem.
Note that since most knowledge needed is available from
the evaluation of path cost (see the previous subsection),
the operators mostly use the knowledge with little extra
computation.

III. PERFORMANCE AND PROBABILITY TUNING

The firing probability ( ) of each operator
governs the contribution or role of the operator to the whole
evolution process. Different values of these probabilities affect
the overall performance of the EP/N. As the system uses

many operators, properly determining their probabilities is not
a trivial matter, particularly since proper values could very
much depend on environmental characteristics and specific
constraints imposed on a task. In this section, we describe
how to enable the EP/N to adapt these probabilities to achieve
the best results by a systematic method.

A. Operator Performance Index

We evaluate the performance of an operator taking into ac-
count three essential aspects: 1) its effectiveness in improving
the fitness of a path, 2) its operation time (or time cost), and 3)
its operation side effect to future generations. While the first
two aspects are self-explanatory, the third aspect refers to the
fact that five operators, i.e., crossover, insert–delete, delete,
smooth, and repair, tend to change the number of nodes (or
the length) of a chromosome after their application. Note that
the length of a chromosome affects both the processing time
and the storage space needed by the chromosome—the more
nodes that are in the chromosome, the more space and time
(i.e., evaluation time and often operation time) are needed. So,
if an operator alters the number of nodes in a chromosome,
the effect will be felt in future processing. Such an effect can
be either positive or negative on the processing cost of future
generations,4 depending on if the operator reduces or increases
the number of nodes in the chromosome. Note that including
the last two aspects in evaluating operators is particularly
useful when constraints on operation resources (i.e., time and
space) for the EP/N are stringent.

Now we describe the performance measures in detail. The
three aspects are first measured individually and then com-
bined to form a compound performance index for an operator.
Since the role of an operator often varies in different stages
of an evolution process (e.g., some operators apply only to
infeasible chromosomes while some only apply to feasible
ones), each aspect is measured as a function of generation
interval , where and are the starting and ending
generations of the interval. For an operator, , we
have the following.

• Its effectiveness in improving the fitness of a path is
measured by the ratio between the number of
times it improves a path and the total number of times
it is applied.

• Its operation time is measured as the average
time per its operation.

• Its operation side effect is measured as the
average time cost of all operators on the average change
of nodes by the operator

where is the average change in the number of nodes
of a chromosome by operatorper its operation during
the generations in , such that is negative if
the number of nodes is decreased on average and is
positive otherwise, is the average number of nodes in

4It is important to differentiate the processing cost (in terms of time and
space) and the fitness of a chromosome; the latter is often improved as the
chromosome has more nodes (such as after the operator repair or smooth is
applied).
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a chromosome over the generations in , and
is the weighted average operation time (on an average
chromosome) of all operators during

where is the number of times (i.e., generations) the
operator is applied during .

Note that the formulation of takes into account
the fact that the node number change in a chromosome by
operator has an effect onanyfuture operation,not necessarily
by the same operator.

The overall performance of an operatoris measured by
the following performance index , which combines
the three aspects of performance

where is a small constant. Note that greater value of
means better performance. In addition, when is

negative (i.e., when is negative), it contributes positively
to , which can be shown to be nonnegative.

The operator performance index has great significance
because of the following.

• It can be automatically computed by the EP/N since it is
based on statistics that the EP/N can accumulate during
its run. Thus, it can be used by the EP/N for automatic
determination of the operator probability, defined as

(1)

• Since is a function of generation interval ,
for different generation intervals, the EP/N can compute
different ’s and accordingly different ’s. That is, a
lookup table that maps different generation intervals to
different operator probabilities can be built by the EP/N
automatically. Next, the operator probabilities can be
changed during different stages of evolution to achieve
greater effectiveness and efficiency.

• More importantly, the EP/N can be adaptive as follows.
Let be a sufficiently small number of generations.
Assign all initial operator probabilities randomly (for
example, uniformly). After the first generations, use
the computed to compute new
probabilities and use the new probabilities in
the next generations. Afterwards, compute the next

and again reset the probabilities accordingly.
Repeat the procedure until the whole evolution process
terminates. Clearly, the method can be refined further
by incorporating a concept of “sliding window” with a
horizon , such that the probabilities are updated every
cycle based on the last generations. In such a case,
however, the computational effort for recalculating all
probabilities is much higher. Moreover, the EP/N is a
steady-state evolutionary system where only one operator
is applied within a single generation, so the effort of
recalculating all probabilities every generation would not
pay off.

B. Adapting Operator Probabilities

Based on the procedure of computing the operator perfor-
mance indexes ’s in the EP/N, we have used the following
method to enable the EP/N to adapt its operator probabilities
at run-time. First, divide the total number of generations
into several equal intervals such that the number of intervals
determine the frequency of adaptation. To begin the run, let the
EP/N assign equal probabilities to all operators initially. Then,
after the first interval of generations, the EP/N computes the
corresponding ’s and probabilities ’s [by (1)] and resets
the operator probabilities to the newly computed’s to run
the next interval of generations. At the end of interval 2, the
EP/N again resets the operator probabilities based on the’s
corresponding to that interval and uses the new probabilities
to run interval 3, and so on. Thus, adaptiveness is achieved
by applying the probabilities computed based on the operator
performance in generation intervalto the next interval .

Our experiments showed (Section IV) that compared to
running the EP/N with equal operator probabilities or other
manually determined fixed operator probabilities, running the
system with adaptive operator probabilities enhanced both the
effectiveness and efficiency of the system for diverse tasks.

C. System Performance Measures

We use the following measures to evaluate the performance
of the EP/N system over generations.

• Effectiveness index—in terms of the average path cost
or the best path cost in the population of the

final generation .
• Efficiency index—in terms of the product of the average

path cost or the best path cost in the final
generation and the total time spent over
generations: or .

Clearly smaller values of both indexes meanbetter effec-
tiveness andbetterefficiency, respectively. To improve system
performance is to reduce the values of those indexes.

Note that the above measures are not necessarily optimal
ways of measuring the system performance. One may also
take into account factors such as how quickly infeasible paths
are evolved into feasible ones (or the percentage of the feasible
paths in each generation), the diversity of feasible paths, and
so on, depending on the need.

IV. OFF-LINE EXPERIMENTS AND RESULTS

We have implemented the EP/N for polygonal obstacles
and run the EP/N off-line on different tasks in diverse en-
vironments to test its tuning ability and overall performance.
Fig. 4 shows six sample tasks in six different environments
where, for each task, a near-optimal path obtained by the
adaptive EP/N is displayed. Note that the same values of
the EP/N parameters were used for all tasks, except the
operator probabilities, which were adapted (with adaptation
occurred every 100 generations). Different complexities of the
environments were reflected by the differentgenerations of
evolution needed to obtain the near-optimal results displayed.
However, are usually sufficient to achieve very good
results in all cases, and are usually sufficient to create
feasible paths of reasonable shape in all cases. Fig. 5 shows
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Fig. 4. Six tasks in six different environments selected for experiments and near-optimal paths found by the EP/N (adaptive version) inT generations
(as indicated). Other parameters of the EP/N were set to be the same for all six environments: The population size was set to be 30, and the coefficients
wd; ws; wc; a; � in the evaluation functionevalf (p) were selected as 1.0, 1.0, 1.0, 7.0, and 10, respectively.

the snapshots of one evolution process of paths for the task in
Environment 6 in generations. Very reasonable paths
were already formed even with only 400 generations.

Table I shows, for generations and each task
shown in Fig. 4, 1) the average time of running the EP/N
with adapted probabilities over 100 repeated runs5 and 2)
the average gain on both system effectiveness and efficiency
when the EP/N adapted operator probabilities against the
case when the EP/N used fixed, equal operator probabilities
over 100 repeated runs.6 As expected, values of both system
effectiveness and efficiency indexes arereduced, which means
better effectiveness and efficiency was achieved in most of
the cases.

Compared to the results obtained by running the EP/N with
fixed, manually determined operator probabilities [20], the

5All runs were made on a Silicon Graphics station.
6Note that [21] presented some results averaged over 30 runs. We later find

that 30 runs are not enough statistically and 100 runs are more reasonable.

results with adaptive probabilities (as presented here) show
significant improvement of the system performance.

V. ON-LINE NAVIGATION

We have implemented a simulation program for the on-
line navigation of the EP/N (see Fig. 1) with the following
assumptions.

• Obstacles in the environment are either known or un-
known. In the current implementation they are assumed
to be static.

• The robot has a range of view (described by, parameter
of the robot). If, due to the robot’s motion, an unknown
obstacle is located in the range of the view, the obstacle
becomes known and is marked in the robot’s map of
the environment. In the current stage of simulation, for
simplicity, we further assume that once an obstacle is
inside the robot’s range of view, it becomes known totally
(i.e., its complete dimensionality is given). Of course, to
be more realistic, this assumption can easily be revised
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Fig. 5. Snapshots of path evolution at different generations(T ) for Environment 6, where two-thirds of population are shown and the EP/N is under
the same condition as in Fig. 4.

TABLE I
AVERAGE TIME AND GAIN (OVER 100 RUNS) ON SYSTEM PERFORMANCE

AGAINST THE CASE WITH EQUAL OPERATOR PROBABILITIES IN T = 400
GENERATIONS. THE “EFFECTIVENESS” AND “EFFICIENCY” COLUMNS

REPORT THEPERCENTAGE GAINS ON THE EFFECTIVENESSINDEX AND

THE EFFICIENCY INDEX DEFINED IN SECTION III-C, RESPECTIVELY

as only the part of the object boundary that is inside the
robot’s range of view is known. As our current focus is on
testing the robot’s adaptation capability to the discovery
of unknowns in an environment, however, it does not
matter much at present how such discovery is actually
accomplished.

In the on-line navigation, the result of evolution is checked
after every generations (see the second “if” statement in the
procedure of Fig. 1) to provide the robot with the current best
feasible path. The robot moves along such a path in steps, and
we use a parameter to denote the maximum length of

the robot’s step ( is less than ). If a segment of the path
currently being followed by the robot has a length shorter than

, the robot will cover it in one step to reach the next knot
point of the path. Otherwise, the robot will move along the
segment in more than one step, and during the process, it may
also change course if a better path (i.e., the next best path)
becomes available from the evolution process. The evolution
process runs in parallel with the robot’s motion.

The implication of sensing a previously unknown obstacle is
a change in the fitness values of the current path population.
As such a new obstacle is added to the robot’s map of the
environment, it may change the subsequent evaluation results
of all paths. This is a very sensitive moment for the evolution
process: some of the (feasible) paths in the population may
become infeasible and their cost can increase significantly.
The previous best path may no longer be best, and a new best
path may need to be found.

As mentioned in Section II, during such on-line navigation,
the starting location of each path in a population is constantly
updated to reflect the current location of the robot as it
moves. Given a path to be updated, this process involves the
application of an additional operator, short-cut, which connects
the current position of the robot to the furthest knot point of the
path (provided, of course, that the resulting path is feasible).
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Fig. 6. The best path in the initial population. The shaded obstacles are
known. The outlined obstacles are unknown. The initial best path crosses two
obstacles, one known and one unknown.

Fig. 7. The first feasible path. The robot makes its initial move upon
generating the first feasible solution given known obstacles.

A. An Example

The actions of the robot guided by the on-line navigation
process are illustrated by the following example. Fig. 6 dis-
plays the robot’s environment. The starting point is in the
left-bottom corner, and the goal point is close to the right-top
corner of the rectangle. There are eight obstacles in total; two
of them are unknown (marked by their contours only). During
initialization, a set of randomly generated paths is developed;
very likely none of these initial paths will be feasible (Fig. 6
displays the best path in the initial population).

Soon after discovery of the first feasible path, the first step
ahead is made. Note that this path of the robot is optimized
based only on known obstacles so that it does not have to be
truly feasible (Fig. 7): it might intersect an unknown obstacle.
Note also that the remaining parts of the paths are continuously
optimized; the current best path in Fig. 7 is different from that
in Fig. 8.

When a previously unknown obstacle is in the robot’s
range of view, it becomes known and the robot marks its
presence on the map of the environment (Figs. 8 and 9). At this
moment, all paths in the current population are reevaluated,
and as the evolution process continues, the robot eventually
follows a newly emerged best feasible path (Fig. 10), which
is subsequently improved (Fig. 11).

When the second unknown obstacle is discovered, again, all
paths in the population are reevaluated, and the robot adjusts
its motion accordingly by following a newly emerged best
path (Fig. 12).

The actual path traversed by the robot is displayed in Fig. 13
(note again the improvements in the final segments of the
path from those displayed in Fig. 12). This path is far from
being optimal in comparison with an “ideal” path which would
emerge if all obstacles in the environment were knowna priori
(Fig. 14). It is unfair, however, to simply compare such a real

Fig. 8. Before sensing the first unknown obstacle. The robot has moved to
a position where the outlined obstacle is still unknown. Note that the path
has been optimized with respect to distance and smoothness, as compared to
the path shown in Fig. 7.

Fig. 9. Sensing and reevaluation. The robot senses the first unknown obsta-
cle. Its planned path is no longer feasible.

Fig. 10. The best feasible path after sensing the first unknown obstacle. The
EP/N planner has invented a path around the newly discovered obstacle.

Fig. 11. Before sensing the second unknown obstacle. The robot has tra-
versed around the first (previously) unknown obstacle and is approaching the
second.

path traversed as the result of on-line handling of unknown
obstacles to the “ideal” path.

B. Analysis of Performance

To evaluate the quality of a real path, a more reasonable
approach is to divide the path into so-called fragments: the
cut point between fragments is the location where the robot
sensed a new obstacle. There are as many cut points as the
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Fig. 12. After sensing the second unknown obstacle. The second unknown
obstacle has come within sensor range and the EP/N has generated a path
around it.

Fig. 13. The robot’s real path as executed over time.

Fig. 14. The robot’s “ideal” path for the completely known environment.
The path differs from the path actually developed by the EP/N because two
of the obstacles were unknowna priori.

number of new obstacles sensed during the robot’s movement
(therefore the number of fragmentsis by one greater than
the number of cut points). Then each fragment is compared
to an ideal path generated to connect the fragment’s start and
goal locations,7 which results in a relative error in path cost
for the segment.

Knowing the merit of each fragment (measured by), we
can measure the error of the real path with the formula

where
the number of fragments;
the relative error of theth fragment (in path cost);
the number of generations passed during the traversal
of the th fragment;

i.e., represents the total number of
generations.

7 Such an ideal path can be generated by running the EP/N off line in the
same environment but with all obstacles known for a sufficient number of
generations.

TABLE II
RESULT OF EXPERIMENTS FORn = 5; THE RESULTING NUMBER

OF GENERATIONSN = 463:7 AND ERROR E = 0:118076

TABLE III
RESULT OF EXPERIMENTS FORn = 10; THE RESULTING NUMBER

OF GENERATIONSN = 592:8 AND ERROR E = 0:081996

TABLE IV
RESULT OF EXPERIMENTS FORn = 15; THE RESULTING NUMBER

OF GENERATIONSN = 753:9 AND ERROR E = 0:071032

TABLE V
RESULT OF EXPERIMENTS FORn = 20; THE RESULTING NUMBER

OF GENERATIONS N = 960:3; ERROR E = 0:064764

Note that ’s depend on the following parameters:(the
number of generations between robot’s steps), (the
robot’s step length), and (the robot’s range of view). As the
result, longer fragments usually correspond to larger values
of ’s, and consequently smaller values of’s. This is why
we define the error as a weighted average of’s, with
the corresponding weight being . Note also that if the
robot encounters no unknown obstacle, then there is only one
fragment: the entire real path, andis simply the relative error
of the real path traversed against an ideal path (which can be
the result of evolution over a larger number of generations).

We now discuss how is related to , the number of
generations between the robot’s steps. Tables II–V show
results of experiments using the environment shown in Fig. 15,
with dimensions 400 500 (averaged over 100 trials) for
different ’s. The other parameters used in these experiments
were population size 70, the robot’s single step ,
and the range of view .

Results reported in Tables II–V confirm a basic intuition: the
total error decreases with the growth of. That is, the more
generations between robot’s steps are, the better precision (in
terms of the path quality) can be achieved. Also, the relative
errors ’s are smaller for later fragments, i.e., fragments closer
to the goal. This is because these fragments are subject to more
optimization (in terms of larger number of generations) in the
on-going evolutionary process.
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(a) (b)

Fig. 15. (a) Experimental environment and (b) three fragments of a path are clearly marked.

On the other hand, note that in this specific implementation
of on-line navigation, is coupled with the step length
of the robot, in that generations of evolution must complete
before the robot proceeds to the next step. For a fixed ,
this implies that a very large may cause a slower movement
of the robot and therefore a longer time for path traversal.

Now let us discuss the effect ofon the time of navigation.
As confirmed by the experimental results (shown in Tables
II–V), a larger leads to a larger total number of generations

, which means a longer total time of evolution. Since the
evolution process and the robot’s movement are performed in
parallel, the total time of path traversalis the maximum of

and the total time of the robot’s movement

where is a function of path quality (length and smoothness)
and the robot’s velocity. From running the EP/N off line (Sec-
tion IV), we know that even for a very complex environment,

for a reasonable (e.g., in the range of 600–1000, as
in the Tables II–V) is usually in the order of a few seconds,
which should be well below the time required for a current
land-based robot to physically traverse a normal indoor or
outdoor environment. That is, can usually hold for
a reasonably large as a result of a comfortably large. In
other words, can be sufficiently large without affecting the
time of traversal. Since a largercan result in a path of better
quality, which often means a smoother path of shorter length,
a larger may actually reduce the robot’s time of traversal.

In summary, the parallelism between path evolution and
path traversal in the adaptive EP/N is shown to be very
advantageous in achieving both high effectiveness and effi-
ciency in real-time navigation of a robot, especially when the
environment is only partially known.

VI. CONCLUSIONS

The adaptive EP/N presented in this paper is particularly
suitable for dealing gracefully, effectively, and efficiently with
the diversities, changes, and unknowns in an environment.
Results from off-line planning with adaptive probabilities of
genetic operators and simulation of on-line navigation confirm
the flexible nature and robustness of such an evolutionary
system. We are currently implementing the on-line process
of the EP/N on a Khepera robot.

The EP/N also exposes many interesting challenges of gen-
eral importance to evolutionary computation. One of the most
significant is how to take the full advantage of adaptiveness

of an evolutionary system and tune its various parameters
during the execution of the system. The adaptive EP/N uses an
automatic mechanism to measure performances of its genetic
operators and adapt the operator probabilities accordingly.
The general nature of the strategy makes it applicable to
other evolutionary systems as well. An important issue of
future research is how to make the EP/N capable of adapting
other system parameters. Several such parameters may be of
particular interest. One determines how frequently operator
probabilities should be adjusted or adapted (i.e., the generation
interval ’s in Section III). Parameters and in
the on-line process (Section V), as well as the velocity of
a robot, are crucial to determine how frequently the robot
should adjust its path during on-line navigation and how to
balance the quality of path and the time of traversal. In the
current implementation, and are coupled (Section V-
B), but they can be also implemented as two independent
parameters so that their relations are mainly affected by
specific environment/task characteristics. In general, for any
parameter whose best value may vary for different tasks or
environments, making it adaptive could be desirable.

It may also be desirable to further incorporate domain
knowledge in important components/processes of the EP/N
to enhance its performance. Although we have incorporated
domain knowledge in both fitness evaluation and operators,
there are other components/processes, such as the initialization
process, which may by improved as a result of greater knowl-
edge. For example, rather than random initialization, an initial
population may consist of a) a set of paths created by mutating
or repairing the shortest path between start and goal locations
and/or b) some mixture of chromosomes having randomly
generated coordinates and chromosomes having coordinates
with “problem-specific” knowledge as obtained from a).

Anot.her important issue is to improve the organization of
the EP/N to stress learning for on-line navigation. The system
may be extended by adding memory to store the knowledge
from the robot’s past exploration of the environment together
with the knowledge from previous navigation tasks to facilitate
more efficient and effective planning in the future. We have
performed some preliminary studies in adding local memories
to chromosomes for storing “valuable” paths or segments of
paths discovered earlier [19]. The experiments demonstrate the
potential of such an extension to the EP/N in improving plan-
ning effectiveness in partially known environments. It could
also be interesting to study other forms of “memory,” such as
one based on multichromosome structures with a dominance
function [6] or employing machine learning techniques.
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