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Abstract— Based on evolutionary computation (EC) concepts, traditional off-line planners with incremental map building
we developed an adaptive evolutionary planner/navigator (EP/N) to deal with a partially known environment such that global
as a novel approach to path planning and navigation. The EP/N is planning is repeated whenever a new object is sensed and

characterized by generality, flexibility, and adaptability. It unifies
off-line planning and on-line planning/navigation processes in the added to the map [5], [16], [23]. Such approaches, however,

same evolutionary algorithm which 1) accommodates different suffer from the same inflexibility as the t_raditional off-line_
optimization criteria and changes in these criteria, 2) incorporates planners. The many advantages of evolutionary computation
various types of problem-specific domain knowledge, and 3) have inspired the emergence of evolutionary computation
enables good tradeoffs among near-optimality of paths, high (EC)-based path planners. Early planners, however, often used
plannmg efficiency, and effective handling of unknown obstacles. standard evolutionary algorithms (e.g., [17], [18], [24]) without
More importantly, the EP/N can self-tune its performance for bei d b d : ific k led
different task environments and changes in such environments, P€iNg empowered by more domain-specific knowledge. In
mostly through adapting probabilities of its operators and ad- addition, they often assumed discrete search maps derived

justing paths constantly, even during a robot's motion toward from known environments, and thus, they were also inflex-

the goal. ible, like many traditional planners, and were not adaptive
Index Terms—Evolutionary computation, mobile robots, navi- 0 changes or uncertainties. More recently, EC-based plan-
gation, path planning. ners have been offered to deal with dynamic environments
with parallel implementation [2] and to create diversity in
paths [7].
I. INTRODUCTION

There is still a need, however, for more general, flexible, and
HE mobile robot path planning problem is typically for-preferably adaptive planners capable of meeting any changes
mulated as follows [22]: given a robot and a descriptiof requirements and environments. EC provides a promising

of an environment, plan a path between two specified locgaradigm for such a general planner, but to be effective, such

tions which is collision-free and satisfies certain optimizatiog planner 1) should be the product of creative application of

criteria. Although a great deal of research has been performfid EC concept incorporating heuristic knowledge rather than

to further a solution to this problem, conventional approach@e dogmatic imposition of any standard algorithm, 2) should

tend to be inflexible in responding to 1) different optimizatiomot be limited to searching paths in some fixed abstract map
goals and changes of goals, 2) different environments @fycture, and 3) should be able to accommodate or adapt to
changes and uncertainties in an environment, and 3) differgffersities and changes in optimization goals, environments,

constraints on computational resources (such as time afx} computing resources.

spa_ce). Tradif[ional off-line planners often assume that therpe evolutionary planner/navigator (EP/N) described in

environment is perfectly known and try to search for thgis haper combines the concept of evolutionary computation

optimal path based on some fixed criteria (most commonlyiih problem-specific chromosome structures and operators

the shortest path) which is usually costly (see [22] and [9]4] uUnlike many other planners which need to first build a

for surveys). On-line planners, on the other hand, are oftgfycretized map for search, the EP/N simply “searches” the

purely reactive and do not try to optimize a path (€.9., [1iginal and continuous environment to generate paths, and

[31. [4], [12], [13]). There are also approaches combining,qre s ittle difference between off-line planning and on-line
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procedure EP/N the program itself, and the best chromosome represents the
begin near-optimum path found.
te10 The two Boolean variablegnown_path and online are
if known _palh then used to achieve maximum flexibility. Brnown_path is true,
els‘;””” P(t) it means that the EP/N does not have to create the initial
initialize P(1) populationP(0) of chromosomes (which represent paths) from
evaluate P(t) scratch. Instead, it can input a population of paths as the initial
while (not termination-condition) do generation, which could be the result of previous planning
be?‘i/“ and/or navigation or obtained frora priori knowledge of
celoct operator o; with probability p; the tasl_< (i.e., the paths to accomplish the tgsfk_), and so on.
select, parent(s) from P(1) Otherwise, the EP/N needs to generate an initial population
produce an oflspring by applying the operator o (Section ”-A) The value ofonline indicates the Working
to the sclected parent(s) mode of the EP/N. Ifonline is false, the algorithm is run
evaluate new offspring . off line, characterized by evolution of paths (chromosomes)
replace the worst IIl(‘IT.lb(‘T-' of the population (1) based on onlv k inf ti h . .
by the produced olfspring y known information of an environmentrtfine
seloct the best individual p from P(¢) is true, the algorithm is run in real time to guide a robot's
if online and p f{casible and ({ mod n) = 0 then movement based on both known and newly sensed information
begin o of the environment.
e e st Kmar & g the path determine . .
”"’g; levlili'lengmgl R The on-line EP/N runs two processes in parallel:
modify the values in all individuals 1) navigation of the robot along the current best path while
due to a new starting position sensing the environment to detect unknown objects;
if there is any change sensed then 2) continuation of the evolution process in search of further

update the object map
evaluate (1)

path improvements, taking into account the new location
of the robot and newly sensed objects (if any).

end
end The two processes are related in the following way. While
end the robot moves along the current best path the best
Fig. 1. A high-level description of the structure of the adaptive evolutionaffew pathp emerged from the evolution process is checked
planner/navigator algorithm. everyn generations for feasibility. I is feasible, the robot

starts moving along; otherwise the robot continues to move

describes the self-tuning capabilities of the EP/N. Section | ongpe. while th? evolutllon Process also .contmue-s. Note that
presents a set of off-line experiments performed on the EPAYNG such on-line navigation, the starting location of each
which demonstrate its adaptability to diverse environmen#@th (chromosome) in a population is constantly updated to
Section V discusses the on-line process and presents sim{fEi€Ct the current location of the robot as it moves. By letting
tion results of the on-line navigation on a few environment&1€ robot follow the current best path from the continuing

Section VI concludes the paper and discusses further resea%ﬂl_u'[ion’ the EP/N is able to con;tantly improve the robot
issues. motion between the current location of the robot and the

goal, even if the robot is not approaching any obstacles. A
discovery of a new obstacle during the navigation process
IIl. DESCRIPTION OF THEEP/N ALGORITHM results in changes in fitness values for all paths in the cur-

As introduced in Section I, the EP/N uses the same evolignt population. The on-line process is further detailed in
tionary algorithm and chromosome structure for both off-lin8ection V.
planning and on-line navigation. The outline of the adaptive The flexible EP/N algorithm (as the two Boolean variables
EP/N is shown in Fig. 1. known_path and online indicate) allows an off-line plan-

A chromosome in a populatioR(¢) of generatior¢ repre- ning process and an on-line navigation process to be nicely
sents a (feasible or infeasible) path leading the robot to thencatenated. The final generation of paths found by the off-
goal location (see Section II-A for details on the chromosonli@e planning can be input to the on-line process as the initial
structure). Each chromosome is evaluated (Section 1I-B), apdpulation, a basis to start navigation and further evolution.
the algorithm enters the evolutionary loop (while statementpn the other hand, if the environment is totally unknown
An operator (Section 1I-C) is selected on the basis of sonbeforehand, planning will depend on the on-line process only,
probability distribution (Section IIl); the set of operatorsvhere the evolution can start from a randomly generated initial
consists of a number of unary transformations (mutation typgjepulation of paths (Section II-A).
which create offspring by a small change in a single individ- The following subsections describe the important compo-
ual, and higher-order transformations (crossover type), whioknts of the EP/N algorithm: 1) the chromosome structure
create offspring by combining parts from two individualsand initialization process, 2) the evaluation function, and 3)
The produced offspring replaces the worst individual in thihe operators used. The current forms of these components
population. Thus, in this steady-state evolutionary system, taee the results of numerous redesigns, modifications, and
populationsP(¢+1) and P(¢) differ by a single individual. The improvements. These are by no means, however, the only way
process terminates after some number of generations, whictimplement the EP/N approach, and the current components
can be fixed either by the user or determined dynamically logn still be further improved upon (see Section VI).
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, o andé; € [0, 7] is the angle between the extension of the
Xy ¥, b e XY b . line segment connecting path points;_; and m; and
—! —n the line segment connecting points; and ;.
, _ -1
Fig. 2. A linked list chromosome representing a path. Each node contains * clear(p) = max;_" c;, where
andy coordinates of a point together with a state varighleshich provides

information on feasibility of the point and the following path segment. The _Jgi—m, if Gi > T
point (1, y1 ) is the starting point, and the poitit,, ¥, ) is the goal point. Ci eT=gi) _q otherwise
)

g; is the smallest distance from the segmemtm,; 1
to all detected objectsy is a parameter defining a

In the EP/N algorithm, a chromosome represents a path, “safe” distance, and is a coefficient. When the distance
which consists of straight-line segments, as the sequence of petween a path segment and the closest obstacle is smaller
nodes with the first node indicating the Starting pOint of the than T, the pena'ty grOWS exponentia”y to discourage
first segment, followed by (a varied number of) intermediate  such close encounters strongly. The functidnar(p)
nodes representing the knot points (i.e., intersection points) s defined as the maximum ef’s to make sure that if
between Segments, and the last node indicating the ending a certain Segment of a path is dangerous'y close to an
point of the last segment, which is the goal point (Fig. 2).  obstacle, i.e., within distance then the path is penalized
Each node, apart from the pointer to the next node, consists strongly even if all other path segments are safe.

of the & _and_y coord!nates of the point and a state varlab_le With this formulation, our goal is to minimize the function
b, providing information such as whether or not 1) the point, 1

is feasible (i.e., outside obstacles) and 2) the path segmen,t;gr' infeasible paths, our design efal; takes into account

ponnecting the point to the next point is feasible (i.e., Witho‘é%veral factors: 1) the number of intersections of a path with
intersecting obstacles). Thus, a path (or chromosome) Canc}ffétacles 2) the depth of intersection (i.e., how deep a path
either feasible or infeasible. A feasible path is collision fre%’uts thrOljgh obstacles), 3) the ratio betwe,en the numbers of
i.e., has only feasible nodes and path segments. feasible and infeasible segments, 4) the total lengths of feasible

A path (or chromosome) can have a varied number gfq infeasible segments, and so on, as detailed in [20]. To

intermediate nodes. An initial population of chromosomes Cftermine the worst path in the whole population we assume
be randomly gengrated su_ch that each chromosome h the worst feasible path is better (or fitter) than the best
random number of intermediate nodes and randomly generafed - ciple path

coordinates for each intermediate ndde.

A. Chromosomes and Initialization

B. Evaluation C. Operators

The evaluation function of a chromosome measures the cos:[rhe current version of EP/N uses eight types of operators to

of the pathp it represents. Since can be either feasible (i'e',evolve chromosomes into possibly better ones. These operators

collision-free) or infeasible, we adopt two separate evaluatigh. sufficient to generate a path of an arbitrary shape, but each

functions,cval y andeval;, to handle these cases, respectivel may not be applicable or needed in a given situation. The appli-

For feasible pathseval; is designed to accommodate thre)é:atlon of each operator is probabilistic. Note that all operators

different optimization goals: 1) minimize distance traveleuOnly change the intermediate nodes of a chromosome. Now

2) maintain a smooth trajectory, and 3) satisfy the cIearan:éng'imrosduce these eight operators, which are also illustrated
requirements (the robot should not approach the obstacles to g. o

closely). We have selected a linear combination of these thre%}rosic;]verrecombmis two d(.p%re(r;t) pzthsl |n'to two new
factor@ paths. The parent paths are divided randomly into two parts

respectively and recombined: the first part of the first path
eval (p) = wq - dist(p) + w, - smooth(p) + w,. - dear(p)  with the second part of the second path, and the first part of
the second path with the second part of the first path. Note

as a formula for calculatingval s, where the constantss, ws, that there can be different numbers of nodes in the two parent
andw,. represent the weights on the total cost of the pathysins.

length, smoothness, and clearance,_ respectively. We de i”ﬁ/lutate_l is used for fine-tuning node coordinates in a
dist, smooth, andclear as the following. feasible path for shape adjustment. Given a path, the operator
o dist(p) = Y72 d(m;,mi+1), the total length of the randomly selecfsits intermediate nodes for adjusting their

path, whered(m;,m;;1) denotes the distance betweeroordinates within some local clearance of the path so that the

two adjacent path pointsy; and ;1. path subsequently remains feasible.
* smooth(p) = max ;" s(m;), the maximum “curvature”  Mutate_2is used for imposing a large random change node
at a knot point, where “curvature” is defined as coordinates in a path, which can be either feasible or infeasible.
6; Given a path, the operator randomly selects an intermediate
s(m;) = node and changes the coordinates of this node randomly.

in{d i—1, T 7d iy T4 i i i i
win{d(mi—y, mi), d(mi, mit1)} Insert—Deleteoperates on an infeasible path by inserting

INote that all paths have the same starting point and goal point. Thus, patasidomly generated new nodes into infeasible path segments
only differ because of different intermediate (i.e., knot) points.

2The linear combination is very simple and consequently allows the 3Here and in the rest of the descriptions of operators, “random selection”
investigation on significance of all components involved in the expressionmeans selection with equal probability for all outcomes.
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many operators, properly determining their probabilities is not

v , . a trivial matter, particularly since proper values could very

° o . much depend on environmental characteristics and specific
constraints imposed on a task. In this section, we describe

how to enable the EP/N to adapt these probabilities to achieve

¢ the best results by a systematic method.

crossover mutation_ 1 mutation_2 insertion

v v

o ' - * A. Operator Performance Index

We evaluate the performance of an operator taking into ac-
count three essential aspects: 1) its effectiveness in improving
the fitness of a path, 2) its operation time (or time cost), and 3)
its operation side effect to future generations. While the first
two aspects are self-explanatory, the third aspect refers to the

deletion smooth repair fact that five operators, i.e., crossover, insert—delete, delete,
¢ ¢ ¢ smooth, and repair, tend to change the number of nodes (or
0 0 ° the length) of a chromosome after their application. Note that

the length of a chromosome affects both the processing time
and the storage space needed by the chromosome—the more
Fig. 3. The roles of the operators. The upper part of each of the eight pafisdes that are in the chromosome, the more space and time
of diagrams represents a subpath (or two subpaths in the case of crosso“Peé) evaluation time and often operation time) are needed. So
e . So,

before the operator is applied, whereas the lower diagram shows a poss}pl .
outcome after application of the operator. It an operator alters the number of nodes in a chromosome,

the effect will be felt in future processing. Such an effect can
. i i __be either positive or negative on the processing cost of future
and deleting infeasible nodes (i.e., nodes that are 'ns'ggneratiorl?é,depending %n if the operarior reducgs or increases
obstacles). _ _the number of nodes in the chromosome. Note that including
Delete removes nodes from a path, which can be eith@le a5t two aspects in evaluating operators is particularly
feasible or infeasible. If the path is infeasible, nodes fQ[sef when constraints on operation resources (i.e., time and
deletion are selected randomly in the chromosome. OtherW|§ ace) for the EP/N are stringent.
the operator decides whether or not a node should be deletef, .\ we describe the performance measures in detail. The
based on some heuristic knowledge. In the case where thergS. aqpects are first measured individually and then com-
no knowledge supporting the deletion of a node, its Selec“%ﬂ]ed to form a compound performance index for an operator.
for deletion is decided randomly with a small probability.  gjyce the role of an operator often varies in different stages
_ Swapexchanges the coordinates of selected adjacent no&gsdn evolution process (e.g., some operators apply only to
in a chromosome to eliminate two consecutive sharp Wiigeasible chromosomes while some only apply to feasible
(Fig. 3)_._The path can be either feasible or lnfea5|blg. Trb%es), each aspect is measured as a function of generation
probability for selecting a node; and the next node;11 IS jntarya| [T1,T3], whereT; andT; are the starting and ending
proportional to the sharpness of the two turns (measured 5’é(nerations of the interval. For an operatof= 1, -- -, 8, we
angles between the path segments) at the two nodes. have the following. T

Smoothsmooths turns of a feasible path by “cutting cor-  |ts effectiveness in improving the fitness of a path is

ners,” i.e., for a selected node, the operator inserts two new measured by the ratie;(T}, T) between the number of
nodes on the two path segments connected to that node .. red by Oi{f1,12 .
times it improves a path and the total number of times

respectively and deletes that selected node. The nodes with . . .
it is applied.

sharper tums are more likely to be selected. * |ts operation timet; (17, 15) is measured as the average
Repair fixes a randomly selected infeasible segment in a° |- OPerat i(11,12) 9
time per its operation.

ath by “pulling” the segment around its intersecting obstacles. ; ) .

P It cgn IE)e segen that gxcept for the purely randogm operators lts operation side efﬁelfki(Tl’TQ) IS mr(]easured as t:e
Crossover and Mutate_2, all the other operators (which are average time cost of a pperators on the average change
varied forms of mutations) are designed with some heuristic of nodes by the operatar
knowledge to make them more effective for this problem.
Note that since most knowledge needed is available from
the evaluation of path cost (see the previous subsection),
the operators mostly use the knowledge with little extra
computation.

on; - t(ﬁ)

5i(11,1s) =

whereén,; is the average change in the number of nodes
of a chromosome by operatérper its operation during
the generations iy, 73], such thatén, is negative if
the number of nodes is decreased on average and is
Ill. PERFORMANCE AND PROBABILITY TUNING o L .
o - positive otherwisef: is the average number of nodes in
The firing probabilityp; (¢ = 1,--.,8) of each operator e _ _ _ _ _

governs the contribution or role of the operator to the whole It is important to differentiate the progessmg cost (in terms of time and

. . e space) and the fitness of a chromosome; the latter is often improved as the
evolution process. Different values of these probabilities aff omosome has more nodes (such as after the operator repair or smooth is

the overall performance of the EP/N. As the system usesplied).
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a chromosome over the generationgIh, 7»], andt(7) B. Adapting Operator Probabilities

is the weighted average operation time (on an averagegased on the procedure of computing the operator perfor-
chromosome) of all operators durifi@; , 7] mance indexed;’s in the EP/N, we have used the following
8 ‘ method to enable the EP/N to adapt its operator probabilities
t(n) = Z i (11, 1) at run-time. First, divide the total number of generatidns
i=1 -1 into several equal intervals such that the number of intervals
etermine the frequency of adaptation. To begin the run, let the
P/N assign equal probabilities to all operators initially. Then,
after the first interval of generations, the EP/N computes the
orrespondingl;'s and probabilitiesp;’s [by (1)] and resets
e operator probabilities to the newly computeds to run
the next interval of generations. At the end of interval 2, the
EP/N again resets the operator probabilities based od;the
corresponding to that interval and uses the new probabilities
to run interval 3, and so on. Thus, adaptiveness is achieved
by applying the probabilities computed based on the operator
ei(Ty, Th) + ¢ performance in generation intervalto the next intervah + 1.
(T, To) + s:(T1, To) OL_Jr experiments §howed (Section V) that. -clompared to
i running the EP/N with equal operator probabilities or other
wherec > 0 is a small constant. Note that greater value Qhanyally determined fixed operator probabilities, running the
I; means better performance. In addition, whe(il1,12) is  system with adaptive operator probabilities enhanced both the

negative (i.e., whemn; is negative), it contributes positively effectiveness and efficiency of the system for diverse tasks.
to I;, which can be shown to be nonnegative.

The operator performance index has great significance
because of the following.

« It can be automatically computed by the EP/N since it is .
based on statistics that the EP/N can accumulate duri?lfgthe EPIN system ovel0, T] generations.

its run. Thus, it can be used by the EP/N for automatic * Effectiveness index—in terms of the average path cost

wherem,; is the number of times (i.e., generations) th
operator: is applied during[71,75].

Note that the formulation of;(71,73) takes into account
the fact that the node number change in a chromosome
operatori has an effect oanyfuture operationnot necessarily
by the same operatar

The overall performance of an operatois measured by
the following performance index;(77,7»), which combines
the three aspects of performance

L(T, 1) =

C. System Performance Measures
We use the following measures to evaluate the performance

determination of the operator probability, defined as avgr Or the best path coststy in the population of the
final generation?’.
pi = 8171‘_ (1) « Efficiency index—in terms of the product of the average
Ej:l I; path costavgr or the best path codtestr in the final

generation7 and the total timetr spent over[0,7]

* Since I; is a function of generation intervdlly, T3], generationsuvgy X tr Of besty X tr.

for different generation intervals, the EP/N can compute Clearly smallervalues of both indexes medetter effec-

different Ji’s and accordingly differenp;’s. That is, a tiveness andbetterefficiency, respectively. To improve system
lookup table that maps different generation intervals to Y, resp Y. P y

different operator probabilities can be built by the Epnﬁerformance s to reduce the values of those '”dex?s- .
. o Note that the above measures are not necessarily optimal
automatically. Next, the operator probabilities can be

changed during different stages of evolution to achie\%'gayS of measuring the system performance. One may aiso

. - ake into account factors such as how quickly infeasible paths
greater effectiveness and efficiency. ; . .
. . are evolved into feasible ones (or the percentage of the feasible
« More importantly, the EP/N can be adaptive as follows, . . . ) ;
- . aths in each generation), the diversity of feasible paths, and
Let 6T be a sufficiently small number of generatlonsp -
. o S0 on, depending on the need.
Assign all initial operator probabilities randomly (for
example, uniformly). After the first/” generations, use
the computedZ;(0,67),i = 1,---,8 to compute new IV. OFFLINE EXPERIMENTS AND RESULTS
probabilities p;(1;) and use the new probabilities in We have implemented the EP/N for polygonal obstacles
the nextdT generations. Afterwards, compute the nexdnd run the EP/N off-line on different tasks in diverse en-
I;(6T,26T) and again reset the probabilities accordinglywironments to test its tuning ability and overall performance.
Repeat the procedure until the whole evolution procefdy. 4 shows six sample tasks in six different environments
terminates. Clearly, the method can be refined furtheihere, for each task, a near-optimal path obtained by the
by incorporating a concept of “sliding window” with aadaptive EP/N is displayed. Note that the same values of
horizon 67, such that the probabilities are updated evethe EP/N parameters were used for all tasks, except the
cycle based on the lagtl’ generations. In such a casepperator probabilities, which were adapted (with adaptation
however, the computational effort for recalculating albccurred every 100 generations). Different complexities of the
probabilities is much higher. Moreover, the EP/N is anvironments were reflected by the differdhgenerations of
steady-state evolutionary system where only one operatolution needed to obtain the near-optimal results displayed.
is applied within a single generation, so the effort offowever, T = 600 are usually sufficient to achieve very good
recalculating all probabilities every generation would natsults in all cases, aril = 400 are usually sufficient to create
pay off. feasible paths of reasonable shape in all cases. Fig. 5 shows
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{n T =200 (2) T =1000

(5) T = 600 (6) T =800

Fig. 4. Six tasks in six different environments selected for experiments and near-optimal paths found by the EP/N (adaptive vé&tsgamenations
(as indicated). Other parameters of the EP/N were set to be the same for all six environments: The population size was set to be 30, and the coefficients
wq, ws, we, a, 7 in the evaluation functiorewal ¢ (p) were selected as 1.0, 1.0, 1.0, 7.0, and 10, respectively.

the snapshots of one evolution process of paths for the taskasults with adaptive probabilities (as presented here) show
Environment 6 inZ” = 400 generations. Very reasonable pathsignificant improvement of the system performance.
were already formed even with only 400 generations.
Table | shows, forl” = 400 generations and each task V. ON-LINE NAVIGATION
shown in Fig. 4, 1) the average tinig of running the EP/N

with adapted probabilities over 100 repeated Puasd 2) We have implemented a simulation program for the on-

the average gain on both system effectiveness and efficierl\'%? navigation of the EP/N (see Fig. 1) with the following
when the EP/N adapted operator probabilities against fgsumptions. _ _ _

case when the EP/N used fixed, equal operator probabilities Obstacles in the enwr_onment are either known or un-
over 100 repeated ruffsis expected, values of both system  known. In the current implementation they are assumed

effectiveness and efficiency indexes sgduced which means to be static. _ _
better effectiveness and efficiency was achieved in most of * The robot has a range of view (describediyparameter
the cases. of the robot). If, due to the robot’s motion, an unknown

Compared to the results obtained by running the EP/N with obstacle is located in the range of the view, the obstacle

fixed, manually determined operator probabilities [20], the Pecomes known and is marked in the robot's map of
the environment. In the current stage of simulation, for

simplicity, we further assume that once an obstacle is
5All runs were made on a Silicon Graphics station. inside the robot’s range of view, it becomes known totally

6Note that [21] presented some results averaged over 30 runs. We later find (ie. its comp'IeFe dlmensmnahty is given). Qf course, to
that 30 runs are not enough statistically and 100 runs are more reasonable. be more realistic, this assumption can easily be revised
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T =300 T =400

Fig. 5. Snapshots of path evolution at different generati@hA$ for Environment 6, where two-thirds of population are shown and the EP/N is under
the same condition as in Fig. 4.

TABLE | the robot’s stepk;.... is less tharR). If a segment of the path
AVERAGE TIME AND GAIN (OVER 100 RUNS) ON SySTEM PERFORMANCE currently being followed by the robot has a length shorter than

AGAINST THE CASE WITH EQUAL OPERATOR PROBABILITIES IN 1" = 400 . i
GENERATIONS. THE "EFFECTIVENESE AND "EFFICIENGY’ COLUMNS kmas, the robot will cover it in one step to reach the next knot

REPORT THE PERCENTAGE GAINS ON THE EFFECTIVENESSINDEX AND point of the path. Otherwise, the robot will move along the
THE EFFICIENCY INDEX DEFINED IN SECTION II-C, RESPECTIVELY segment in more than one step, and during the process, it may
env| iz offectivencss fficiency also change course if a better path (i.e., the next best path)
(scc) | avgrPhchange | besty %ochange | avgy x tr %change | bestr x Ly %change becomes available from the evolution process. The evolution
R 17% 11T% 1.20% -0.60% . . , .
ST oA A03% 0.39% T14% 2.61% process runs in parallel with the robot’s motion.
3 | 119 -4.50% -2.79% -12.76% -LL11% The implication of sensing a previously unknown obstacle is
4 | 1.96 -4.80% 3.43% “2.90% 3.52% h in the fit | f th t path lati
T8 298% T S0 oy a change in the fitness values of the current path population.
6 | 263 548% “1.96% 8% 7.39% As such a new obstacle is added to the robot's map of the

environment, it may change the subsequent evaluation results

as only the part of the object boundary that is inside thoér;llezgthss(.);glso;stsev?fgaz?t?lzl)tlvztws??:]e?r:gor;hilggglr?t:gg
robot’s range of view is known. As our current focus is o s . ) P . popufatio y
ecome infeasible and their cost can increase significantly.

testing the robot’s adaptation capability to the discovetyhe previous best path may no longer be best, and a new best
of unknowns in an environment, however, it does n?# '

h h h di . ath may need to be found.
matter much at present how such discovery Is actually og mentioned in Section I, during such on-line navigation,
accomplished.

the starting location of each path in a population is constantly
In the on-line navigation, the result of evolution is CheCkedpdated to reflect the current location of the robot as it
after everyn generations (see the second “if” statement in th@oves. Given a path to be updated, this process involves the
procedure of Fig. 1) to provide the robot with the current beapplication of an additional operator, short-cut, which connects
feasible path. The robot moves along such a path in steps, @mel current position of the robot to the furthest knot point of the
we use a parameted,,,,. to denote the maximum length ofpath (provided, of course, that the resulting path is feasible).
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Fig. 6. The best path in the initial population. The shaded obstacles &g. 8. Before sensing the first unknown obstacle. The robot has moved to

known. The outlined obstacles are unknown. The initial best path crosses tavposition where the outlined obstacle is still unknown. Note that the path

obstacles, one known and one unknown. has been optimized with respect to distance and smoothness, as compared to
the path shown in Fig. 7.

Fig. 7. The first feasible path. The robot makes its initial move upon ) . .
generating the first feasible solution given known obstacles. Fig. 9. Sensing and reevaluation. The robot senses the first unknown obsta-

cle. Its planned path is no longer feasible.
A. An Example

The actions of the robot guided by the on-line navigation
process are illustrated by the following example. Fig. 6 dis-
plays the robot’'s environment. The starting point is in the
left-bottom corner, and the goal point is close to the right-top
corner of the rectangle. There are eight obstacles in total; two
of them are unknown (marked by their contours only). During
initialization, a set of randomly generated paths is developed,;
very likely none of these initial paths will be feasible (Fig. 6
displays the best path in the initial population).

Soon after discovery of the first feasible path, the first stdyg- 10. The best.feasible path after sensing the first gnknown obstacle. The
ahead is made. Note that this path of the robot is optimiz E/N planner has invented a path around the newly discovered obstacle.
based only on known obstacles so that it does not have to be
truly feasible (Fig. 7): it might intersect an unknown obstacle.
Note also that the remaining parts of the paths are continuously
optimized; the current best path in Fig. 7 is different from that
in Fig. 8.

When a previously unknown obstacle is in the robot’s
range of view, it becomes known and the robot marks its
presence on the map of the environment (Figs. 8 and 9). At this
moment, all paths in the current population are reevaluated,
and as the evolution process continues, the robot eventually
follows a newly emerged best feasible path (Fig. 10), whidfg. 11. Before sensing the second unknown obstacle. The robot has tra-
is subsequently improved (Fig. 11). versecfjaround the first (previously) unknown obstacle and is approaching the

When the second unknown obstacle is discovered, again,saeﬁon '

paths in the population are reevaluated, and the robot adj é?h traversed as the result of on-line handling of unknown
its motion accordingly by following a newly emerged be

path (Fig. 12). bstacles to the “ideal” path.

The actual path traversed by the robot is displayed in Fig. 13 )
(note again the improvements in the final segments of the Analysis of Performance
path from those displayed in Fig. 12). This path is far from To evaluate the quality of a real path, a more reasonable
being optimal in comparison with an “ideal” path which wouldapproach is to divide the path into so-called fragments: the
emerge if all obstacles in the environment were kn@aymiori  cut point between fragments is the location where the robot
(Fig. 14). It is unfair, however, to simply compare such a reabnsed a new obstacle. There are as many cut points as the
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TABLE I
RESULT OF EXPERIMENTS FORN = 5; THE RESULTING NUMBER
OF GENERATIONS NV = 463.7 AND ERROR E = 0.118076

frag. | real cost | ideal cost g; €; (e:-g:)/N
1 681.1 603.1 200.1 | 0.129331 | 0.055810
2 1059.3 951.0 198.9 | 0.113880 | 0.048847
3 715.8 653.0 64.7 | 0.096172 | 0.013419
TABLE 1l
RESULT OF EXPERIMENTS FORn = 10; THE RESULTING NUMBER
Fig. 12. After sensing the second unknown obstacle. The second unknown OF GENERATIONS IV = 592.8 AND ERROR E = 0.081996
obstacle has come within sensor range and the EP/N has generated a path
around it. frag. | real cost | ideal cost | ¢; e (e;-g:))/N
1 655.4 603.2 251.9 | 0.086538 | 0.036773
2 1031.5 953.3 223.8 | 0.082031 | 0.030969
3 699.9 652.8 117.1 | 0.072151 | 0.014254
TABLE IV

RESULT OF EXPERIMENTS FORn = 15; THE RESULTING NUMBER
OF GENERATIONS NV = 753.9 AND ERROR E = 0.071032

frag. | real cost | ideal cost | ¢; e (ei-g:))/N

1 649.1 603.0 303.2 | 0.076451 | 0.030747

2 1017.4 952.2 333.4 | 0.068473 | 0.030281

3 695.2 653.2 117.3 | 0.064299 | 0.010004
TABLE V

RESULT OF EXPERIMENTS FORn = 20; THE RESULTING NUMBER
OF GENERATIONS N = 960.3; ERROR E = 0.064764

frag. | real cost | ideal cost | ¢; e; (ei-g:)/N
1 650.5 603.1 341.1 | 0.078594 | 0.027917
2 1009.7 952.7 455.9 | 0.059830 | 0.028404
3 685.0 652.6 163.3 | 0.049648 | 0.008443

Note thatg;'s depend on the following parameters:(the
Fig. 14. T_he robot’s “ideal” path for the completely known environmentnumber of generations between robot's steps).. (the
th (tahgaggsc:gfcelz; fﬁen:ettikpnzg\?; s:.lf::ly developed by the EP/N because tygyqp's step length), ang (the robot’s range of view). As the
result, longer fragments usually correspond to larger values
number of new obstacles sensed during the robot's movemeh:’s, and consequently smaller values@fs. This is why
(therefore the number of fragmenfsis by one greater than we define the errol as a weighted average ef’s, with
the number of cut points). Then each fragment is compartite corresponding weight being/N. Note also that if the
to an ideal path generated to connect the fragment's start aabiot encounters no unknown obstacle, then there is only one
goal locations, which results in a relative errar; in path cost fragment: the entire real path, aitis simply the relative error

for the segment. of the real path traversed against an ideal path (which can be
Knowing the merit of each fragment (measureddyy we the result of evolution over a larger number of generations).
can measure the errds of the real path with the formula We now discuss how# is related ton, the number of
7 generations between the robot’'s steps. Tables II-V show
dei-g results of experiments using the environment shown in Fig. 15,
p=t= with dimensions 400x 500 (averaged over 100 trials) for
N differentn’s. The other parameters used in these experiments
where were population size 70, the robot’s single stgp,. = 40,
f the number of fragments; and the range of viewk = 45.
e; the relative error of théth fragment (in path cost); Results reported in Tables 1I-V confirm a basic intuition: the
g; the number of generations passed during the traversafal errorE’ decreases with the growth af That is, the more
of the ith fragment; generations between robot’s steps are, the better precision (in
N = E]le g; i.e.,, N represents the total number ofterms of the path quality) can be achieved. Also, the relative
generations. errorse;'s are smaller for later fragments, i.e., fragments closer

o the goal. This is because these fragments are subject to more
7 Such an ideal path can be generated by running the EP/N off line in tLe 9 9 J

same environment but with all obstacles known for a sufficient number letlml_zat'on (m Ferms of Iarger number of generat'ons) in the
generations. on-going evolutlonary process.
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(@) (b)

Fig. 15. (a) Experimental environment and (b) three fragments of a path are clearly marked.

On the other hand, note that in this specific implementati@i an evolutionary system and tune its various parameters
of on-line navigationy is coupled with the step length,.... during the execution of the system. The adaptive EP/N uses an
of the robot, in that. generations of evolution must completeautomatic mechanism to measure performances of its genetic
before the robot proceeds to the next step. For a fixggl., operators and adapt the operator probabilities accordingly.
this implies that a very large may cause a slower movemenfThe general nature of the strategy makes it applicable to
of the robot and therefore a longer time for path traversal. other evolutionary systems as well. An important issue of

Now let us discuss the effect efon the time of navigation. future research is how to make the EP/N capable of adapting
As confirmed by the experimental results (shown in Tablegher system parameters. Several such parameters may be of
II-V), a largern leads to a larger total number of generationgarticular interest. One determines how frequently operator
N, which means a longer total time of evolution. Since the probabilities should be adjusted or adapted (i.e., the generation
evolution process and the robot's movement are performedimerval [T7,7%]'s in Section Ill). Parameters and ky,q5 in
parallel, the total time of path traversals the maximum of the on-line process (Section V), as well as the velocity of

ty and the total time of the robot’s movemeny; a robot, are crucial to determine how frequently the robot
should adjust its path during on-line navigation and how to
t = max(ty,ta) balance the quality of path and the time of traversal. In the

current implementatiorp, and k,,,,. are coupled (Section V-
wheret, is a function of path quality (length and smoothness®), but they can be also implemented as two independent
and the robot’s velocity. From running the EP/N off line (Seqarameters so that their relations are mainly affected by
tion 1V), we know that even for a very complex environmenispecific environment/task characteristics. In general, for any
ty for a reasonableV (e.g., in the range of 600-1000, agparameter whose best value may vary for different tasks or
in the Tables I1-V) is usually in the order of a few secondsnvironments, making it adaptive could be desirable.
which should be well below the time required for a current It may also be desirable to further incorporate domain
land-based robot to physically traverse a normal indoor Rhowledge in important components/processes of the EP/N
outdoor environment. That ig,y < ¢ can usually hold for to enhance its performance. Although we have incorporated
a reasonably largéV as a result of a comfortably large In  domain knowledge in both fitness evaluation and operators,
other words;» can be sufficiently large without affecting thethere are other components/processes, such as the initialization
time of traversal. Since a largercan result in a path of better process, which may by improved as a result of greater knowl-
quality, which often means a smoother path of shorter lengédge. For example, rather than random initialization, an initial
a largern may actually reduce the robot’s time of traversal. population may consist of a) a set of paths created by mutating

In summary, the parallelism between path evolution angt repairing the shortest path between start and goal locations
path traversal in the adaptive EP/N is shown to be veghd/or b) some mixture of chromosomes having randomly
advantageous in achieving both high effectiveness and efjenerated coordinates and chromosomes having coordinates
ciency in real-time navigation of a robot, especially when thgith “problem-specific” knowledge as obtained from a).
environment is only partially known. Another important issue is to improve the organization of
the EP/N to stress learning for on-line navigation. The system
may be extended by adding memory to store the knowledge

The adaptive EP/N presented in this paper is particulafisom the robot’s past exploration of the environment together
suitable for dealing gracefully, effectively, and efficiently withwith the knowledge from previous navigation tasks to facilitate
the diversities, changes, and unknowns in an environmemore efficient and effective planning in the future. We have
Results from off-line planning with adaptive probabilities operformed some preliminary studies in adding local memories
genetic operators and simulation of on-line navigation confirtn chromosomes for storing “valuable” paths or segments of
the flexible nature and robustness of such an evolutiongrsiths discovered earlier [19]. The experiments demonstrate the
system. We are currently implementing the on-line procepstential of such an extension to the EP/N in improving plan-
of the EP/N on a Khepera robot. ning effectiveness in partially known environments. It could

The EP/N also exposes many interesting challenges of gaiso be interesting to study other forms of “memory,” such as
eral importance to evolutionary computation. One of the moshe based on multichromosome structures with a dominance
significant is how to take the full advantage of adaptivenefisnction [6] or employing machine learning techniques.

VI. CONCLUSIONS
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