
Real-time Motion Planning of Multiple Mobile Manipulators

with a Common Task Objective in Shared Work

Environments

John Vannoy
IMI Lab, Dept. of Computer Science

University of North Carolina - Charlotte
Charlotte, NC 28223, USA

jmvannoy@uncc.edu

Jing Xiao
IMI Lab, Dept. of Computer Science

University of North Carolina - Charlotte
Charlotte, NC 28223, USA

xiao@uncc.edu

Abstract— This paper considers the problem of planning
motions for a team of mobile manipulators working in the
same environment with a common task objective. It presents
a distributed, real-time algorithm to plan motion trajectory
for each team member that allows dynamic and spontaneous
division of work among team members to meet the common
task objective. A mobile manipulator has to perform its share
of the task while avoiding other moving mobile manipulators in
the team in addition to other obstacles in the environment. To
each robot team member, none of the trajectories of the other
team members or moving obstacles are known beforehand.
The approach is implemented and tested in simulated task
environments, which demonstrates its high effectiveness and
efficiency.

I. INTRODUCTION

Our research in this paper is inspired by the scenario

where a team of workers simultaneously perform the same

kind of tasks in a shared environment with the common

objective being to get the job done as quickly as possible.

Examples include moving chairs from a storage place to

a ballroom and arrange them for a meeting (or conference

keynote presentation, etc.), loading/unloading goods for a

store (or for disaster relief, etc.), picking up cans, bottles, and

other garbage in an open space after a public gathering, and

so on. Each worker makes his/her individual movement but

shares the set of target objects with other workers so that the

workers partition the target objects. However, the partition

is usually not done in advance but is dynamically and

spontaneously created as the workers make their movements

to perform the task. This usually results in an efficient and

flexible division of work.

For a group of mobile manipulators to perform such kind

of tasks, they should also dynamically and spontaneously

divide their targets with each individually deciding its own

movements. Therefore, offline and centralized motion plan-

ning methods are not suitable. We are interested in real-

time, distributed motion planning here to enable each mobile

manipulator to decide its own motion and targets based on

circumstances while avoiding other mobile manipulators and

moving obstacles, whose trajectories are unknown before-

hand. This is largely an open problem. The existing literature

has only addressed some related aspects.

There is much research on task allocation for multiple

mobile robots, which is about how to divide a task into

subtasks and assign robots to the subtasks. Existing strategies

are mostly based on heuristics, including behavior-based

approaches (e.g., [1], [2]), auction-based approaches (e.g.,

[3], [4]), dynamic token passing [5], etc. Such research often

aims at tasks that either require more sophisticated coordina-

tions among robot team members, e.g., cooperative pushing,

or require different kinds of subtasks or different roles for

different robots. The focus is often not on planning actual

physical motions of the robots, and only (low-dimensional)

mobile robots are assumed. In [6], a task of collecting pucks

in the environment is divided among a group of mobile

robots through assigning each robot its own spatial territory

so that no two robots share the same workspace.

There is relatively little research on real-time motion

planning for a high-dimensional robot, such as a manipulator

or a mobile manipulator, in a dynamic environment with

unknown obstacle trajectories. Such an environment is very

different from known static or dynamic environments (i.e.,

with known obstacle trajectories), where motion planning

can reasonably rely on exploring C-space or configuration-

time space offline (e.g., [7][8][9][10]). A few researchers

considered local collision avoidance of unknown, moving

obstacles on-line for a mobile manipulator base, while its

arm follows certain given contour [11][12][13][14]. A more

recent work can provide globally task-consistent motion in

dynamic environments [15].

Recently the authors introduced a real-time, adaptive

motion planning paradigm for a single manipulator or mo-

bile manipulator working in dynamic environments with

unknown obstacle trajectories [16][17][18]. This paradigm

is characterized by on-line, simultaneous planning and ex-

ecution of robot motion. It borrows the general anytime
and parallel planning idea of evolutionary computation [19]

but is otherwise unique and original as it does not follow

prescribed methods.

In this paper we present a novel approach for distributed,

real-time planning of motions for a team of mobile ma-

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA1.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 20

nipulators who work in the same environment with a com-

mon task objective and who dynamically and spontaneously

divide the work. The approach extends our prior work in

[16][17] for a single mobile manipulator. In section II, we

formally define the problem of this work. In section III,

we introduce our approach. We provide implementation,

experimental results, and discussions in Section IV and

conclude the paper in Section V.

II. PROBLEM

We can define the motion planning problem of our con-

cern in this paper as the following. A team of M mobile

manipulators need to pick up N objects (M < N) and move

them to some destinations. Each robot can only pick up and

move one object at a time. The initial and goal locations of

the ith object is denoted as Ci,i and Ci,g respectively, where

Ci,g may need to be decided dynamically. The set of objects

that the mobile manipulator j picks up and moves is denoted

as Sj , with cardinality nj . Sj is determined dynamically

and ΣM
j=1nj = N . No object can be picked up by two

mobile manipulators, i.e., Sj ∩ Sk = ∅, for i �= k. Each

mobile manipulator has to avoid the motions of the rest of

the mobile manipulators in the team as well as other (static

or moving) obstacles in the environment while performing

its task. The target objects themselves are also obstacles to

the mobile manipulators before they are picked up.
From the point of view of each mobile manipulator, the

working environment is dynamic because (a) other mobile

manipulators are dynamic obstacles regardless if there are

additional dynamic obstacles, and (b) the target objects can

dynamically disappear from their initial locations (once they

are picked up by other mobile manipulators) and become

dynamic obstacles as they are carried by other mobile

manipulators to their destinations. The motion of a mobile

manipulator regarding one target object can be considered

as consisting of two parts: (1) moving to pick up the target,

and (2) moving while carrying the target and placing the

target at a destination. Each mobile manipulator in the team

will repeatedly try to pick up and move a target until all N
objects are picked up or moved.

III. APPROACH

We present a real-time, distributed approach to planning

motions of mobile manipulators in a team. There is no

centralized planning. The real-time motion planning algo-

rithm treats the task environment from the point of view

of an individual mobile manipulator in a team, and the

same algorithm applies to every team member robot. The

algorithm treats other mobile manipulators in the team

as moving obstacles to avoid. The algorithm dynamically

decides, for the mobile manipulator it controls, which target

object should be picked up each time the mobile manipulator

is available for that, and where to move the target object.

Details of the algorithm are given below.

A. Task Motion Representation
We consider each mobile manipulator repeatedly perform-

ing the task of picking up a target object and moving it

to a destination until there is no target object available for

picking up. The task can be divided into two subtasks: pick-
up for the motion of going to a target object and picking it

up and put-down for the motion of carrying the object to a

destination and putting it down. Our planner first plans the

motion for the pick-up subtask for a mobile manipulator in

real-time, and only when the pick-up subtask is achieved,

i.e., after the mobile manipulator picks up a target object,

it starts planning the motion for the put-down subtask in

real-time.

A pick-up path for a mobile manipulator starts from the

current location of the mobile manipulator and ends at a

configuration where the target object can be picked up, called

a pick-up configuration. A put-down path starts from the

current location of the mobile manipulator, which initially

is at a pick-up configuration and ends at a destination

configuration where the target object can be put down, called

a put-down configuration. Either path can have a number

of intermediate configurations called knot configurations,

specifying the shape of the path.

A trajectory corresponding to a mobile manipulator path

(i.e., either a pick-up path or a put-down path) consists of

a base trajectory of the type of linear-with-parabolic blends

and an arm trajectory of the type of cubic splines. Between

two adjacent knot configurations is a trajectory segment.
We call a trajectory feasible, if it is collision-free and

singularity-free; otherwise, it is infeasible.

If the target object for a pick-up configuration is available

(i.e. has not been picked up by another robot), the pick-

up configuration is called valid; otherwise, the pick-up

configuration is invalid. Similarly, if the target object can

be placed at a put-down configuration (i.e. the spot chosen

to place the object), the put-down configuration is called

valid; otherwise it is invalid.

B. Basic Planning Paradigm

One basic premise of our approach is that planning,

sensing, and the execution of motion are interweaving to

enable simultaneous robot motion planning and execution.

This is achieved through our anytime planning algorithm

that always maintains a set of trajectories for a mobile

manipulator. A trajectory is evaluated through an evaluation
function coding certain optimization criteria for its fitness.

A feasible trajectory is considered fitter than an infeasible

trajectory. The initial set of trajectories can be generated ran-

domly with a randomly selected available target object and a

random number of randomly selected knot configurations for

a trajectory. The initial set is then improved to a fitter set

through iterations of improvements, called generations. In

each generation, a trajectory is randomly selected from the

set and altered by a randomly selected modification operator

among a number of different modification operators, and the

resulting trajectory is used to replace a similar but worse

(i.e., less fit) trajectory to form a new generation. Therefore,

the overall fitness of trajectories improves from generation

to generation while sufficiently diverse trajectories are main-

tained. Each generation is also called a planning cycle.

WeA1.4

21

The robot can start following the fittest trajectory at the

beginning of a control cycle. As the robot moves, planning

continues to improve the set of trajectories until the next

control cycle, when the robot can switch to a fitter trajectory

so that it always follows the best trajectory. For that purpose

each trajectory is always updated to start from the current

robot configuration, and such updating is done once in each

control cycle. Note that the fittest trajectory does not have

to be feasible; if no feasible trajectory is available, the

robot will move along the fittest infeasible trajectory (see

section III-E for fitness measure) while continuing planning

to search for a fitter and hopefully feasible trajectory before

it comes within a distance threshold D of the first predicted

collision or singularity of the executed trajectory. In the

event D is reached but no fitter trajectory is available, the

robot will stop its motion but continue planning for a fitter

trajectory and resume its motion once a better trajectory is

found.

Changes in a dynamic environment are sensed and fed

to the planner in each sensing cycle, which lead to updated

fitness values for certain trajectories in the subsequent plan-

ning cycles, and unknown motions of moving obstacles are

predicted in fitness evaluation of trajectories. Our planner

predicts the future trajectory of each moving obstacle body

from its current sensed state (i.e., configuration, velocity, and

acceleration) and previously sensed trajectory and checks a

robot’s trajectory against this predicted or projected trajec-

tory of each obstacle to see if there will be a collision.

Our prediction only has to be good enough for a short

period before the next sensing cycle (which may be longer

or shorter than a control cycle) since it will be corrected

constantly with newly added sensory information.

The presence of a diverse set of ever-improving trajec-

tories enables a mobile manipulator to quickly adapt to

changes in the environment by following the fittest trajectory

under each circumstance: when the current trajectory that

the robot follows becomes worse, the robot does not need

to stop and replan from scratch; rather the planner often

merely needs to switch the robot to a better trajectory in the

set swiftly in a seamless fashion. The chosen trajectory can

be of a very different homotopic group from the previous

one to deal with drastic and large changes.

It should be emphasized that during the simultaneous

planning, sensing, and motion execution, when the mobile

manipulator changes course from one trajectory to another,

the new trajectory is indeed better even after taking into

account the cost of change (i.e., the possible acceleration or

deceleration needed for the change) as ensured by the fitness

evaluation function so that the change is smooth and stable,

and the actual trajectory executed by the robot is the best

possible result.

Our approach also supports the partial specification of

goals: only the end-effector position and orientation for

picking up a target object or placing it down are needed.

Figure 1 illustrates example pick-up and put-down configura-

tions for the end-effector. As the result, there can be different

base and arm configurations for the same end-effector goal

in different trajectories so that redundancy is exploited to

achieve flexibility amid environments with dynamic changes.

(a) Pick-up and put-down end-
effector configuration

(b) Example pick-up configuration
(top) and put-down configuration
(bottom)

Fig. 1. Pick-up and put-down end-effector configuration

C. Trajectory Modification

We use the following six random modification operations

to modify a trajectory with a valid pick-up or put-down

configuration:

• Insert - a new, random knot configuration is inserted

between two randomly chosen adjacent knot configura-

tions of a path.

• Delete - a randomly selected intermediate knot config-

uration is deleted from a path.

• Change - a randomly selected intermediate knot con-

figuration is replaced with a new, randomly generated

knot configuration.

• Swap - two randomly selected adjacent intermediate

knot configurations from a single path are swapped.

• Crossover - the knot point lists of two paths are divided

randomly into two parts respectively and recombined:

the first part of the first path with the second part of

WeA1.4

22

the second path, and the first part of the second path

with the second part of the first path.

• Stop - the base movement or any joint movement of

the arm stops at a randomly chosen knot configuration.

The duration of the stop is determined randomly.

The first five operations are used to change the shape of

a path and subsequently the corresponding trajectory. The

Stop operation is used to change a trajectory only. Our

algorithm simply randomly selects one of those operations

(also called operators) to apply to the selected trajectories.

All operators are used to change the trajectories of the

base and the manipulator either separately or together in

a stochastic fashion.

The Stop operator enables loose-coupling between the

trajectories of the base and the manipulator. Both can stop

their movements independently or together. The probabilistic

nature of our approach simply offers a stop as a possibility;

in the cases where stopping is advantageous, the planner will

utilize it.

Note that except for Crossover, the other operations above

are unary transformations that change a single trajectory. The

crossover generates two offsprings from two parent trajec-

tories. Depending on if the selected operation is unary or

crossover, one or two trajectories from the current population

are selected at random. One or two new trajectories are

generated by applying the selected operation to the selected

trajectory or trajectories and are then evaluated.

D. Dynamic and Spontaneous Division of Work

In each initial pick-up trajectory for a mobile manipu-

lator, an available target object can be selected randomly,

and a corresponding pick-up configuration for the robot is

selected accordingly. Different pick-up trajectories for the

same mobile manipulator may be associated with the same or

different target objects. Once the pick-up configuration be-

comes invalid for a pick-up trajectory (i.e., the target object

is no longer available), a Repair operator randomly selects

another available target object and a corresponding pick-

up configuration to replace the old pick-up configuration in

the trajectory. The Repair operator performs such repair of

trajectories once in every sensing cycle.

Since different trajectories can be associated with different

target objects, during the course of the mobile manipulator

motion, it may change target objects with two reasons: (1)

it may change to a better trajectory (see Section III-B) to be

more efficient or to avoid the motions of the other mobile

manipulators, and (2) it may follow a repaired trajectory

due to the actions of other mobile manipulators. Thus, the

actual target object picked-up each time by each mobile

manipulator is dynamically determined. As the result, the

division of N target objects among M mobile manipulators

is also dynamically and spontaneously achieved.

The put-down location for a target object can be either

random within a certain range (e.g., as long as the target

object is placed in a basket, the goal is achieved) or has

to follow certain arrangement (e.g., chairs have to be put

surrounding a table). A Place operator is used to implement

these kinds of requirements depending on specific tasks. The

Place operator decides a put-down configuration for each

initial put-down trajectory of a mobile manipulator. Different

put-down trajectories for the same mobile manipulator may

be associated with the same or different put-down configu-

rations. Once the put-down configuration becomes invalid

for a put-down trajectory (i.e., the intended spot for the

target object is occupied), the Place operator decides another

suitable put-down configuration to replace the old put-down

configuration in the trajectory. The Place operator performs

once in every sensing cycle.

Our planner for each mobile manipulator is designed

to optimize its own motion based on certain optimization

criteria (described in the following subsection). Together the

M mobile manipulators will accomplish the task of picking

up and moving N objects in a truly distributed, dynamic,

and spontaneous fashion. This very much resembles how a

team of human workers will handle the same task.

E. Fitness Evaluation

In our planner, the fitness evaluation has two components:

feasibility checking and optimization criteria. We use two

different evaluation functions for feasible and infeasible

trajectories. In each case, the evaluation function is a cost

function to measure the fitness of a trajectory. The higher

the value of the evaluation function, the worse or less fit a

trajectory is.

For each feasible trajectory we compute its fitness value

through a fitness function that combines three optimization

criteria: minimizing energy and time, and maximizing ma-

nipulability. To measure time optimality, we compute the

minimum time needed for the robot to move through all path

segments in cubic trajectory for the arm and in linear-with-

parabolic-blend trajectory for the base, taking into account

constraints on speed and acceleration of each link (including

the base).

Since the motions of the mobile base and the manipulator

arm are not decoupled so that they can happen together,

minimum time as a measure alone cannot differentiate an

efficient trajectory with minimum motion from one with

unnecessary arm or base movement while still maintaining

the same overall minimum time. Therefore, we use minimum

energy as another measure of optimality to distinguish

between two trajectories whose time requirements are equal

but their energy requirements are not; the one that requires

less energy is preferred.

To evaluate the manipulability associated with a collision-

free trajectory, we use the average of the inverse value of

the manipulability measure at each configuration [20] of the

whole trajectory.

For each infeasible trajectory, we define a fitness value as

the sum of a large penalty and its fitness function value as if

it were feasible1. The large penalty term serves two purposes.

One purpose is to make sure that infeasible trajectories are

1For a trajectory with singularities, we compute its “manipulability as if
it were feasible” by excluding the singular configurations.

WeA1.4

23

less fit than feasible trajectories. The other is to serve as a

measure of relative safety so that infeasible trajectories with

smaller penalty terms are considered safer and therefore fitter

than ones with larger penalty terms. For the latter purpose,

we define the penalty term of an infeasible trajectory as P
Tcoll

,

where P is a large constant and Tcoll is the time before either

the first predicted collision or the first singular configuration,

whichever comes first, in the trajectory. That is, we consider

an infeasible trajectory safer if it has a longer time before

the first predicted collision/singularity.

By allowing infeasible trajectories in the set of altherna-

tive trajectories for trajectory improvement and execution,

our algorithm aggressively maximizes the chances to opti-

mize a robot’s real-time actions efficiently.

It should be noted that in addition to the above criteria,

other criteria (e.g., safety and stability measures [21]) could

be used and aggregated into the evaluation function, requir-

ing changes only in the evaluation procedure, and not to the

overall algorithm. Note also that regardless of whether a tra-

jectory is feasible or infeasible, the corresponding evaluation

function is computed as the sum of the costs for individual

trajectory segments. This property greatly facilitates efficient

evaluation of trajectories in each generation of the planning

algorithm since only the altered and affected trajectory seg-

ments need to be re-evaluated, especially in real-time. The

evaluation of infeasible trajectories is further speeded up by

that once the first collision is detected between a single link

of a robot and a single obstacle body, the entire trajectory

is labeled infeasible, and no further collision checking is

required.

IV. IMPLEMENTATION, RESULTS, AND DISCUSSION

In this section we present our implementation results and

discuss the performance of our approach.

A. Implementation

In order to test the introduced motion planner, we build a

mobile manipulator simulator for a PUMA 560 mounted to

a mobile base. We use a team of such mobile manipulators

in our experiments. Both the mobile manipulators and the

objects in the environment are modeled as polygonal meshes

for generality. We use the software package OPCODE [22]

to perform real-time collision detection for feasibility evalu-

ation of a robot trajectory. Collision checking is performed at

discrete points along the trajectory, at high resolution; more

sophisticated approaches (e.g. [23]) could also be used here.

Each mobile manipulator is equipped with its own in-

stance of the same real-time adaptive motion planning algo-

rithm, which has no a priori knowledge of the movements of

the other mobile manipulators and moving obstacles. Each

mobile manipulator views another mobile manipulator as

consisting of 7 or 8 moving bodies (as obstacles) due to the

number of links (including load) of a mobile manipulator,

with the number of bodies depending on if the other mobile

manipulator holds a target object or not. Therefore, in a task

environment of 3 mobile manipulators, for example, each

mobile manipulator considers the other two mobile manipu-

lators as 14–16 moving bodies, in addition to other moving

obstacles that may exist in the environment. We implemented

the planning algorithm in C# and C++, and have simulated

task environments with 2–4 mobile manipulators. Each task

simulation is run on a four-core Xeon PC with each core

operating at 3.0 GHz.

In our experiments, we set the following parameter values.

The weight of the manipulator arm and the base are set to be

35 kg and 20 kg respectively. The maximum joint velocity

and acceleration for the PUMA are set to be 120 deg/sec and

60 deg/sec2 respectively. The maximum base velocity and

acceleration are set to be 2 m/sec and 1 m/sec2 respectively.

The work environment is a square of flat area with the side

length 100 meters. The frequency of the control cycle for

a mobile manipulator is set to be 60Hz. The control cycle

is therefore quite slow, as compared to the planning cycle,

which has a frequency many times that of the control cycle,

depending on the task environment.

B. Performance Evaluation

To test the performance of our real-time, distributed

motion planner, we compare the effects of different mobile

manipulator team sizes and the effects of how the pick-up

targets are decided (pre-decided vs. dynamically and spon-

taneously decided). The task environment we use consists of

12 randomly scattered tennis balls on the floor, as shown in

Figure 2. We consider mobile manipulator teams of different

sizes performing two different tasks with varying levels of

complexity.

Fig. 2. Task environment

Task 1 requires the robots to pick up the objects (tennis

balls) and place them in the centrally-located receptacle

(basket). We consider a robot team of 2, 3, and 4 mobile

manipulators. The team’s performance is measured first with

pre-decided division of pick-up targets: each robot is to pick

up the objects closest to its initial location, and all robots

are assigned with equal numbers of pick-up objects. Next

the team’s performance is measured with pick-up objects

dynamically and spontaneously decided. Table I summarizes

the effects of how pick-up is decided, for teams of 2, 3 and

WeA1.4

24

TABLE I

TASK 1 - PRE-DECIDED VS. DYNAMIC (AVERAGED OVER 20

EXECUTIONS)

robots pick-up decision time (m:s) workload distribution

2
pre-decided 2:36.97 6, 6

dynamic 2:08.02 5, 7

3
pre-decided 2:14.53 4, 4, 4

dynamic 1:59.36 4, 4, 4

4
pre-decided 1:59.88 3, 3, 3, 3

dynamic 1:51.42 4, 3, 3, 2

4 mobile manipulators. The time shown is the total time for

the robot team to complete the task. We see that a given team

can perform the task quicker when each robot dynamically

decides its pick-up target at any time. The optimization

criteria for a robot’s motion will steer each robot to target

an object that is close by and is not obstructed by other

robots. We also see that the work load is more or less evenly

divided. The performance data confirm that our dynamic and

spontaneous task division is more effective than pre-dividing

the task.

We also see in table I that increasing the team size

reduces the total time to complete the task, but this effect

diminishes as the team grows. This is due to the increased

crowdedness of the environment by each additional robot,

which contributes more moving obstacles to other robots.

Note that the time shown is both the computation time

and execution time, as planning and execution are performed

simultaneously.

Task 2 requires the robots to pick up the objects and

arrange them in a row, as shown in Figure 3. This task is

considerably more complex, since each robot must deal with

put-down configurations becoming invalid in mid-execution,

as well as pick-up configurations. Once a robot has picked up

an object and has decided a put-down location (i.e. the next

empty spot in the row), that location may become occupied,

and therefore invalid, while the robot is in transit. In this

case the robot will again choose the next available put-down

location, and so on.

Table II summarizes the planner’s performance on task

2. We see that the additional requirement of arranging the

objects in a row adds considerably to the time required to

complete the task. Nevertheless, every team considered still

performs the task quicker when each robot dynamically and

spontaneously decides pick-up targets than when the task is

pre-divided. Again we find that the work load for each robot

is more or less even. What our planner achieves very much

resembles what a group of human workers will do for the

same task. Therefore, our planner confirms that the natural,

human way of doing the task is also the more efficient way.

C. Scalability

In a real-world implementation of this distributed method,

each mobile manipulator j would be equipped with its own

self-contained computer to perform real-time planning of

its own motion. The other mobile manipulators will affect

Fig. 3. Four robots about to complete task 2, arranging objects in a row

TABLE II

TASK 2 - PRE-DECIDED VS. DYNAMIC (AVERAGED OVER 20

EXECUTIONS)

robots pick-up decision time (m:s) workload distribution

2
pre-decided 2:47.16 6, 6

dynamic 2:38.33 7, 5

3
pre-decided 2:22.78 4, 4, 4

dynamic 2:11.44 5, 3, 4

4
pre-decided 2:08.03 3, 3, 3, 3

dynamic 1:49.45 3, 4, 2, 3

the planning efficiency of j only as dynamic obstacles.

This resembles well again the case with human workers:

in a limited common workspace, there should be a limit

on the number of workers before it gets so crowded that

the performance of each worker deteriorates. As shown in

tables I and II, in our simulated environment, four mobile

manipulators can work comfortably with good performance

(i.e., reduced working time vs. in the case of fewer robots),

where each simulated mobile manipulator is afforded its own

processor core. It would be interesting to study the optimal

number of workers in a given environment, but that is beyond

the scope of this paper.

V. CONCLUSIONS

This paper has introduced a novel approach to real-

time, distributed motion planning for a team of mobile

manipulators to perform a task together by dynamically and

spontaneously dividing the work in a shared environment.

Each robot is equipped with its own instance of the same

real-time motion planner with the following characteristics:

• The planner achieves real-time adaptiveness by plan-

ning path and trajectory together and also by simul-

taneous planning and execution of motion. This is

accomplished by the unique design of the planner

and also by exploiting the speed difference between

physical motion and computer processing.

WeA1.4

25

• The planner effectively deals with drastic changes in

the environment through global planning of diverse

trajectories.

• The planner enables dynamic and spontaneous assign-

ment of work efficiently for the robot it serves by

allowing each trajectory to adapt the goal pick-up or

put-down location based on the availability of valid

goals and the optimization of the individual robot

motion.

• The planner has the flexibility to incorporate different

optimization criteria depending on the need without

changing the overall planning algorithm.

• The planner allows the robot to stop either its base or

its arm or both in mid-execution of a task when such

stopping is more advantageous based on the optimiza-

tion criteria.

The method is implemented and tested with simulation

of mobile manipulator teams in different task environments.

The results show the effectiveness and efficiency of the

planner and confirm that, by dynamic and spontaneous

division of work like human workers do for the same

task, the task can be completed more efficiently than pre-

dividing the task. Future work includes further testing and

improving the algorithm for more complex robots and tasks

and incorporating realistic sensing scenarios and constraints.

Testing on real robots will also be necessary.

REFERENCES

[1] L. E. Parker, “Alliance: An architecture for fault-tolerant multirobot
cooperation,” IEEE Trans. Robotics & Automation, vol. 14, no. 2, pp.
220–240, 1998.

[2] B. B. Werger and M. J. Mataric, “Broadcast of local eligibility for
multi-target observation,” Distributed Autonomous Robotic Systems,
vol. 4, pp. 347–356, 2000.

[3] S. Botelho and R. Alami, “M+: A schema for multi-robot cooperation
through negotiated task allocation and achievement,” in Proceedings
of IEEE International Conference on Robotics and Automation, May
1999, pp. 1234–1239.

[4] B. Gerkey and M. J. Mataric, “Sold! auction methods for multi-robot
coordination,” IEEE Trans. Robotics & Automation, vol. 18, no. 5,
pp. 758–768, 2002.

[5] A. Farinelli, L. Locchi, D. Nardi, and V. Ziparo, “Task assignment
with dynamic perception and constrained tasks in a multi-robot sys-
tem,” in Proceedings of IEEE International Conference on Robotics
and Automation, April 2005, pp. 1523–1528.

[6] M. Schneider-Fontan and M. J. Mataric, “Territorial multi-robot task
division,” IEEE Trans. Robotics & Automation, vol. 14, no. 5, pp.
815–822, 1998.

[7] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580,
1996.

[8] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[9] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized
kinodynamic motion planning with moving obstacles,” International
Journal of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.

[10] J. van den Berg and M. Overmars, “Roadmap-based motion planning
in dynamic environments,” IEEE Trans. Robotics, vol. 21, no. 5, pp.
885–897, October 2005.

[11] O. Brock, O. Khatib, and S. Viji, “Task-consistent obstacle avoidance
and motion behavior for mobile manipulation,” in Proceedings of
IEEE International Conference on Robotics and Automation, vol. 1,
May 2002, pp. 388–393.

[12] P. Ögren, N. Egerstedt, and X. Hu, “Reactive mobile manipulation
using dynamic trajectory tracking,” in Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, vol. 4, April 2000,
pp. 3473–3478.

[13] J. Tan and N. Xi, “Unified model approach for planning and control
of mobile manipulators,” in Proceedings of IEEE International Con-
ference on Robotics and Automation, vol. 3, 2001, pp. 3145–3152.

[14] J. Mbede, S. Ma, Y. Toure, V. Graefe, and L. Zhang, “Robust neuro-
fuzzy navigation of mobile manipulator among dynamic obstacles,”
in Proceedings of IEEE International Conference on Robotics and
Automation, vol. 5, May 2004, pp. 5051–5057.

[15] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation in dynamic environ-
ments,” in Proceedings of Robotics: Science and Systems, Philadel-
phia, PA, USA, August 2006.

[16] J. Vannoy and J. Xiao, “Real-time adaptive and trajectory-optimized
manipulator motion planning,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 1, September 2004, pp. 497–
502.

[17] ——, “Real-time adaptive mobile manipulator motion planning,” in
Video Proceedings of IROS, October 2006.

[18] ——, “Real-time planning of mobile manipulation in dynamic envi-
ronments of unknown changes,” in Proceedings of RSS 2006 Work-
shop: Manipulation for Human Environments, August 2006.

[19] P. P. Bonissone, R. Subbu, N. Eklund, and T. R. Kiehl, “Evolutionary
algorithms + domain knowledge = real-world evolutionary compu-
tation,” IEEE Trans. Evolutionary Computation, vol. 10, no. 3, pp.
256–280, April 2006.

[20] T. Yoshikawa, “Manipulability of robotic mechanisms,” International
Journal of Robotics Research, vol. 4, no. 2, April 1985.

[21] Q. Huang, S. Sugano, and I. Kato, “Stability control for a mobile
manipulator using a potential method,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 2, 1994, pp. 839–
846.

[22] P. Terdiman, “http://www.codercorner.com/opcode.htm.”
[23] F. Schwarzer, M. Saha, and J.-C. Latombe, “Adaptive dynamic col-

lision checking for single and multiple articulated robots in complex
environments,” IEEE Trans. Robotics, vol. 21, no. 3, pp. 338–353,
June 2005.

WeA1.4

26

