
An Efficient Algorithm for On-line Determination of Collision-free
Configuration-time Points Directly from Sensor Data

Rayomand Vatcha and Jing Xiao

Abstract— On-line, efficient perception based on sensing is
essential for an autonomous robot to operate in an unknown
and unpredictable environment. An efficient on-line algorithm
is introduced to determine whether a robot at a future time t
and a configuration q will be guaranteed collision-free, directly
from real-world sensor data of the robot’s environment at the
current time τ , using stereo vision sensor. Such a problem
can be formulated [1] as checking the intersection between
the so-called dynamic envelope, which relates to the robot at
a configuration-time (CT) point (q, t) and the current sensing
time τ , and the atomic obstacles, which are obtained directly
from low-level sensory data at τ . The algorithm achieves
real-time efficiency, as confirmed by the experimental results,
by classifying the atomic obstacles possibly intersecting the
dynamic envelope and by grouping relevant atomic obstacles
on the fly. It is suitable to be used on-line by sensing-based
motion planners.

I. INTRODUCTION

For an autonomous robot to move in an environment with
unknown obstacles and changes, it must be either able to
detect possible potential collisions with obstacles or the lack
of them based on sensing in real time. Reactive obstacle
avoidance schemes (e.g., [2]–[4]) simply steer the robot away
from possible obstacles based on proximity sensing. On-
line planners often assume recognizable obstacles and that
obstacle motions are either known (e.g., [5]–[9]) or can be
predicted (e.g., [10]–[13]). Thus, detecting if the robot at
a configuration q and a future time t will be in collision
or not is converted to the problem of checking whether the
model of each obstacle, with certain geometry, at a pose
at time t, intersects with the model of the robot at the
configuration-time (CT) point (q, t). Many fast collision-
checking algorithms [14]–[16] can be used to solve the
problem efficiently for a limited number of obstacles.

There is good progress in detecting and recognizing ob-
stacles in some city road settings or off-road settings (e.g.
[17], [18]), such as vegetation (e.g., [19]), people (e.g., [20]),
etc. However, in very crowded environments with many
unknown changes, recognizing all obstacles can be tedious
and also unnecessary. For example, imagine a crowded buffet
restaurant, where a service robot carrying drinks has to
manuever through moving customers holding plates of food,
people sitting at tables, moved chairs, etc. It can be very
difficult to recognize every single obstacle on the robot’s

*This research was supported by the National Science Foundation under
Grant IIS-0742610.*

R. Vatcha is a PhD student in Computer Science,University of North
Carolina at Charlotte, USA. rvatcha@uncc.edu

J. Xiao is with the faculty of Computer Science, University of North
Carolina at Charlotte, USA. xiao@uncc.edu

way; moreover, the robot does not need to recognize all the
obstacles if it just wants to get the drinks to a particular table
while avoiding collisions. Thus, it is desirable to study how to
detect potential collision-free CT-points without recognizing
unknown obstacles that may also move in unknown ways.

In [1], [21] the authors have introduced a general approach
to perceive at sensing time τ whether a robot (which can
be of high-DOF, such as a manipulator) will be guaranteed
collision-free at CT-point (q, t) (t > τ) without requiring
recognition of obstacles and predictions of their motions. The
problem is essentially formulated as checking the intersection
between the so-called dynamic envelope, relating the robot
at (q, t) and the current sensing time τ , and the atomic
obstacles, which are obtained directly from low-level sensory
data at τ . One important question is how efficient such
intersection checking can be, given the large number of
atomic obstacles at any sensing instant. In this paper, we
present an efficient algorithm for on-line checking whether
a dynamic envelope intersects atomic obstacles obtained
from stereo vision sensing. By identifying and grouping
relevant atomic obstacles, the algorithm achieves real-time
efficiency. By taking advantage of time and space coherence,
our algorithm further reduces the time cost per CT-point per
sensing interval for multiple CT-points.

The paper is organized as follows. Section II introduces
atomic obstacles based on stereo vision sensing and also
reviews the concept of dynamic envelope for perceiving
collision-free CT-points. Section III presents our core algo-
rithm. Section IV describes on how time and space coherence
is exploited. Section V describes implementation and dis-
cusses experimental results. Section VI concludes the paper.

II. ATOMIC OBSTACLES AND DYNAMIC ENVELOPE

In [1], [21], two novel concepts were introduced: (a)
atomic obstacles to model sensed information of an unknown
environment at a sensing instant without assuming any actual
obstacle geometry, and (b) dynamic envelope to enable
discovery of guaranteed collision-free points and regions in
the, otherwise, unknown CT-space. In the following, we first
define atomic obstacles from stereo vision sensing and then
review the concept of dynamic envelope and its use for
detecting guaranteed collision-free CT-points.

A. Atomic Obstacles

Atomic obstacles are low-level sensor data to represent
real obstacles at any sensing instant in an unknown and
changing environment without requiring elaborate sensor
information processing. Thus, atomic obstacles depend on

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4041

Fig. 1. The geometry of an atomic obstacle Oij from a stereo vision
sensor

each sensing instant and are not permanent, actual obstacles.
As low-level sensor data, they can change from one sensing
moment to the next, i.e., they are replaced each time new
sensor data are obtained. In other words, atomic obstacles
have a lifespan of only one sensing interval, either changes in
the environment or changes in sensing direction can change
atomic obstacles from one sensing instant to the next.

Consider the case of stereo vision sensing that provides
an image of the environment at any sensing moment. Every
pixel (i, j) of that image maps to a spherical surface region
Wij of 3-D points in the physical world. The sensor generates
the 3-D point (x, y, z) in Wij that is closest to the image
plane, with distance dij . Wij can be viewed as the projection
of the square pixel on the image plane to the sphere centered
at the origin of the camera frame {C} with radius dij . Thus,
Wij has four corners. The four rays originating from the
origin of {C} and passing through the four corners of Wij

define a trapezoidal viewing frustum Vij .
An atomic obstacle Oij is formed by Wij and the occluded

space behind it (see Figure 1). We call Wij the front face of
the atomic obstacle Oij . The environment can now be viewed
as a set SAO(τ) of only these atomic obstacles Oij , ∀(i, j) in
the image, for one sensing instant τ . If SO is the set of actual
physical obstacles in the environment, then, SO ⊂ SAO(τ),
but SAO(τ) changes over sensing time τ because an occluded
space at τ may no longer be occluded at a later time τ+∆τ .

B. Dynamic Envelope: A Review

It is reasonable to assume that even in an unknown and un-
predictable environment, all obstacle speeds are bounded to
be below a certain maximum possible speed vmax. Of course,
an obstacle may have varied actual speeds in [0, vmax]. To
be safe, vmax can be quite over-estimated, but [1] shows
that the approach for discovering guaranteed collision-free
CT-points is robust for over-estimated vmax.

With a given vmax, and R(q) indicating the region in
the physical space occupied by a robot at configuration q,
a dynamic envelope relating the robot at configuration q
and a future time t to the current sensing time τ is defined
below [21].

Definition 1: For a CT-point χ = (q, t), a dynamic envelope
E(χ, τk), k = 0, 1, 2, ..., as a function of sensing time τk ≤ t,
is a closed surface enclosing R(q) in the physical space
so that the distance between any point on E(χ, τk) and the

surface of R(q) is,

dk = vmax(t− τk) (1)

The following are major properties of a dynamic enve-
lope E(χ, τk), which capture non-worst case future obstacle
motions, without assuming any particular kinds of obstacle
motion:

1) A dynamic envelope shrinks monotonically over sens-
ing time with speed vmax, i.e., E(χ, τk) ⊃ E(χ, τk+l),
where l > 0, τk < τk+l ≤ t.

2) An obstacle outside E(χ, τk) will never intersect
E(χ, τk+l), since an obstacle cannot move faster than
vmax.

3) An obstacle intersecting E(χ, τk) can be “squeezed”
out of E(χ, τk+l), for certain τk+l, if not moving
towards R(q) in the maximum speed vmax.

Thus, at sensing time τk < t, if the dynamic envelope
E(χ, τk) is detected free of atomic obstacles, it is also free
of actual obstacles, and the robot will surely be collision-free
at χ = (q, t); else the robot may or may not be collision-free
at χ = (q, t) (i.e., it is uncertain).

Hence, the concept of dynamic envelope, coupled with
atomic obstacles, enables the detection of collision-free CT-
points without requiring to know or recognize obstacles
in an unknown and changing environment. By observing
a shrinking dynamic envelope over time, one can catch
the earliest sensing moment when a (future) CT-point is
perceived collision-free with the following Algorithm 1,
called the Collision-free Perceiver (CFP).

Algorithm 1 Collision-Free Perceiver (CFP)
1: Input the set SCT of CT-points
2: k = 1, τk = current time
3: for each CT-point χ = (q, t) ∈ SCT do
4: create dynamic envelope E(χ, τk)
5: end for
6: while τk < t and (not time-limit) and SCT 6= ∅ do
7: for each CT-point χ = (q, t) ∈ SCT do
8: if no atomic obstacle intersects E(χ, τk) then
9: output χ as guaranteed collision-free

10: SCT = SCT − {χ}
11: end if
12: end for
13: k = k + 1 (Next sensing moment)
14: end while
15: output the remaining CT-points in SCT may not be

collision-free
16: return

The input CT-points to CFP for checking should be deter-
mined by an on-line motion planner. Clearly the key step in
Algorithm 1 is step 8 to check whether any atomic obstacle
intersects with the dynamic envelope of a CT-point for any
sensing instant. In the next section, we introduce an efficient
algorithm called the Intersection-checking between Dynamic
Envelope and Atomic ObstacleS (IDEAOS) algorithm for
performing such intersection checking.

4042

Fig. 2. Dynamic envelope of a link OBB

III. THE IDEAOS ALGORITHM

In general, for a robot consisting of multiple links, each
link can be approximated by a set of simpler well-defined ge-
ometrical objects, such as an oriented-bounding-box (OBB),
a sphere, a capsule, etc [14]–[16]. Now, a dynamic envelope
can be created for each link. For a rectangular rod robot, the
dynamic envelope is shown in Figure 2. Since the dynamic
envelope for the entire robot is the union of the dynamic
envelopes of links, we just focus on how to check the
intersection between the dynamic envelope of a link and the
atomic obstacles. Since each atomic obstacle corresponds to
a pixel of a stereo vision image, depending on the image
resolution, there can be a great number of atomic obstacles.
For example, even an image with a coarse resolution of
188 × 120 generates up to 22,560 atomic obstacles. Thus,
key to the real-time efficiency of the IDEAOS algorithm is
how to manage large number of atomic obstacles to minimize
the number of intersection computations. Our algorithm uses
the following strategies, detailed in the subsections:
• Extraction: Consider only atomic obstacles that are

likely to intersect with a link dynamic envelope, i.e.,
the atomic obstacles whose indices (i, j) are on the
projection P (E) of the dynamic envelope on the image
plane.

• Grouping: Partition pixels on P (E) into multi-size
super pixels, such that each super pixel corresponds to
a m × n image region of P (E), with varied m(≥ 1)
and n(≥ 1) values. The atomic obstacles corresponding
to a super pixel on P (E) form a combined atomic
obstacle. With such grouping, intersection check is
reduced to that between the dynamic envelope and
combined atomic obstacles (which are far fewer than
atomic obstacles).

• Hierarchical Checking: Perform intersection checks
efficiently through multi-level simplified computations
by subdividing the combined atomic obstacle into
smaller ones when an intersection is detected between
a dynamic envelope and that combined atomic obstacle.
Thus, if no intersection is detected at a high-level,
then there is no intersection for sure; else, re-check
intersection at a lower level.

The above strategies are interweaved in the IDEAOS
algorithm to take advantage of the fact that the algorithm
only needs to produce a binary result, i.e., whether any
atomic obstacle intersects the dynamic envelope or not. We

Fig. 3. Ray intersection tests to detect whether the super pixel is an internal
super pixel of P (E) with the P (E)’s boundary unknown

will first explain these strategies in detail and then show how
they are organized in the IDEAOS algorithm.

A. Extraction and Grouping
The idea here is to identify super pixels of varied m and

n values to partition the projection P (E) of the dynamic
envelope on the image plane without explicitly computing
the boundary of P (E). A super pixel has four corner points
as shown in Figure 3, and a ray that originates from the origin
of the camera frame {C} and passes a corner point is called
a corner ray. If all corner rays of the super pixel intersect the
dynamic envelope, then the super pixel is called an internal
super pixel; else, if at least one corner ray intersects with
the dynamic envelope, the super pixel is called a boundary
super pixel.

Our strategy simultaneously discovers P (E) and covers it
by a partition of super pixels of multiple sizes. We say the
region already discovered and partitioned by internal super
pixels the discovered region of P (E), and the remaining
region of P (E) the undiscovered region of P (E).

Starting from an entirely undiscovered P (E), our strategy
first finds a seed m × n super pixel on the image plane by
determining the upper leftmost pixel of the region and the m
and n values. The ideal seed should be the maximum axis-
aligned rectangular region that fits inside P (E). However,
since P (E) is not known precisely, we make a reasonable
estimate based on the OBB of the dynamic envelope and its
projection on the image plane. Values of m and n should be
chosen large enough because they will only be reduced later.

Next, our strategy consists of the following steps:
• Extract: from the seed super pixel, find all neighboring

internal or boundary super pixels on the originally
undiscovered regions of P (E) and their neighbors,
etc., in a fashion similar to connected neighborhood
expansion of the flood-fill algorithm [22], [23]. Put
every boundary super pixel in a first-in-first-out (FIFO)
queue B. Figure 4 illustrates this process.

• Re-seed: Remove the first boundary super pixel from
B and if it is larger than a minimum size1 m0 × n0,

1determined to make sure that the area of partition covering P (E) is not
much larger than P (E) and yet also without using too many super pixels.

4043

Fig. 4. Neighborhood expansion of super pixels

which is proportional to the initial m× n, then
– for every corner point p inside P (E), reduce m

and n to halfs with p fixed to get a smaller super
pixel, and go to Extract.

• Return the internal and boundary super pixels of vari-
ous sizes of P (E).

Note that the FIFO queue B is in the order of decreasing
size of the boundary super pixels. Therefore, when the first
mo × no boundary super pixel is removed from the queue,
the remaining queue has only mo×no boundary super pixels.
Thus, the partition is complete.

The above strategy generates a partition of super pixels
for P (E) efficiently without requiring excessive intersection
checking that a standard cell decomposition method, such
as a quadtree [24] requires. Our method discovers pixels or
super pixels of P (E) through connected expansion (from a
seed by flood-fill) and thus avoids the problem of having a
cell with all four corner points outside of P (E) but possibly
some internal points inside P (E). Whereas, such a cell is
possible with quadtree decomposition, and it is expensive to
check if the cell is entirely outside P (E), which may involve
intersection checking beyond just between corner rays and
the dynamic envelope.

B. Hierarchical Checking

Once a super pixel of P (E) is determined, we can
next check if its corresponding combined atomic obstacle
intersects with the dynamic envelope or not.

We first introduce a few related terms and notations (see
Figure 5) as following:
Viewing frustum of a super pixel: the rectangular pyramid
region defined by the four rays originating from the origin
of {C} and passing through the four corner points of a
super pixel. It extends to infinity and is the union of viewing
frustums of all pixels that form the super pixel.
Minimum distance dcao of a combined atomic obstacle: the
distance from the origin of {C} to the atomic obstacle closest
to the origin of {C} in the combined atomic obstacle.
Front and rear faces Fde and Rde of a dynamic envelope
intersected by a viewing frustum: the intersection surface

Fig. 5. Illustration of some notations

Fig. 6. Division of a super pixel into one pixel and four smaller super
pixels

regions between the viewing frustum of a super pixel (or a
pixel) and the dynamic envelope, where the region closer to
the camera is the front face and the other region is the rear
face. Note that the two faces become one if the viewing
frustum partially intersects the dynamic envelope, i.e., not
all of its corner rays intersect the dynamic envelope, and it
corresponds to a boundary super pixel of P (E).

Given a super pixel, if the corresponding combined atomic
obstacle is behind Rde of the dynamic envelope as viewed
from the camera, then there is no intersection between
the combined atomic obstacle and the dynamic envelope;
otherwise, there is an intersection.

We adopt a hierarchical refinement approach to combine
simple checking and narrowing scope of consideration. Our
approach takes advantage of the intersection results between
corner rays of the combined atomic obstacle and the dynamic
envelope (described in section III.A) to obtain eight bound-
ary vertices of the front face and rear face of the dynamic
envelope. The recursive algorithm HierCheck implements our
approach that returns either intersection or no intersection,
given a super pixel.

In HierCheck step 1, dcao is obtained from comparing the
distances of all atomic obstacles, which are the readings of
stereo vision sensor, in the combined atomic obstacle.

In HierCheck step 2, dde is obtained based on the OBB
of the dynamic envelope if Rde is so large that it cannot be
viewed as a flat surface. Let R′de be the surface corresponding
to Rde on the OBB of the dynamic envelope. dde is the
distance from the furthest feature (i.e., vertex, edge, or face)
of R′de to the camera origin. If, however, Rde is small enough

4044

Algorithm 2 HierCheck (super pixel)
1: Find dcao and the corresponding atomic obstacle Oij .
2: Compute dde as a small upper bound on the greatest

distance from Rde to the origin of {C}.
3: if dcao ≤ dde (i.e., possible intersection), then
4: if super pixel is a pixel or dde is less than the minimum

distance from a boundary vertex to the origin of {C}
then

5: return intersection
6: end if
7: Divide the super pixel into one pixel at (i, j) and four

smaller super pixels as shown in Figure 6.
8: if HierCheck(pixel) = no intersection then
9: for each smaller super pixel do

10: if HierCheck(smaller super pixel) = intersection
then

11: return intersection
12: end if
13: end for
14: end if
15: end if
16: return no intersection

to be considered as a flat surface, then dde is the maximum
distance from a boundary vertex of Rde to the origin of {C}.
See Figure 7 for illustrations of the two cases.

(a) (b)

Fig. 7. Illustrations of two cases of face Rde: (a) flat, and (b) not flat

Steps 3-16 of HierCheck shows that if a possible intersec-
tion is detected based on the simple inequality, it is necessary
to decompose the combined atomic obstacle into smaller
ones and do the checking again on them, i.e., recursively
moving down to lower levels of the computation hierarchy,
until either no intersection is detected or an intersection is
detected between a single atomic obstacle and the dynamic
envelope (or its OBB).

Hence, our approach hierarchically refines the accuracy
of computation based on need. The ultimate resolution of
computation depends on the resolution of the stereo vision
image, and also how far Rde is from the camera, which
reflects how far R(q) (i.e., the region occupied by the robot
at configuration q) is from the camera and how far ahead the
considered future time t is from the current sensing instant
τ . The closer R(q) is to the camera, and the closer t is
to τ , the more accurate is the result of “intersection” from

TABLE I
COSTS OF COMPUTING INTERSECTIONS BETWEEN A RAY AND AN

OBJECT

Object +,− × <,>,= /
√

OBB 120 108 48 6 0
Sphere 8 11 0 1 1
Capsule 29 48 0 3 3

HierCheck.
However, it is important to note that the result of “no

intersection” is always absolutely accurate, and thus, if our
algorithm reports no intersection between a dynamic enve-
lope E(χ, τ) and atomic obstacles, the CT-point χ = (q, t)
can be said guaranteed collision-free based on sensing at τ .

C. Integration of Strategies

The IDEAOS algorithm integrates the above strategies
(i.e., extraction, grouping, and hierarchical checking) in a
way to be more efficient. It does not find the partition
of P (E) (i.e., the projection of the dynamic envelope to
the image plane) at once, but rather, after it generates one
super pixel on P (E), it proceeds to hierarchical checking
of whether the corresponding combined atomic obstacle
intersects with the dynamic envelope or not. If an intersection
is detected, IDEAOS simply returns “there is intersection”
and halt. Otherwise, it generates another super pixel on P (E)
(in the flood-fill fashion) and do the hierarchical checking
again, and so on. Therefore, IDEAOS will only generate
enough combined atomic obstacles to find an intersection,
and if there is no intersection, the algorithm will halt only
after processing all the combined atomic obstacles whose
super pixels partition P (E), through hierarchical checking.

IV. TIME AND SPACE COHERENCE

Recall that the IDEAOS algorithm is for realizing step 8
of the Algorithm 1 (CFP) in Section II.B. CFP repeatedly
calls the IDEAOS algorithm for intersection checking for
different CT-points and at different sensing intervals. It
can take advantage of time and space coherence to reduce
computation significantly.

For the same CT-point χ = (q, t), if the camera does
not move from sensing moment τk to τk+1, then many
super pixels (or pixels) on P (E(χ, τk)), i.e., the projection
of E(χ, τk) on the image plane, are also on (the smaller)
P (E(χ, τk+1)). Thus, the low-level checking results between
the corresponding rays and E(χ, τk) can be re-used.

Similarly, if two CT-points have sufficiently close config-
urations q and q+∆q, even with different future times t and
t + ∆t, their respective dynamic envelopes for any sensing
moment τk could overlap significantly, and then, again, some
low-level intersection checking results of one CT-point can
be re-used for the other CT-point.

Table I shows the costs of computing the intersection
between one ray and one object of each of the given types.
If the result is re-usable, such costs are saved.

Moreover, in step 1 of algorithm HierCheck, the con-
sidered atomic obstacles are divided into small groups and

4045

Fig. 8. Dimension of atomic obstacles as defined by the CCD of the camera
for resolution 752 × 480

the local minimum distance in each group is computed first.
Next the minimum distance is computed from the group
minimums. In that way, many group minimum distances can
be re-used if the corresponding atomic obstacles are shared
by other dynamic envelopes (of different CT-points) at the
same sensing time τk.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have implemented the IDEAOS algorithm as the core
algorithm for the CFP (Algorithm 1) on a Dell Precision
T5400 computer and tested the algorithm in real-world
experiments using a real 7-DOF Robai’s Cyton robot arm and
an indoor MobileRanger’s stereo vision camera. The robot
has 7 revolute joints. Each robot link is approximated by an
OBB and so is its dynamic envelope.

An atomic obstacle’s geometry along with the dimensions
is shown in Figure 8. The sensor resolution was fixed to
752× 480 and thus, at most 360,960 atomic obstacles were
generated at each sensing moment. The sensing frequency
was set at 8 Hz. vmax= 1 cm/s.

Figure 9(a) shows the environment of the robot, where
two obstacles unknown to the robot are nearby, one is a
scanner underneath the robot, and the other is a plastic bag.
Figure 9(b) shows the same environment as viewed by the
stereo vision sensor at sensing time τ0=0s, superimposed
with the projection image of the dynamic envelope of every
link of the robot, which is partitioned by super pixels, for
the CT-point χ1=(q1, t1), and q1 is the configuration where
every joint angle of the robot is at −90o, and t1=2s. Note
that q1 is not the robot’s current configuration in the figure.

(a) (b)

Fig. 9. (a) Testing environment, (b) Stereo vision image at τ0= 0(s) and
for the CT-point χ1, with the partitioned projection image P (E) of the
robot’s dynamic envelope E(χ1, τ0).

TABLE II
RESULTS OF RUNNING IDEAOS FOR TWO CT-POINTS AT τ0

CT-points χ1 χ2

super pixels

16× 16 13 41
8× 8 77 78
4× 4 156 182
2× 2 291 402

boundary 2× 2 640 729
total 1177 1432

hierarchy 2 5
combined atomic obstacles checked 1248 1542

atomic obstacles involved 14,476 22,924
time cost (s) 0.265 0.328
intersection no yes

Table II shows the results of running the IDEAOS al-
gorithm at sensing time τ0 for two different CT-points χ1

as introduced above and χ2 = (q2, t2), where q2 is the
configuration with all 7 joint angles of the robot at 90o

respectively and t2=5.57s. The results are for the entire robot,
i.e., summing up the results for the dynamic envelopes of 7
individual links. Initial m and n were both set to be 16.
m0 × n0 was set to 2× 2.

As shown in the table, the total number of combined
atomic obstacles checked for each CT-point is more than
10 times smaller than the total number of atomic obstacles
involved. That implies great saving of computation time in
the similar order of magnitude by the IDEAOS algorithm
rather than using a naive algorithm to directly check in-
tersections of atomic obstacles with the dynamic envelope.
Note that the total number of combined atomic obstacles
is greater than the total number of super pixels generated
in each case because hierarchical checking divided some
combined atomic obstacles into smaller ones for checking.

For χ1, the result of no intersection means that the CT-
point is guaranteed collision-free. P (E) was actually covered
by the super pixels generated as shown in Figure 9(b).
Because of the efficency of IDEAOS, χ1 is discovered
collision-free 1.73s before its time t1=2s, which is important
for on-line motion planning to utilize that CT-point. The time
cost 0.265s of the detection is only about 1% of the total time
between the sensing moment τ0=0s and t1= 2s. Recall that
no actual obstacle was ever identified or recognized.

For χ2, because IDEAOS halted as soon as an intersection
was found, the super pixels generated were only a subset of
super pixels for covering P (E). P (E) and the corresponding
dynamic envelope for χ2 was much larger than those for
χ1 because t2=5.57s was close to three times of t1=2s. The
result of intersection means that it was not certain whether χ2

was collision-free or not based on the sensing data at τ0=0s.
Further checking with new sensing data was necessary.

Table III shows the results of running IDEAOS by CFP
for a CT-point χ3 = (q3, t3) multiple times with sensing
data from six different sensing instants τ , where q3 is the
configuration that every joint angle of the robot is set to
23.39o, and t3=4.05s. The results show the reduction of the
computation cost by exploiting the sensing time coherence.
IDEAOS was used to check the CT-point χ by generating

4046

TABLE III
RESULTS OF RUNNING IDEAOS FOR A CT-POINT χ3 WITH DATA FROM

DIFFERENT SENSING INSTANTS WITHIN [0.66, 1.52] (S)

τ (s) time cost (s) # super pixels generated
0.66 0.109 950
0.74 0.047 889
0.86 0.031 889
1.25 0.344 858
1.38 0.094 852
1.52 0.047 842

all low-level intersection checking results from scratch based
on the sensing data at τ = 0.66s. Later, however, for τ ∈
(0.66, 0.86] (s), useful previous results were repeatedly re-
used so that even though the total number of super pixels
decrease only slightly as the dynamic envelope shrunk over
time, the drop in computation time was far more drastic.
Similarly, for τ ∈ (1.25, 1.52] (s), the results obtained from
τ = 1.25s was re-used repeatedly to reduce the time cost.

Notice that the time cost for τ= 0.66s is smaller than that
for τ = 1.25s, even though the dynamic envelope for the latter
was much shrunk from that of the former. This was because
as the dynamic envelope shrunk over time, at τ = 1.25s, there
were fewer atomic obstacles in the dynamic envelope. Thus,
with fewer intersections present, the algorithm had to spend
more time to find one of those intersections.

Note that the CT-point χ3 = (q3, t3) was discovered
collision-free, i.e., there was no intersection between the
dynamic envelope and atomic obstacles, at τ=2s, which was
2.05s ahead of the time t3=4.05s. The attached video clip
shows the process of running IDEAOS for checking χ3 based
on the sensory data at τ=2s.

VI. CONCLUSIONS

This paper presents an efficient algorithm IDEAOS to
check whether a robot at a future time t and a configuration
q, i.e., a CT-point (q, t), will be guaranteed collision-free or
not based on real-world stereo vision sensing of the robot’s
environment at the current time τ . The algorithm can be
used by on-line motion planning algorithms for any robot,
including manipulators and mobile robots, in an environment
with unknown obstacles and unknown motions without the
need of identifying and tracking the obstacles. By exploiting
time and space coherence, the algorithm has an even lower
computation cost per CT-point on average when it is used
to check multiple CT-points at the same or different sensing
instants. Thus, the algorithm is well suited to detect whether
a sequence of CT-points (on a trajectory) is guaranteed
collision-free or not before the time period of the trajectory.
Moreover, strategies in the IDEAOS algorithm can be used
to handle atomic obstacles from other types of sensors, such
as laser range finders, sonars, etc.

As the next step, we will explore how to best relate
sensing frequency with the time cost of IDEAOS to ensure
sensing effectiveness and computational efficiency. We will
also systematically take into account sensing uncertainty

in our algorithm to ensure the robustness of results under
uncertainty.

REFERENCES

[1] R. Vatcha and J. Xiao, “Perceived CT-space for motion planning in
unknown and unpredictable environments,” in WAFR, Dec 2008.

[2] F. Belkhouche, “Reactive path planning in a dynamic environment,”
IEEE Trans. On Robotics, vol. 25, pp. 902–911, Aug 2005.

[3] K. B. Ariyur, P. Lommel, and D. F. Enns, “Reactive inflight obstacle
avoidance via radar feedback,” in American Control Conf., pp. 2978–
2982, 2005.

[4] Y. Yagi, H. Nagai, K. Yamazawa, and M. Yachida, “Reactive visual
navigation based on omnidirectional sensing – path following and
collision avoidance,” J. Intell. Robotics Syst., vol. 31, no. 4, pp. 379–
395, 2001.

[5] P. Leven and S. Hutchinson, “A framework for real-time path planning
in changing environments,” Intl. J. of Robotics Research, vol. 21,
pp. 999–1030, 2002.

[6] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation in dynamic environ-
ments.,” in Robotics Science and Systems II, The MIT Press, 2006.

[7] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite rrts for rapid
replanning in dynamic environments,” in IEEE Intl. Conf. on Robotics
and Automation, pp. 1603–1609, 2007.

[8] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” in Intl. J. of Robotics Research, pp. 760–772,
1998.

[9] F. Large, S. Sckhavat, Z. Shiller, and C. Laugier, “Using non-linear
velocity obstacles to plan motions in a dynamic environment.,” in IEEE
Intl. Conf. on Control, Automation, Robotics and Vision (ICARCV),
pp. 734–739, 2002.

[10] J. Vannoy and J. Xiao, “Real-time Adaptive Motion Planning (RAMP)
of mobile manipulators in dynamic environments with unforeseen
changes,” in IEEE Trans. on Robotics, vol. 24(5), pp. 1199–1212,
Oct. 2008.

[11] V. Govea, D. Alejandro, F. Large, T. Fraichard, and C. Laugier, “High-
speed autonomous navigation with motion prediction for unknown
moving obstacles,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 82–87, October 2004.

[12] A. Kushleyev and M. Likhachev, “Time-bounded lattice for efficient
planning in dynamic environments,” in IEEE Intl. Conf. on Robotics
and Automation, pp. 1662–1668, May 2009.

[13] J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning
and replanning in dynamic environments,” in IEEE Intl. Conf. on
Robotics and Automation, pp. 2366–2371, May 2006.

[14] J. D. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi, “I-collide:
An interactive and exact collision detection system for large-scale
environments,” in In Proc. of ACM Interactive 3D Graphics Conf.,
pp. 189–196, 1995.

[15] P. Jimnez, F. Thomas, and C. Torras, “3D collision detection: A
survey,” Computers and Graphics, vol. 25, pp. 269–285, 2000.

[16] M. C. Lin and S. Gottschalk, “Collision detection between geometric
models: A survey,” in In Proc. of IMA Conf. on Mathematics of
Surfaces, pp. 37–56, 1998.

[17] A. Murarka, M. Sridharan, and B. Kuipers, “Detecting obstacles and
drop-offs using stereo and motion cues for safe local motion,” in IROS,
pp. 702–708, 2008.

[18] C. Caraffi, S. Cattani, and P. Grisleri, “Off-road path and obstacle
detection using decision networks and stereo vision,” IEEE Trans. on
Intelligent Transportation Systems, vol. 8, no. 4, pp. 607–618, 2007.

[19] D. Bradley, R. Unnikrishnan, and J. A. Bagnell, “Vegetation detection
for driving in complex environments,” in IEEE Intl. Conf. on Robotics
and Automation, April 2007.

[20] N. Bellotto and H. Hu, “Multisensor-based human detection and
tracking for mobile service robots,” IEEE Trans. on Systems, Man,
and Cybernetics – Part B, vol. 39, no. 1, pp. 167–181, 2009.

[21] R. Vatcha and J. Xiao, “Perceived ct-space for discovering collision-
free robot trajectories in unknown and unpredictable environments,”
submitted to IEEE Transaction on Robotics.

[22] A. Treuenfels, “An efficient flood visit algorithm,” C/C++ Users J.,
vol. 12, no. 8, pp. 39–62, 1994.

[23] P. S. Heckbert, “A seed fill algorithm,” pp. 275–277, 1990.
[24] J. Latombe, Robot Motion Planning. Kluwer Academic Publishers,

1991.

4047

