
Exact and Efficient Collision Detection for a
Multi-section Continuum Manipulator

Jinglin Li and Jing Xiao

Abstract—Continuum manipulators, featuring “continuous
backbone structures”, are promising for deft manipulation
of a wide range of objects under uncertain conditions in
less-structured and cluttered environments. A multi-section
trunk/tentacle robot is such a continuum manipulator. With
a continuum robot, manipulation means a continuous whole
arm motion, where the arm is often bent into a continuously
deforming concave shape. To approximate such an arm with
a polygonal mesh for collision detection is expensive not only
because a fine mesh is required to approximate concavity but
also because each time the manipulator deforms, a new mesh
has to be built for the new configuration. However, most generic
collision detection algorithms apply to only polygonal meshes or
objects of convex primitives.

In this paper, we propose an efficient algorithm for Col-
lision Detection between an Exact Continuum Manipulator
(CD-ECoM) and its environments, which is applicable to any
continuum manipulator featuring multiple constant-curvature
sections. Our test results show that using this algorithm is
both accurate and more efficient in both time and space to
detect collisions than approximating the continuum manipulator
as polygonal meshes and applying an existing generic collision
detection algorithm. The algorithm is essential for path/trajectory
planning of continuum manipulators.

I. INTRODUCTION

Continuum manipulators are usually defined to be those
featuring continuous back bone structures, inspired by inver-
tebrate structures found in nature, such as octopus arms [1]
and elephant trunks [2]. Almost all continuum robots feature
constant-curvature sections (modulo external loading due to
gravity or payload) [3] because of actuating the (theoretically
infinite) degrees of freedom of the continuously bendable
backbone with finite actuators. The OctArm (Fig. 1), with
constant-curvature sections, is representative of the general
class of continuum robots developed by researchers [3], [4].
Continuum manipulators of smaller scales are also developed
for medical surgery applications [5], [6].

In path/trajectory planning for robotic manipulation, col-
lision detection between the robot and objects in the envi-
ronment is not only necessary but also the most computa-
tionally expensive component of a planning algorithm for a
high-degree of freedom robot, such as a n-DOF (n ≥ 6)
robot manipulator [7]. Thus, many efficient collision detection
algorithms are developed [8], [9]. Efficient algorithms often
use a hierarchy of bounding volumes (e.g., [10], [11]) for
the objects to speed up collision checking. At the lowest

J. Li is a PhD student in Computer Science, University of North Carolina
at Charlotte, USA. jli41@uncc.edu

J. Xiao is with the faculty of Computer Science, University of North
Carolina at Charlotte, USA. xiao@uncc.edu

level of the hierarchy, collision checking is conducted be-
tween either convex parts or polygons (for generic objects
approximated by polygonal meshes). While a conventional
manipulator usually consists of rigid, convex links and can be
naturally decomposed into convex parts and use an existing
collision detection algorithm, a continuum manipulator often
works in configurations of continuously deforming concave
shapes (Fig. 1). Thus, approximating a continuum robot at
a certain configuration requires a very fine polygonal mesh
to be reasonably accurate, which decreases efficiency for
collision checking with the large number of polygons in the
mesh. Moreover, each time a continuum robot changes its
configuration, because its whole shape deforms, a new mesh
has to be constructed, which is time consuming, and storing
different meshes of different configurations for the purpose
of path/trajectory planning can take too much space to be
feasible.

In this paper, we propose an efficient algorithm for Collision
Detection between an Exact Continuum Manipulator (CD-
ECoM) and environmental objects in polygonal meshes. The
algorithm is applicable to any continuum manipulator fea-
turing multiple constant-curvature sections. We first describe
the manipulator model and object model before presenting
our CD-ECoM algorithm. We also present testing results to
demonstrate the effectiveness and efficiency of the algorithm.

II. MANIPULATOR MODEL AND OBJECT MODEL

A. Exact manipulator model

As an example of a multi-section continuum manipulator,
let us consider the OctArm, which consists of three sections
(see Fig. 1), where each section has a constant curvature [12].
If a section has a non-zero curvature, then it is a truncated
torus (when not in contact), with its central axis bent into a
circular curve. The curvature of a section can change values
continuously, and if the curvature becomes zero, the section
becomes a (straight) cylinder (i.e., the radius goes to infinity).
In general, we can represent each section, denoted as seci,
i = 1, 2, 3, in terms of its central axis segi with two end
points: a base point pi−1 and a tip point pi, and the radius
of the cylinder wi. If segi is a curve, we call the circle that
segi curves along the section i’s circle, denoted by ciri, with
radius ri.

The base frame of the robot is set at p0 with z0 axis tangent
to seg1. The frame of section i, i = 2, 3, is formed at pi−1 with
the zi axis tangent to segi at pi−1. The base of section i is the
tip of section i-1. Two adjacent segi−1 and segi are connected
tangentially at the connection point pi−1 as shown in Fig.

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1405-3/12/$31.00 ©2012 IEEE 4340

Fig. 1. An OctArm manipulator (by the courtesy of Ian Walker)

2.(a), i.e., the two sections share the same tangent at pi−1.
For clarity, we consistently use black, red, and green colors
to draw section 1, section 2, and section 3 of the OctArm in
this paper.

Each section i, i = 1, 2, 3, has three degrees of freedom
that can be directly changed by the OctArm actuators [12],
which are controllable variables: curvature κi, length si, and
orientation angle φi from yi−1 axis to yi axis about zi axis.
Fig. 2.(b) shows one example segi, its frame, and controllable
variables.

(a) (b)

Fig. 2. Section frames

Note that the center of ciri, ci, always lies on the xi axis,
with ∓1/κi being the x coordinate in the i-th frame, where
κi is the curvature. Note also that ci lies on the positive xi
axis if κi < 0 and on the negative xi axis if κi > 0. When
κi = 0, segi is a straight-line segment along the z axis, and ci
can be considered at either + or − infinity along the x axis.

The configuration of the entire arm is determined by the
control variables of each section. This model can be extended
to describe an n-section (n > 3) continuum manipulator.

B. Separating planes of manipulator sections
There is a plane separating two sections of a continuum

manipulator. We call the plane between section i − 1 and
section i as Hi−1, which contains pi−1, and its normal is along
zi. Clearly for each manipulator section i, it has two planes
Hi−1 and Hi separating it from its neighboring sections, as
shown in Fig. 3.

Fig. 3. Two separating planes for section i

C. Manipulator cross sections

For each section i of OctArm with a non-zero curvature,
we define a plane Pi as a plane that contains the section i’s
circle, i.e. ciri, then the cross section of OctArm section i by
Pi, denoted by csi, is a fan-shaped planar region with a width
2wi, bounded by two rays Li,1 and Li,2. As shown in Fig. 4,
using a polar coordinate system (ρ, θ) with circle center ci
as the pole and xi as the polar axis, the region csi can be
described easily by bounds on ρ and θ as:

ri − wi ≤ ρ ≤ ri + wi (1)

θmin
i ≤ θ ≤ θmax

i (2)

where, if κi > 0, then θmin = 0 and θmax = siκi; else,
θmin = π + siκi, θmax = π.

Fig. 4. The cross section (csi) of section i and its polar coordinate system

D. Object model

An object is modeled as a polygonal mesh consisting of J
faces, denoted as {f1, ..., fJ}, where each face consists of K
edges, denoted as {e1, ..., eK}, and each edge has two vertices.
Each face fj is on the plane Qj . We use the polygon file
format1 to represent the mesh. This format uses a vertex table
to store the x, y and z values of all vertices and an index list
to indicate which face and edge that each vertex belongs to.

1also known as Stanford Triangle Format [13]

4341

Algorithm 1 CD-ECoM
Input Multi-section manipulator configuration (κi, φi, si,
i = 1, ..., n), section width wi, and faces of object mesh
fj , j = 1, 2, ..., J ;
Collision = False;
for each face fj and each arm section i do

if κi == 0 then
Collision = SS-CollisionCheck(segi, fj)

else
if Pi intersects fj at line segment lij then

Collision = CS-CollisionCheck(csi, lij).
end if
if Collision == False then

Collision = NCS-CollisionCheck(segi, lij).
end if

end if
if Collision == True then

Return Collision.
end if

end for
Return Collision.

III. CD-ECOM ALGORITHM

The CD-ECoM algorithm (Algorithm 1) checks if there
is any collision between the exact model of a continuum
manipulator featuring multiple constant-curvature sections at a
given configuration and an object in polygonal mesh. The con-
figuration of the arm determines segi with end points pi−1 and
pi. If κi = 0, where section i is a straight cylinder with a width
of 2wi and a length of si, then the function straightSection-
CollisionCheck (SS-CollisionCheck), presented in Algorithm
2, is called to do the collision checking between a cylinder
(section i) and a planar face (fj).

If κi 6= 0, segi is a circular curve, defining a plane Pi,
and the cross section csi of section i by Pi is characterized
by inequalities (1) and (2). To be efficient, the Algorithm 1
repeatedly uses a divide and conquer strategy by decomposing
the collision detection problem into many simpler cases in
different levels. It first considers the cases where the object
mesh intersects Pi by calling Algorithm 3 for cross section
collision check. If no collision is found, it next checks the
cases where the object mesh does not intersect Pi by calling
Algorithm 4 for non-cross section collision check. Both
Algorithm 3 and Algorithm 4 further divide the problem into
simpler cases to solve them efficiently. These two algorithms
are further explained in the following subsections.

A. Cross section collision check (CS-collision check)

For a manipulator section i with non-zero curvature, i.e.,
κi 6= 0, if face fj of an object intersects the plane Pi at
a line segment lij with vertices v1 and v2

2, Algorithm 3
checks if lij intersects the fan-shaped cross section csi of
manipulator section i. Denote the polar coordinates of v1 and

2In the special case that the intersection is a point, v1 = v2.

Algorithm 2 SS-CollisionCheck(segi, fj)
Compute the distance between segi and Qj , denote the
distance as d(segi, Qj) and closest points found on segi
and Qj as p, q respectively;
if d(segi, Qj) ≤ wi then

if q is not in fj then
Compute the minimum distance between each
edge ejk of fj and segi, denoted as dmin(segi, e

j
k)

with closest points p and q on segi and ejk
respectively.
if dmin(segi, e

j
k) > wi then

Return Collision = False.
end if

end if
if p is not on pi−1 or pi then

Return Collision = True.
else

if q is on Hi−1 (or Hi) then
Return Collision = True.

end if
end if

end if
Return Collision = False.

v2 as (ρ1, θ1) and (ρ2, θ2) respectively. Algorithm 3 partitions
all scenarios into five cases based on whether v1 and v2 satisfy
the bounds of inequalities (1) and (2) to detect intersections
(i.e., collisions). Fig. 5 shows examples for these cases.

B. Non-cross section collision check (NCS-collision check)

If a face fj of the object does not intersect Pi or the cross
section csi, we need to further check if fj intersects section i
by Algorithm 4.

In Algorithm 4, we first check if the distance between ciri
and Qj , the supporting plane of face j, is greater than the
width of section i by calling Procedure 1. If so, Qj has no
intersection with the section i, a truncated torus, and no further
collision checking is necessary. If Qj intersects the section i,
then further collision checking is done by calling subsequently
Procedure 2, and if necessary, also Procedure 3. Procedures
1,2 and 3 are described below:
Procedure 1: Compute the minimum distance dmin(ciri, Qj)
between circle ciri and plane Qj as well as the pair of closest
points p on ciri and q on Qj :
• Project ci to Qj and denote the point on Qj as q′.
• Project q′ to Pi and denote the point on Pi as p′.
• Connect p′ and ci (which are both on Pi) and obtain a

line segment that intersects ciri at point p.
• Project p to Qj , denote the projected point as q, and

return distance between p and q.
Procedure 2: Compute the minimum distance
dmin(pi/i−1, fj) from points pi and pi−1 to fj , and
obtain the pair of closest points.
• Project each point to Qj and denote the closer projection

4342

Algorithm 3 CS-CollisionCheck(csi,lij)

Case 1: if ρ1 and ρ2 are both below the lower bound for ρ,
i.e., max(ρ1, ρ2) < ri − wi then

Return Collision = False.

Case 2: if either (ρ1, θ1) or (ρ2, θ2) satisfies both (1) and
(2) then

Return Collision = True.

Case 3: if ρ1 and ρ2 are both above the upper bound for ρ,
i.e., min(ρ1, ρ2) > ri + wi then
Compute the distance between circle center ci and lij to
obtain point q = (ρq, θq) on lij .
if q is within csi, i.e., ρq and θq satisfy inequalities (1)
and (2) respectively then

Return Collision = True.
else

Return Collision = False.
end if

Case 4: if both θ1 and θ2 satisfy (2) then
Return Collision = True.

Case 5: if line segment lij intersects either ray Li,k (k =
1, 2) of csi (see Fig. 4) then
if lij is colinear to either ray then

Return Collision = True.
end if
if At least one of ρkint satisfies (1) then

Return Collision = True. (Fig. 5(e))
end if
if lij intersects both rays at one point above the upper bound
for ρ and one point below the lower bound for ρ then

Return Collision = True. (Fig. 5(f))
end if
if lij intersects only one ray at a point above the upper bound
for ρ and the vertex of lij with the smaller ρ value satisfies
(2) then

Return Collision = True. (Fig. 5(g))
end if
if lij intersects only one ray at a point below the lower bound
for ρ and the vertex of lij with the greater ρ value satisfies
(2) then

Return Collision = True. (Fig. 5(h))
end if
Return Collision = False.

(to the original point) as q′ and the corresponding distance
dmin(pi/i−1, Qj).

• If q′ is on fj then return dmin(pi/i−1, Qj) as
dmin(pi/i−1, fj).

• Else, find the minimum distance between each point to
every edge of fj and return the shortest distance as
dmin(pi/i−1, fj).

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 5

(g) Case 5 (h) Case 5

Fig. 5. Some examples for cases considered in the cross section collision
check

Procedure 3: Compute the minimum distance dmin(segi, ek)
between segi and an edge ek, and obtain the pair of closest
points:

• Project ek to Pi and denote it as eik.
• If eik intersects ciri at point p, then

– If p is on segi, return the distance from p to ek as
dmin(segi, ek), as shown in Fig. 6(a).

– If p is not on segi, then compute the shortest distance
from pi and pi−1 to ek, and set it as dmin(segi, ek),
as shown in Fig. 6(b).

• Else, project ci to the line containing eik at point p′, and
let p be the intersection point between ciri and the line
passing ci and p′.

– If p is on segi and p′ is outside ciri, then the distance
from p to ek is dmin(segi, ek). See Fig. 6(c).

– If p is on segi and p′ is inside ciri, then one of the
vertices v of ek is the closest point on ek to segi.
See Fig. 6(d). The following computes the shortest
distance from v to segi:

4343

Algorithm 4 NCS-Collision check(segi, fj)
Compute the minimum distance between ciri and Qj , i.e.,
dmin(ciri, Qj), and corresponding points p, q on ciri and
Qj respectively by Procedure 1.
if dmin(ciri, Qj) > wi then

Return Collision = False.
end if
if q is on fj and p is not on segi then

Compute the shortest distance from pi−1 and pi to fj ,
denoted as dmin(pi/i−1, fj), and update the pair of
closest points p and q, by Procedure 2;
if dmin(pi/i−1, fj) > wi then

Return Collision = False.
end if

end if
if q is not on fj then

Compute the shortest distance between segi and
the edges of fj by Procedure 3, denoted as
dmin(segi, e

j
k), and update the pair of closest points

p and q;
if dmin(segi, e

j
k) > wi then

Return Collision=False.
end if

end if
if p is not pi or pi−1 then

Return Collision =True.
else

if q is on Hi or Hi−1 then
Return Collision =True.

end if
end if
Return Collision=False.

∗ Find the intersection point, denoted as p′′, between
the ray pointing from ci to the projection of v on
Pi and ciri.

∗ Compute the distance from p′′ to v as
dmin(segi, ek).

– If p is not on segi, then compute the shortest distance
from pi and pi−1 to ek as dmin(segi, ek), as shown
in Figures 6(e).

We introduce Procedure 1 and Procedure 3 because there
is no ready algorithm in computational geometry for analyti-
cally computing the distance from a flat face or edge to a curve
(ciri or segi) in 3D space. One could discretize ciri (or segi)
and fj (or its edge ej) into two point clouds and then compute
the closest pair of points between them [14], but this would be
an approximation and is computationally expensive. Another
possibility is to formulate the problem of finding the minimum
distance involving a curve as an optimization problem, which,
however, may only be solved numerically because the distance
function involving a curve is of high-order and non-linear.
Again, such a method can be computationally expensive. In
contrast, the Procedure 1 and Procedure 3 introduced here

(a) eik intersects ciri at p on segi (b) eik intersects ciri at p not on segi

(c) p is on segi and p′ is outside ciri (d) p is on segi and p′ is inside ciri

(e) p and p′ are not on segi

Fig. 6. Illustrations for Procedure 3, the blue partial circle is the OctArm
section segi and the green dotted line segment indicates the distance obtained
for each case.

are efficient and accurate.
As for Procedure 2, a related algorithm was proposed in

[15] for computing the 3D distance from a point to a triangle,
which uses the barycentric coordinates of a triangle to check
whether the projection of a point is within the triangle. In our
algorithm, however, the face fj is not limited to be triangular
but can be any convex polygon.

IV. TEST RESULTS AND DISCUSSION

We have implemented the CD-ECoM algorithm, applied it
to collision detection between the OctArm manipulator and
polygonal mesh models of arbitrary objects. We have also
compared the collision detection results using our CD-ECoM
algorithm with those using a mesh-based collision detection
algorithm OPCODE [16], which is similar to SOLID [10],
[17] or RAPID [11] but often faster. We have run both the
CD-ECoM algorithm and the OPCODE on the same computer
with a 2.4GHz core.

Fig. 7 displays three mesh models for the OctArm, from
coarse to reasonably fine. The mesh model with 8,000 triangles
per arm section is required to provide a necessarily smooth
approximation. Of course, a finer mesh model will be even
better for accuracy but more expensive.

Table I compares the space and time required for acquiring
the exact arm model of the OctArm and two mesh models
(a coarse one and a fine one) of the OctArm for any given

4344

TABLE I
SPACE/TIME REQUIRED FOR DIFFERENT OCTARM MODELS AT A GIVEN ARM CONFIGURATION

Arm Model Exact Mesh 1 Mesh 2
Description 9 configuration parameters: 2,000 triangles per section 8, 000 triangles per section.

κi, si, φi, i = 1, 2, 3 3 vertices per triangle. 3 vertices per triangle.
Space (byte) 36 18K 72K

Building time (ms) None 50 193
Rebuild model for No need Yes Yes

a new configuration?

TABLE II
COLLISION DETECTION TIME (MS) BETWEEN THE OCTARM AND A TEA

POT MESH (WITH 1,024 TRIANGLES)

Arm Model Algorithm Config. 1 Config. 2 Config. 3
Exact CD-ECoM 42 8 12

Mesh 1 OPCODE 17 10 15
Mesh 2 OPCODE 47 21 38

TABLE III
COLLISION DETECTION TIME (MS) BETWEEN THE OCTARM AND A BUNNY

MESH (WITH 3,851 TRIANGLES)

Arm Model Algorithm Config. 4 Config. 5 Config. 6
Exact CD-ECoM 107 6 15

Mesh 1 OPCODE 58 60 69
Mesh 2 OPCODE 98 105 127

TABLE IV
COLLISION DETECTION TIME (MS) AVERAGED OVER 100 ARM

CONFIGURATIONS

Arm Model Algorithm Average time (ms)
Exact CD-ECoM 7.69

Mesh 1 OPCODE 8.62
Mesh 2 OPCODE 30.63

configuration. The time and space for building a bounding
volume hierarchy for a mesh model is not included in the
table. It is important to note that when the OctArm changes
its configuration, the exact model changes accordingly without
the need for rebuilding, but that is not the case for the mesh
models. Like many other continuum manipulators, a new
configuration of the OctArm involves deformation of the arm
(caused by changed curvature and length of any arm section);
therefore, the mesh model for the previous configuration can-
not be simply updated by coordinate transformation and used
again. Instead, a new mesh model for each new configuration
is needed, costing the same time and storage space again.

In general, if T and S are the time and space respectively
required for building a single mesh model of a continuum
manipulator, then to represent and store a single path of m
configurations of the manipulator in a mesh model requires
mT time and mS space, which could be too expensive to
be feasible even for off-line motion planning. This is because
motion planning usually requires examining and maintaining
a vast number of configurations to search for a good path. In
contrast, our CD-ECoM algorithm uses the exact arm model
of a continuum manipulator directly to avoid the high time
and space cost of building and re-building mesh models for
different configurations and thus facilitates motion planning

for a continuum manipulator.
Table II and Table III present the results of collision detec-

tion between the OctArm and two different object meshes, a
tea pot mesh model with 1, 024 triangles and a bunny mesh
model with 3, 851 triangles, at different OctArm configura-
tions, as shown in Fig. 8.

In configuration 1 and configuration 4, the arm is not in
collision, and this is the most expensive case for collision
detection with our CD-ECoM algorithm because no bounding
volume of the object is used. On the other hand, OPCODE
uses bounding volume hierarchies to speed up computation.
As the result, the CD-ECoM algorithm takes more time than
OPCODE for the coarse mesh 1 model of the arm. However,
it is easy to use a bounding volume hierarchy for the object in
our CD-ECoM algorithm to speed up the algorithm further. On
the other hand, for the finer mesh 2 model of the arm, even
without using a bounding volume hierarchy for the object,
our CD-ECoM algorithm takes comparable time for collision
detection.

For the rest of the configurations of the OctArm, our CD-
ECoM algorithm takes less time than OPCODE to detect
collisions. For the finer mesh 2, it takes at most only about
40% (configuration 2) and 11% (configuration 6) of the time
that OPCODE uses for the tea pot mesh and the bunny mesh
respectively.

Table IV compares the average time per collision check for
100 random OctArm configurations against the tea pot using
CD-ECoM vs. OPCODE. The results show that the CD-ECoM
algorithm is generally more efficient than OPCODE applied
to even a coarse mesh model of the continuum manipulator.

(a) 2,000 triangles per sec-
tion

(b) 4,000 triangles per sec-
tion

(c) 8,000 triangles per sec-
tion

Fig. 7. Three OctArm mesh models

V. CONCLUSIONS AND FUTURE WORK

This paper proposes an efficient algorithm for collision de-
tection between an exact continuum manipulator and environ-
mental objects in polygonal meshes. The CD-ECoM algorithm

4345

(a) Configuration 1 (no collision) (b) Configuration 2 (collision with
section 3)

(c) Configuration 3 (collision with
section 2)

(d) Configuration 4 (no collision) (e) Configuration 5 (collision with
section 3)

(f) Configuration 6 (collision with
section 2)

Fig. 8. Arm configurations tested for collision with a tea pot and a bunny

is applicable to general continuum manipulators featuring n
constant-curvature sections (where n = 1, 2, 3, ...) that can
be continuously deformed into different concave shapes by
changing each section’s configuration parameters (i.e., κ, θ, s).
Unlike conventional collision detection algorithms that require
mesh models, our CD-ECoM algorithm uses the exact model
of a continuum manipulator and therefore, it does not need to
rebuild mesh models for different arm configurations and saves
significant time and space. It is also generally more efficient
in collision detection comparing to collision detection using a
sufficiently fine mesh model of the manipulator. Our algorithm
is especially suitable for continuum manipulator path planning
that considers a large number of manipulator configurations.

Our next steps include incorporating hierarchical bounding
boxes into our CD-ECoM algorithm, which can reduce the
collision detection time for collision-free arm configurations,
and integrating this algorithm of collision detection into mo-
tion planning for continuum manipulation.

ACKNOWLEDGMENT

This work is supported by the US National Science Foun-
dation grant IIS-0904093.

REFERENCES

[1] W. McMahan, B. A. Jones, I. D. Walker, V. Chitrakaran, A. Seshadri,
and D. Dawson, “Robotic manipulators inspired by cephalopod limbs,”
Proc. CDEN Design Conf., pp. 1–10, 2004.

[2] R. Cieslak and A. Moreck, “Elephant trunk type elastic manipulator a
tool for bulk and liquid type materials transportation,” Robotica, vol. 17,
pp. 11–16, 1999.

[3] D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker, “Soft robotics:
Biological inspiration, state of the art, and future research,” Applied
Bionics and Biomechanics, vol. 5(3), pp. 99–117, 2008.

[4] G. Robinson and J. B. C. Davies, “Continuum robots - a state of the
art,” Proc. CDEN Design Conf., pp. 2849–2854, 1999.

[5] R. J. Webster, J. M. Romano, and N. J. Cowan, “Mechanics of
precurved-tube continuum robots,” IEEE Trans. Robot., vol. 25(1), 2009.

[6] J. Furusho, T. Katsuragi, T. Kikuchi, T. Suzuki, H. Tanaka, Y. Chiba,
and H. Horio, “Curved multi-tube systems for fetal blood sampling and
treatments of organs like brain and breast,” J. Comput. Assist. Radiol.
Surg, vol. 1, pp. 223–226, 2006.

[7] J. C. Latombe, Robot Motion Planning. Kluwer, 1991.
[8] P. Jimnez, F. Thomas, and C. Torras, “3d collision detection: A survey,”

Computers and Graphics, vol. 25, pp. 269–285, 2000.
[9] M. C. Lin and S. Gottschalk, “Collision detection between geometric-

models: A survey,” Proc. of IMA Conf. on Mathematics of Surfaces,
pp. 37–56, 1998.

[10] G. van den Bergen, “Efficient collision detection of complex deformable
models using aabb trees,” Journal of Graphics Tools, vol. 2(4), pp. 1–13,
1997.

[11] S. Gottschalk, M. C. Lin, and D. Manocha, “Obb-tree: A hierarchical
structure for rapid interference detection,” Proc. of ACM SIGGRAPH,
1996.

[12] B. A. Jones and I. D. Walker, “Kinematics for multisection continuum
robots,” IEEE Trans. Robot., vol. 22, pp. 43–55, 2006.

[13] G. Turk and M. Levoy, “Zippered polygon meshes from range images,”
SIGGRAPH, pp. 311–318, 1994.

[14] “CGAL, Computational Geometry Algorithms Library.”
http://www.cgal.org.

[15] M. W. Jones, “3d distance from a point to a triangle.” Technical
Report CSR-5-95, Department of Computer Science, University of
Wales Swansea, 1995.

[16] P. Terdiman, “Opcode: Optimized collision detection.” Available:
www.codercorner.com/OPCODE.htm, 2003.

[17] G. van den Bergen, “A fast and robust gjk implementation for collision
detection of convex objects,” Journal of Graphics Tools, vol. 4(2), pp. 7–
25, 1999.

4346

